
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

51

BEST TARGET PLATFORM FOR APPLICATION

MIGRATION

1
MAHDI MALEKI ,

2
SHUKOR ABD RAZAK

1
Faculty of Computer Science and Information System, UTM, Skudai, Johor, Malaysia-81310

2
Dr., Department of Computer System and Communications, UTM, Skudai, Johor, Malaysia -81310

E-mail: mmahdi3@live.utm.my, shukorar@fsksm.utm.my

ABSTRACT

This paper aims on finding common key factors between different platforms that must be considered in

cross-platform application migration and the assigning of weight to each of individual factors. These are

achieved through two surveys. This paper will propose a standard method /.for compatibility ratio

measurement regarding the origin/source and destination platforms to help system administrators and IT

managers to choose the best platform in migration projects.

Keyword: C++, Application Migration, Cross-Platform, Migration Issue, Legacy Application

1. INTRODUCTION

According to the latest surveys about

programming language popularity, most companies

deciding to develop an enterprise application

preferred to use one of the cross-platform

programming languages for development [28]. Most

of the reasons given for using cross-platform

programming language are related to their

prominent features such as flexibility and portability.

Furthermore, the future dictates a need to cater to a

growing number of application users, the changing

of security policies and so forth that maybe compel

IT managers to choose another platform to achieve

more performance, extra capabilities, security

enhancement, decreasing TCO (Total Cost of

Ownership) and increasing RAS (Reliability,

Availability, Serviceability)[14].

As Richter et al. [22] states, choosing the most

suitable and compatible target platform are one of

the big challenges of every project migration

process. Accordingly, this paper will propose a

standard method to evaluating competitive ratio

between the source and destination platform to

decrease the risk of application migration between

two heterogeneous environments.

According to Wilson et al [30] around more than

50% of migration project after two to four years are

abandoned due to failures that cost lots of money

and wasting resources and time. This kind of

migrations usually is happened between UNIX and

Linux based platforms [13].

TABLE 1. HISTORIC PROGRAMMING LANGUAGE

POPULARITY RANKING [17]

Language
10-

Sept

06-

Sept

00-

Sept

85-

Sept

C 1 2 1 1

Java 2 1 5 n/a

C++ 3 3 2 10

PHP 4 4 31 n/a

(Visual)

Basic
5 5 3 4

2. APPLICATION MIGRATION/PORTING

Migration can be defined as the process of

porting from/to another heterogeneous

/homogeneous operating environment. Usually, it is

considered as movement to a better environment.

For an instance migrating from Windows NT Server

to the newer version, Windows 2000 Server may be

considered as a migration project because there are

some new features that one could benefit while

maintaining old configurations do not need to be

changed; it also involves steps to make sure that

0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

52

current applications will be operational in the new

environment [3].

Every single cross-platform application

migration procedure can be divided into following

steps [10]: Planning and detailed assessment, Tools

for development and customization, Test migration,

Application migration, Acceptance, Installation,

warranty, and product support.

According to Bierhoff, et al [1], every single IS

application can be defined as a series of components

plus communication between components.

Components can be divided into four subcategories

[1]:

• Functionality supply

• Infrastructure expectations

• Control model

• Data manipulation

Additionally, communication between

components can be classified into two sub-

categories [1]: Asynchronous communication and

Message data model.

There are two well-known scenarios for doing

migration (porting) [5], which are:”Port and

Modernize”, and “Modernize and Port”. The

“Modernize and Port” scenario initially identifies

the value of existing application, and then tries to

migrate the application by porting some parts of the

code while extracts the business rules. Usually, this

includes the core applications which are very

important for a large number of corporate users, as

it can drive critical business processes in a very

adequate way. However, there are disadvantages to

this method, which includes the difficulty in

comparing between new and old running

performances, a complex process of testing and

acceptance [5].

The “Port and Modernize” scenario split the

project into different portions of codes migration

and then recognize components by doing separation

between port and modernization. As Intelligent

Business Solutions [5] suggested,”Modernize and

Port” scenario is much feasible than the other

scenario.

3. CURRENT ISSUES

During each phase of application migration, there

may be issues at different layer of application. To

go deeper into this and find coexisting

incompatibilities, it is better to categorize these

issues by layers of application. The application can

be divided into six layers:

• Presentation Layer

• Application Service Layer

• Lending Message Bus Layer (optional)

• Business Layer

• Data Service Layer

• Platform Service Layer

3.1. Presentation Layer (PL)

This layer also is called user interface (UI). Three

most common types of user interfaces are:

Graphical User Interface (GUI), Web-based User

Interface (WUI), and Command Line Interface

(CLI). One of the most outstanding issues is font

incompatibility which means font(s) that used in

ported application is not supported by destination

environment.

TABLE 2. COMPARATIVE DEPENDABILITY OF FONTS

FOR WEB-USE: ORDERED FROM MOST TO LEAST

FREQUENTLY FOUND IN WINDOWS [17]

Font
Window

s
Mac Linux

Arial Black 97.73%
95.67

%

54.44

%

Verdana 97.41%
94.02

%

55.00

%

Arial 96.97%
96.41

%

62.78

%

Courier New 96.79%
92.08

%

61.94

%

Comic Sans MS 96.72%
91.63

%

51.94

%

Lucida Console 96.65% n/a n/a

Tahoma 96.61%
72.50

%
n/a

Impact 96.33%
88.04

%

53.89

%

Statistics about font compatibility among

Windows, Mac and Linux is as shown in Table 2.

The other possible issue is when application use

UNICODE characters when destination operating

system does not support UNICODE as in some

UNIX-based operation systems. Another possible

issue is browser incompatibility (See Table 3).

3.2. Application Service Layer (ASL)

Reusable components are placed in this layer and

the functionalities represented at the presentation

layer are provided by this layer. This layer plays the

role as mediator between business layer and

presentation layer through the “Lending Message

Bus Layer”. In this layer, type casting and type

mismatching issues are very common.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

53

Usually input data which is received by

presentation layer should be casted. Casting issues

generally happen when application is ported form

32-bit environment to 64-bit operating system due

to having different data models (See Table 4).

TABLE 3. BROWSER COMPATIBILITY CHART [4]

Browser
Window

s

Linu

x

Solari

s

Flock (1.x and 2.x) Yes Yes No

Internet Explorer Yes Yes Yes

Konqueror Yes Yes Yes

Mozilla Yes Yes Yes

Netscape Navigator

9
Yes No No

Netscape Browser Yes No No

Opera Yes Yes Yes

3.3. Lending Message Bus Layer (LMBL)

Messages can be traversed through the Lending

Message Bus Layer in two ways: Asynchronous and

synchronous. Most outstanding consideration in this

layer is the supported communication protocols and

how network resources are accessed by the

application. Moreover, different message models

can cause incompatibilities in the formats of

messages exchanged by components. This can lead

to massive performance overhead due to costly

message conversions.

TABLE 4. SHOWS SIZE OF EACH TYPE IN DIFFERENT

MODELS [15]

Type-Model ILP32 LP64 LLP64 ILP64

char 8 8 8 8

short 16 16 16 16

int 32 32 32 64

long 32 64 32 64

long long 64 64 64 64

size-t 32 64 64 64

pointer 32 64 64 64

3.4. Business Layer (BL)

Most of migration issues happened in this layer

because the majority of low-level programming and

business logics implementation is coded in this

layer. As another point of view the core and most

critical part of application is in business layer. The

first issue is using function with variable number of

arguments.

Using magic numbers in address calculation, bit

operating, endianism and object size during a

migration are another example of issues in this layer.

File name restriction is the other common issue

especially when migration is happening between

two heterogeneous operating systems like Windows

and UNIX-based Operating system. Another

consideration is about ACL or file security and

access permission. (See Table 5)

3.5. Data Service Layer (DSL)

Data service layer is responsible for providing

data for business layer which is also known as Data

Access Layer (DSL). The main problem in this

layer is with drivers and their used protocols for

connecting to different data sources. Data sources

can be vary from simple text file to complex

relational databases.

TABLE 5. FILE SYSTEM COMPARISON CHART [11]

File

System

Case-

sensivity

Reserved

character

s

Max.

lengt

h

Max.

File

size

MS-DOS

FAT

case-

insensitive,

case-

destruction

any 12 4GB

NTFS

optional,

case-

preservation

any

(include

UNICOD

E)

255

2^64

bytes

UNIX

case-sensitive,

case-

preservation

any 255
2^73

bytes

There is very simple differences between texts

file structure in Windows-based operating system

and UNIX-base one which is line separator. UNIX

files use a linefeed (LF) character for line separation,

while Windows files use carriage return and

linefeed (CRLF).

Application should use driver that provide

connectivity to data source. Open Data Base

Connectivity (ODBC) is most common driver

which uses as this purpose. UNIX-based operating

system does not support ODBC calls, so third-party

vendors’ application such as DataDirect should be

used as an alternative.

3.6. Platform Service Layer (PSL)

Platform defines as combination of hardware and

operating system together while hardware usually

0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

54

knows as system architecture. Three most famous

architectures are: X86, SPARC and IA (Intel

Itanium). All these three architectures have own

specific consideration.

Porting from X86 to IA has minor issue that

performance of application that is compiled at X86-

32 and ported to IA-32 is decreased dramatically.

Operating system is another part of platform has

many flavours. Four major streams of operating

systems are UNIX, Windows, OS2 and AIX. They

have differences fundamentally: supported file

systems, kernel types, memory management, native

APIs and resource access control are just part of

these differences [11]. Table 6 and Table 7 show

differences between six most common operating

systems.

Supported character sets by operating system are

another issue. This issue impact on both

presentation layer and also business layer. Legacy

operation systems use ASCII standard as their

default internal operating system encoding because

of variety of using language-specific extensions of

ASCII which made exchange files difficult.

TABLE 6. OPERATING SYSTEMS DIFFERENCES

(PART I) [12]

OS

Name

Supported

Architecture

Supported

File System

AIX PowerPC
JFS,JFS2,ISO

9660,UDF,SMBFS,GPFS

Linux

x86,x86-64,

,PPC,SPARC

,Alpha

ext2,ext3,ext4,ReiserFS,

FAT,ISO 9660,UDF,NFS

HP-UX
PA-RISC

,IA-64

VxFS,ISO

9660,HFS,UDF,NFS,SMB

FS

Solaris
x86,x86-64,

SPARC

UFS,ZFS,ext2,FAT,

NFS,QFS,NTFS,FAT,exF

AT

Windows

Server

2008

x86,x86-64

,IA-64

NTFS,FAT,exFAT, ISO

9660,UDF,

ext2,ext3,reiserfs9,HFS+,F

ATX, and HFS

While UTF-8 widely uses text files (source code,

HTML files, email messages, etc.), file names,

standard input and standard output, pipes,

environment variables, cut and paste selection

buffers, telnet, modem, and serial port connections

to terminal emulators, some operating systems are

not support UTF-8 character set by default and you

have to install it first.

TABLE 7. OPERATING SYSTEMS DIFFERENCES

(PART II) [12]

OS

Name

Native

APIs

Non-native

APIs

Resource

access

control

AIX
SysV

POSIX
n/a Unix,ACLs

Linux POSIX

Mono,Java,

Win16,

Win32

Unix,ACLs,

MAC

HP-UX
SysV

POSIX
n/a Unix,ACLs

Solaris

SysV

POSIX

GTK,Java

Win16,

Mono,Linux

,Win32

Unix,RBAC

 ,ACLs,

Trusted

Extensions

Windows

Server

2008

Win32,NT

API

.NET,Win16,

DOS API,

POSIX

ACLs,

Privileges

RBAC,

Least

Privilege

There are some special languages which have to

be considered as high risk challenges if they used in

application. Languages such as Arabic, Chinese,

Korean, Persian, Thai, and Malay are just few

examples of high-risk languages which must be

highly considered before doing migration [7].

Generally porting one application between two

completely heterogeneous platforms makes lot of

challenges. One of the main challenges is

administration of new platform which needs to learn

many things for old administrator or hire costly

senior system administrator to manage new

environment. Sometimes new packages should be

bought to fulfil administrative tasks such backup

utilities, antivirus, firewall and in some cases

licenses of current application must be upgraded to

support new environment.

These challenges include [12]: Disk

Administration(Partition Disk, Creating

Stripe/Volume sets, Remote Disks), File

Services(File Security, File Names, Sharing Files),

Printing Services(Printer Sharing, Remote Printer,

Adding/Changing Printers, Printer Drivers),

Communication Services(TCP/IP Setup/Changes,

FTP, TFTP, RCP, and Telnet, E-mail, Talk/Chat,

User Messages), Backup/Recovery, System Log

Files, Process and Task Management (Task Priority,

Automatic Job Scheduling, System Load Balancing,

Terminate Process/Task, Daemons/Services, User

Management).

0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

55

4. RELATED WORK

This section discuss about what are the existing

solutions for issues listed in previous section.

Accordingly possible solution will represented

based on layered architecture which is introduced in

this paper. While Wojtczyk, et al [20], introduce a

development framework for cross-platform C/C++

applications that applicable for rebuilding

importable modules. Understanding the different

type of changes is essential which helps knowing

how these issues created and then go through the

some solution for mentioned issues in different

layers.

Changes can be categorized in three sections [14]:

Functional changes, Non-functional changes,

Platform changes. Indeed in many cases platform

changes made major issues but in some cases other

types of changes made minor issues which can be

called incompatibilities at functional changes and

coincident at nonfunctional changes.

Platform changes can be divided into two

categories regarding to their impacts: platform

minor changes, platform major changes.

4.1. Presentation Layer (PL)

User Interface (UI) is one the most important part

of each application that represents output of the

whole system. Hence have a consolidated UI helps

to have well represented application. Application

Programming Interfaces (APIs) play an important

role in this layer. One way to reduce dependencies

is using standard APIs besides using some

generalization techniques such as using XML to

keep configurations and common standard fonts at

presentation layer [2].

There some methods and frameworks to develop

independent cross-platform GUIs such as Trolltechs

Qt and Gnome Gtk+ toolkits. Microsoft develop [11]

Interix to support X Windows system on its

operating system. It supports “xterm”, “xlsfonts”,

and “xrdb”. It is compiled using X11R5 and X11R6

libraries to run with the corresponding servers. If

the migration is happening in the vice versa

direction which is discussed above, there are some

open source toolkits such as WINE and Mono.

Moreover there are some enterprise and commercial

toolkit such Wind/U and MainWin Studio.

Mono is a cross platform, open source .NET

development framework. Since Common Language

Infrastructure (CLI) is able to host C++ compiled

code on all supported platforms as long as the

compiled code only contains Common Intermediate

Language (CIL) instructions and not a mix of CIL

and native code. Microsoft Managed C++ and

C++/CLI compilers produce mixed-mode

assemblies by default. Mixed-mode assemblies are

experimentally supported only on Windows because

native code is platform specific. It provides core

APIs for .NET technology.

WINE is another toolkit to run windows

application on Linux, BSD, Solaris and Mac OS X.

It implements the Windows API entirely in user

space, rather than kernel module. It has special C++

runtime library to support C++ codes.

To make Command Line Interface (CLI) portable,

using a standard character encoding is very

important which should be supported by destination

platform. Considering about simple differences such

as option which is start with ”-” in WINDOWS-

based operating system and ”/” in UNIX-based

operating system and also uses of some special

characters such as reserved character and some

reserved filenames that may not legitimate at ported

environment.

Typically Web-based User Interface (WUI) is

cross-platform module because it just needs internet

browser which almost all operating system have at

least one embedded internet browser. The main

important consideration in such these modules is

web page layout; web configuration and

internationalization (language) which can simplify

tackle them by using standards such as XML and

HTML.

Another consideration is about fonts which is

used in web pages, they should be available on

destination platform specially encodings which

make problem in generating response pages if they

are not available on destination platform. For an

instance even you use UTF-8 encoding in ported

application, you have manually install specific

locale in Solaris to support it. To give more

flexibility to WUI, it is highly recommended to use

XML which is originally design o provide plainness,

generalization, and usability for web applications

over the Internet. Extensible Hypertext Markup

Language (XHTML) is new established

technologies that makes HTML more extensible and

helps to have more interoperability with vary data

formats. According to Taleb, et al [16], there is

some Patterns-Oriented Design Applied to Cross-

Platform Web-based Interactive Systems which can

helps developer to have platform independent

application.

4.2. Application Service Layer (ASL)

There are some tools available to check the

source code to find such these type casting and type

0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

56

mismatch problems. “lint” is one of these tools that

is available for finding suspicious and non-portable

constructs in C source codes.

Another tool is “cl” command which is

integrated with Microsoft Visual Studio to detect

common coding errors in C/C++ source codes. It

can find type casting issues between 32-bit and 64-

bit data models that mentioned before. In an

application which uses structure or union to pack

data and send it to business layer via lending bus

message, padding must be considered because the

total size of structure or union has variation in

different data models(32-bit and 64-bit) [14].

4.3. Lending Message Bus (LMB)

Layer(optional)

Lending Message Bus Layer is responsible for

acting role as mediator between Application Service

Layer (ASL) and Business Service Layer (BSL)

which can be in two ways: Asynchronous and

synchronous. While application is ported from

single-thread processing platform to multithread

environment asynchronous message encounter with

some conflicts, especially when multi-threading

with strict prioritize scheduling paradigm is applied

[9].

Another consideration in this layer is supported

communication protocols and how sockets and

network resources is accessible by application.

UNIX-based operating system networking is based

on three layers which each layer has loadable

module in kernel, modules including: socket

interface, protocol drivers and network-device

drivers. For an instance, there are some differences

at using of sockets between windows-based and

UNIX-based operating system that should be

considered. One of them is header file which should

be included: “sys/socket.h” in UNIX or

“winsock2.h” for Windows.

Window-based operating systems have two

internal interfaces: Network Device Interface

Specification (NDIS) that control network adapter

cards, and Transport Driver Interface (TDI) which

works as mediator between the transport and

session layer of the OSI model.

Another issue is again refers to different

endianism between X86 architecture and Solaris

and PowerPC architectures. While Solaris and

PowerPC architectures use big-endian. X86

architecture use little-endian which should

considered when bytes is received via network.

Remote Procedure Call (RPC) is well -supported by

almost all operating systems.

4.4. Business Layer (BL)

This layer contains the most important part of

application which is Business Logic. It also known

as the core of application, moreover needs to have

many considerations for applying any changes in

this critical part of application.

Functional algorithms that are implemented in

following layer mostly focus on handling

information exchange between Data Service Layer

(DSL) and Application Layer Service (ASL).

Most computational algorithm and also data

manipulation logics placed here, hence discussing

about possible issues at logical and low-level

coding is essential. The same considerations as they

are mentioned at Application Service Layer (ASL)

must be considered also in this layer. For instance,

there are some functions such as “printf”, “sprint”,

“scanf”, and “sscanf” which can accept variable

number of arguments that should be threaten very

carefully to avoid buffer overflow or showing

incorrect result. It is recommended to use “cout”

instead of “prinf” and “sprint”, and replace

“sprint” with “boost::format” or

“std::stringstream” [6].

4.5. Data Service Layer (DSL)

Data service layer provides data for business

layer, so the main consideration here is about how it

can persistently work on different environment.

Database connectivity driver must be supported on

both platforms to have steady data access service.

Open Database Connectivity (OBDC) is one of

these drivers which are mostly recommended by

experts.

Because many database vendors try to make

platform to support many platforms as it is possible

we can totally say that there are serious problem

with systems that use well-known RDMBS system

in this layer. There just one major issue with system

which put data into text files and migration is

happening between UNIX-based environment and

Windows-based operating system. This issue can be

solved some available tools for converting text files.

Supported Locale or Language by operating

system is another consideration, sometimes it needs

to purchase and install new packages or changing

configuration to support desire encodings.

4.6. Platform Service Layer (PSL)

Architectural mismatch leading to have different

implementation of platform services and

consequently distinctive may of resource and

0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

57

service management. Memory and process

management is one the well-known differences.

As it shown in Figure 1 and Figure 2, there are

some architectural differences between Windows-

based operating system and UNIX-based.

Figure 1. Windows Server 2003 Architecture [8]

It is strongly recommended if application is

highly afflicted with platform and has many

dependencies over its services to use Virtualization

instead of migration that take many efforts and

made a lot of challenges for both developers and

system administrators to have successful porting

project [18].

Figure 2. UNIX Architecture [8]

5. DISCUSSION

Nowadays, regarding to changes in IT

environment including: size of application,

capabilities, applicability, functionality and

limitation of legacy applications. IT mangers might

be deciding to migrate their enterprise application

from inherited environment to new and fashionable

platform to be beneficial of new technologies [14].

This migration usually is happened between

UNIX and Linux based platforms. According to

statistics around more 50% of migration project

after two to four years are abandoned as failures

which are cost lots of money and wasting resources

and time [19].

This article aims to present some possible issues

that might be affecting on ported application. Due

to variety of issues, to find and tackle them in a

feasible way, breaking application in different layer

of concerns is proprietary. Hence, based on

different services and functionalities of application

modules, application is break down into five layers:

Presentation Layer, Application Service Layer,

Lending Message Bus Layer, Business Layer, and

Data Service Layer. Platform Services which are

represent by Operating system, its integrated

modules and attached devices is another important

consideration that sometimes makes big challenges

for application migration project. This article, for

the first time, defines Platform Service Layer (PSL)

as new concept as part of IS system architecture that

has not been consider in any pervious works. PSL is

tightly affiliated by Operating system,

correspondingly changes in operating environment

sometimes has vast impact on services that is

provided by this layer, even though if it is

happening between two homogenous, still there are

some functionality mismatches that should be

concerned.

This paper aims to cover some common and

well-known issues in different functionality areas

by giving existence solutions while all previous

works try to cover numbers of these

incompatibilities without concerning about

functionality, importance and severity of each

individual issue on each layer of application.

Therefore, depend on type of application and

interested area of functionalities, one of the two

scenarios of migration can be chosen as feasible

solution which can decrease defeat rate of

application migration and also cost of

implementation by having knowledge of possible

challenges and issues before ahead. Lack of well-

define framework to do migration for C++

applications is sensible.

0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

58

6. CONCLUSION

During past two decades many legacy

applications and mission critical appliances are

developed based on C++ programming language.

These applications run for many years and

consolidated by removing bugs and exception

which might take lots of efforts and resources to

tackle them.

Due to vast changes and enhancement in IT

environment and technological development porting

application to new environment to be beneficial of

these new technologies is almost unavoidable.

Therefore, being aware about possible

incompatibilities and issues makes migration

project plan more accurate and feasible and

consequently decrease risk of migration failure.

REFERENCES

[1] Bierhoff , K., Grechanik, M. and Liongosari, E.

(2007). Architectural Mismatch in Service-

Oriented Architectures. may. 4 {4.

doi:10.1109/SDSOA.2007.2.

[2] Bishop, J. and Horspool, N. (2003). Cross-

Platform Development: Software that Lasts.

Annual IEEE/NASA Software Engineering

Workshop SEW-30.39(2006), 9.

[3] Bitpipe (2010). Software Migration:Definition.

doi :http://www.bitpipe.com/tlist/Software-

Migration.html.

[4] Burgess, D. T. F. (2001). A General

Introduction to the design of questionnaires for

survey research.

doi:http://www.leeds.ac.uk/iss/documentation/

top/top2.pdf.

[5] codestyle.org (2008). Web Font Survey.

Technical report.

doi:http://www.codestyle.org/css/font-

family/sampler-CombinedResults.shtml.

[6] Economides, N. and Katsamakas, E. (2006).

Linux vs. Windows: A Comparison of

Application and Platform Innovation

Incentives for Open Source and Proprietary

Software Platforms. In Bitzer, J. and Schroder,

P. J. (Eds.) The Economics of Open Source

Software Development. (pp. 207 { 218).

Amsterdam: Elsevier. ISBN 978-0-44-452769-

1. doi:DOI:10.1016/B978-044452769-

1/50010-X. Retrievable at

http://www.sciencedirect.com/science/article/

B86TN-4PB7H82-

F/2/21b1f996676f70a7d5fe58d0ee70cc87.

[7] Gauch, R. R. (2009). Measurements They

‘ever Exact. In It's Great! Oops, No It Isn't.

(pp. 65{71). Springer Netherlands. ISBN 978-

1-4020-8907-7. Retrievable at

http://dx.doi.org/10.1007/978-1-4020-8907-

7_8.

[8] Heymans, L., der Beken, T. V. and Wilson, B.

(2007). Testing Techniques for the Cross-

platform Migration of Very Large Interactive

Applications. Software Maintenance and

Reengineering, European

Conferenceon.0,323-324.ISSN1534-5351.

doi :http://doi.ieeecomputersociety.org/10.110

9/CSMR.2007.46.

[9] Inglenet-Business-Solution (2001). A CASE

STUDY OF PLATFORM MIGRATION

FROM UNISYS 2200 TO UNIX ALBERTA

BLUE CROSS PORT PROJECT. Technical

report. Inglenet Business Solutions. doi:http:

//www.inglenet.com/downloads/Blue Cross

Case Study - Detailed.pdf.

[10] Karpov, A. and Ryzhkov, E. (2007). 20 issues

of porting C++ code on the 64-bit platform.

doi:http://www.viva64.com/content/articles/64

-bit-development/ ?f=20 issues of porting C++

code on the 64-bit platform.html&lang=

en&content=64-bit-development.

[11] Kharitonov, E. V. (2000). A Method of

Making Subjective Measurements Compatible

with Hierarchical Matrices of Preference

Ratios. Measurement Techniques. 43, 747{751.

ISSN 0543-1972. Retrievable at

http://dx.doi.org/10.1023/A:1026689404649.

[12] Kuhn, M. (2009). UTF-8 and Unicode FAQ

for Unix and Linux.

�doi:http://www.cl.cam.ac.uk/ mgk25/unicode

.html.

[13] Matthias, R. D. F. M. N. E., Schonlau (2006).

Conducting Research Surveys via E-mail and

the Web.

doi:http://www.rand.org/pubs/monograph

reports/MR1480/index.html.

[14] McCarthy, S. P. (2008). Choosing the Right

Platform for Trusted Cross-Platform

Information Sharing. Technical report.

doi:http://www.linux.com/learn/whitepapers/d

oc/11/raw.

[15] Mercer (2006). Migration Decision-Maker

Interviews. Technical report.

doi:http://download.microsoft.com/download/

E/A/0/EA0F6F0B-BAA2-46B1-9EBC-

7F28EFA7C508/MercerWhitePaper%20.pdf.

[16] MicrosoftTech (2006). UNIX Custom

Application Migration Guide. (2nd ed.).

Microsoft Tech Net.

0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

59

[17] Nelson, M. (1995). C++ Program Guide to

Standard Template Library. Foster City, CA,

USA: IDG Books Worldwide, Inc. ISBN

1568843143.

[18] Oblitz, T. R. and Mueller, F. (2000).

Combining Multi-Threading with

Asynchronous Communication. In In Myrinet

User Group Conference.

[19] Poniatowski, M. (2003). Linux on HP

Integrity Servers. Upper Saddle River, NJ,

USA: Prentice Hall PTR. ISBN 0131400002.

[20] Rajagopal, R. (1998). Windows NT, UNIX,

NetWare migration and coexistence: a

professional's guide. vol. 1. CRC Press.

[21] Ramanathan, B. F., R. (2004). Virtualization:

Bringing Flexibility and New Capabilities to

Computing Platforms. Technical report.

[22] Richter, K., Nichols, J., Gajos, K. and Se

ah, A. (2006). The many faces of consistency

in cross-platform design. In CHI '06: CHI '06

extended abstracts on Human factors in

computing systems. New York, NY, USA:

ACM. ISBN 1-59593-298-4, 1639{1642.

doi:http://doi.acm.org/10.1145/1125451.11257

51.

[23] Roth, M. (2009). Method for developing

platform independent launchable applications.

[24] Springer (2001). Compatibility analysis. In

Computer Science and Communications

Dictionary. (pp. 259{259). Springer US. ISBN

978-1-4020-0613-5. Retrievable at

http://dx.doi.org/10.1007/1-4020-0613-6_3222.

[25] SunMicosystem (2005). Converting 32bit

Applications Into 64bit Applica-tions Things

to Consider.

doi:http://developers.sun.com/solaris/articles/I

LP32toLP64Issues.html.

[26] Taleb, M., Se

ah, A. and Abran, A. (2007). Patterns-Oriented

Design Applied to Cross-Platform Web-based

Interactive Systems. aug. 122 {127.

doi:10.1109/IRI.2007.4296608.

[27] TechNet, M. (2006). Functional Comparison

of UNIX and Windows. In Functional

Comparison of UNIX and Windows.

Microsoft Press.

[28] TIOBE (2010). TIOBE Index for January

2010.

doi:http://www.tiobe.com/content/paperinfo/tp

ci/index.html.

[29] Weiss, G. J. (2009). The Great Virualization

Delimma of Next Decade: What You Need to

Know.

doi:http://www.gartner.com/DisplayDocument

?doc cd=164938&ref=g BETAnoreg.

[30] Wilson, B. and Beken, T. V. d. (2003).

Observations on automation in cross-platform

migration.

doi:http://soft.vub.ac.be/FFSE/Workshops/ELI

SA-submissions/08-Wilson-position.pdf.

[31] Wojtczyk, M. and Knoll, A. (2008). A Cross

Platform Development Work flow for C/C++

Applications.

[32] Xu, L., Xu, B., Nie, C., Chen, H. and Yang, H.

(2003). A Browser Compatibility Testing

Method Based on Combinatorial Testing. In

Lovelle, J., Rodrguez, B.,Gayo, J., del Puerto

Paule Ruiz, M. and Aguilar, L. (Eds.) Web

Engineering.(pp. 310{313). Lecture Notes in

Computer Science, vol. 2722. Springer Berlin

/Heidelberg. Retrievable at

http://dx.doi.org/10.1007/3-540-45068-8_60.

