
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

129

UNIVERSITY COURSE SCHEDULING USING PARALLEL
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

1M. M. ALDASHT, 2M. H. SAHEB, 3I. NAJJAR, 4M. H. TAMIMI, 5T. O. TAKRURI

1Asstt Prof., Department of Information Technoloy, PPU, Hebron, Palestine
2Asstt Prof., Department of Information Technoloy, PPU, Hebron, Palestine
3IT student, Department of Information Technoloy, PPU, Hebron, Palestine
4 IT student, Department of Information Technoloy, PPU, Hebron, Palestine

5PC Lab. Admin., Department of Information Technoloy, PPU, Hebron, Palestine

ABSTRACT

Evolutionary Algorithm (EA) provides a mechanism that can achieve efficient exploration for design
spaces. Thus, it constitutes an efficient tool for identifying the best alternatives to implement the solution
of a certain problem. In this work, EA is implemented to solve the university course scheduling problem
and a real data from Palestine Polytechnic University (PPU) databases is used for testing. Sequential
implementation of such a complex problem will suffer a long execution time to find sub-optimal solution.
On the other hand, using single objective optimization model soft and hard constraints could not be well
satisfied. In this work, we have implemented the EA using parallel programming techniques. This permits
the execution of the program in a cluster computer to reduce the execution time. Also, many soft
constraints can be considered along with the hard constraints in order to get better solutions. Results show
that, after redrafting the algorithm to be multi-objective, soft cost could be reduced to the minimum when
using enough individuals and iterations, at the same time, hard constraints are still satisfied. After
distributing the algorithm on 7 machines with 11 processors the obtained speedup is around 6 on average
and the quality of the obtained solution has improved considerably.

Keywords: Parallel Evolutionary Algorithms, Multi-objective Optimization, University Course

Scheduling.

1. INTRODUCTION

University Course Scheduling (UCS) can
be considered as an instant of what so called
timetabling problem. In which time slots and
teachers must be assigned to a set of courses in a
way that satisfies a set of hard constraints and
minimize the cost of another set of soft constraints
[8]. This problem is considered to be a non-
polynomial-time hard (NP-hard) problem, which
means that the amount of computation required
for finding solutions increases exponentially with
problem size [14]. Evolutionary algorithms are
good algorithms for solving complex and non-
linear scheduling problems [2].

Scheduling problem, in general, can be
defined as a problem of finding the optimal
sequence for executing a finite set of operations
under a set of certain constraints [10].
University course scheduling problem includes
the process of assigning a set of classrooms and
set of instructors to a given set of courses taking
into account a set of constraints. The final
solution is required to satisfy a set of
constraints, these constraints are divided into
hard constraints, which must be satisfied and
soft constraints which should be satisfied.

Examples of hard constraints are: no
person can be in more than one place at a time,
and the total resources allocated to some time
slot must be less than or equal to the resources

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

130

that are available in that period, etc. Examples of
soft constraints are: some lecturer should not have
very late classes daily; a group of students should
not have consecutive classes in different and large
distant places, and other individual’s preferences,
etc. [4].

Various choices of objectives, such as a
compact timetable, minimum number of
consecutive classes of teachers and so on, lead the
scheduling of a class timetable to a multi-
objective optimization problem. However, a very
limited number of researchers considered multiple
objectives in the problem [12].

On the other hand, there are two types of
algorithms could be used for solving the problem,
sequential and parallel. Parallelization can
improve considerably the quality of the solutions
obtained, compared with sequential
implementation of the algorithm [5]-[6].

The performance of all different evolutionary
algorithms, most notably GAs, in solving the
university course scheduling problem has been
widely studied. Those algorithms are highly
dependent on their special operators, i.e., mutation
and crossover. Because the search space of the
problem is very complex, a more general
approach is needed to guarantee a robust
exploration and to avoid the local minimum
problem which is frequent in such search spaces.
In this paper, our approach, built after [4] using
parallel approach, while keeping its simple
representation for the solution and a robust
exploration for the search space.

2. THE RESEARCH METHODOLOGY

The academic class timetabling problem is
being studied for more than four decades, a
general solution technique for it, considering
different aspects of its variants, is yet to be
formulated. Despite multiple criteria to be met
simultaneously, the problem was generally
tackled as single-objective optimization problem.
Moreover, most of the earlier works were
concentrated on school timetabling, and only a
few on university class timetabling [1].

On the other hand, in many cases, the problem
was over-simplified by skipping many complex
class-structures. To overcome these shortages the
multi-objective approach was identified. Multi-
objective optimization (MOOP) methods
introduce a new approach for optimization that is
founded on compromises and trade-offs among
the various objectives. The aim of MOOP
methods is to discover a set of satisfactory
compromises and, through them, the global

optimal solution by optimizing numerous
dependent properties simultaneously.

2.1 Problem Modelling

In this work, timetabling problem has been
implemented on one of the four colleges of the
university which is the College of
Administrative Sciences and Informatics. Then,
the methodology can be generalized on the rest
of colleges. In this college there are four
academic 4-years programs. Thus, courses are
offered at the beginning of each semester for 4
student groups in each academic program. In
total we have 16 groups (4 levels * 4 programs).
On the other hand, we have five work days a
week (Sunday to Thursday). On Sunday,
Tuesday, and Thursday there are nine 60-
minutes time slots a day, and on Monday and
Wednesday there are six 90-minutes time slots a
day.

To handle the problem, six different sets
have been defined. Which are: student groups
“S”, instructors “I”, course sections “C”, class
rooms “R”, timeslots-lectures “L”, and a set of
constrains “O”. Then, the problem is formulated
as P = {S, I, C, R, L, O}. Where: S = {s1, s2, ...,
si} is the set of student groups, each element in
S is a vector (m, y, std_slot) where m: is the
major (IT, IS, GM, or BA), y: is the group
number which will be represented by academic
year of that group. This vector determines a
group of students of the same major and
academic year. So, for the considered college, m
ranges from 1 to 4, and y ranges from 1 to 4,
and std_slot is an array of timeslots that
indicates when the student groups are available.
I = {i1, i2, ..., ij} is the set of instructors in the
college at the current semester, each element in
I is a vector (inst_no, inst_slot) where inst_no:
is the number of a specific instructor, inst_slot:
is an array indicating to timeslots when the
instructor can give a lecture. C = {c1, c2, ..., cn}
is the set of course sections offered for the
student in the current semester, each element in
C is a vector (si, co_no, section, cap, tj , th, ph,
ph_type, ph_inst) where si: is the group of
students, which this course is offered for,
co_no: is the course number, section: is the
section number of this course, cap: is the
maximum capacity of the section, tj : is the
instructor of this section, th: is the number of
theoretical hours of this course, ph: is the
number of practical hours of this course, ph
type: is the type of the practical hour it is set to
0:if the course has no practical hour, 1: if this

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

131

hour is lab, set to 2 if this hour is multimedia lab,
set to 3 if this hour is photo lab, and set to 4 to
indicate that this hour is workshop, ph_inst: the
period that the teacher must be in the lab it is set
to 0: no hour in the lab, 1: half of the lab period,
2: all the lab period.

R = {r1, r2, ..., rm} is the set of classrooms, each
element in R is a vector (cap, d, t) where cap: is
the maximum capacity of this room (number of
students can be assigned to this classroom), d: is a
flag set to 1 if this room has data show, t: is a flag
used to determine the type of this classroom, set
to 0 to indicate that the classroom is a room, set to
1 to indicate that the classroom is PC lab, set to 2
to indicate that the classroom is a multimedia lab,
set to 3 to indicate that the classroom is photo lab,
and set to 4 to indicate that the classroom is
workshop. L= {l1, l2, ..., lk} is the set of time slots
of the week, each element in L is a vector (n, d)
where n: is the time slot number, and ranges from
1 to 9 for days 1, 3, and 5, and ranges from 1 to 6
for days 2 and 4, and d is the day ranges from 1 to
5. Thus, L = {(1,1), (2,1),..., (9,1), (1,2), (2,2), ...,
(6,2), ..., (8,5), (9,5)} where (1,1) means: the first
lecture in the first working day (Sunday), and so
on. Each lecture (theoretical hour) on 1, 3, and 5
is 60 minutes, so the working hour is 3 timeslots
(3 hours) in these days.

On days 2 and 4 each lecture (theoretical hour)
is 90 minutes, so the working hour is 2 timeslots
(3 hours) in these days. For example if the course
has 3 theoretical hours then it takes 3 timeslots in
days 1, 3, and 5 or 2 timeslots in days 2 and 4.
Except on 1 and 5 the fifth lecture is 2 timeslots
because on 3 there is no fifth lecture.

O = {o1, o2, ..., oq} is the set of constraints,
where oq: is the penalty weight (cost) of this
constraint. Hard constraints will be assigned
infinity cost, while soft constraints will assigned
some constant cost to indicate the weight of
violating each one. The set of solutions of such
problem is a very large set. Each solution will be
evaluated using an indicator to determine how
much this solution is good (fitness). Our
methodology will use an evolutionary algorithm
to search for some optimal solution.

Parallel programming is used to implement the
optimization algorithm, to get faster execution.
Message-Passing Interface (MPI) library was the
suitable choice for distributing such a problem on
a distributed memory parallel machines, to get
benefit from the available network computing
resources which lead to faster execution and
higher utilization.

In this work, domain decomposition is used
to parallelize the algorithm. Population will be
divided into subpopulations which then are
distributed among various processes; each of
these processes will produce a set of solutions.
Then, a main process will choose the optimal
solution form the results of each one. This
mechanism permits finding the solution form a
larger population, which means there is a
chance for better solutions, and a reduction of
execution time because each machine has small
number of individuals [7].

To achieve the above mentioned goal the
master-worker model is used where many
worker processes should execute under the
control of one master or root process. Each
process should communicate to the root process
to get the parameters, do processing and then
return the result back to the root. Because the
root should communicate with all processes, we
will use global centralized communication
technique. Also, dynamic load balancing is used
because there is a need to change the population
size in many cases during execution.

3. SOLUTION DEFINITION AND

ALGORITHM

G= {g1, g2, ..., gw}, represented in
Figure 1, is the set of assigned classes “genes”
which constitute the candidate solutions
“individual”.

Figure 1: Chromosome and Gene representation

Every gene is a vector contains course
number, room number, practical hour’s time
slot, lab number, and theoretical hour’s time
slot. See Figure 2.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

132

Figure 2: The individual

The search domain of the problem is a

complex one, where, for each course section,
suitable classroom and/or lab are chosen and time
slots are assigned so that they are suitable for the
student group and the lecturer. In order to reduce
the search time and complexity, a heuristic is used
to choose the suitable place and time for the
course section so that the lecturer has no time
conflicts. Then, the search is dedicated for
optimizing the solution considering the hard and
soft constraints for the students and only the soft
constraints for the lecturers. The individual is
constructed in a way that every individual from
the set of solutions has different number of
options when choosing timeslot and classroom; so
that, course section in the individual G1 has the
maximum number of options available when
selecting a classroom and a timeslot, course
section in the individual G2 has 1 option less than
those were available for the individual G1, and the
last one, gene Gw has the least number of option.

For experimentation purposes, the initial
parameter used as follows: 14 classrooms and 7
labs available. The seven days of the week, are
divided into 41 theoretical classes (1 hour each)
and 13 practical classes or labs (3 hours each).
Which means, there are (41*14) = 574 theoretical
classes, and (13*7) = 91 practical classes along
the week as shown in Figure 3. Where 1 means
time slot is available and 0 means time slot is not
available.

Figure 3: The timeslots

The final solution should satisfy a set of

constraints. These constraints are divided into
hard constraints, which must be satisfied
(violation cost is infinity), and soft constraints
which should be satisfied (violation cost is a
constant relative to the constraint importance).
Hard constraints are:
• A teacher must not have more than one

class at any given time slot.
• At any given time slot no student group can

have more than one class.
• An instructor can be assigned classes only

in his available time, like part timers.
• A room must not assigned more than one

class at any given time slot.
• The number of students in any lecture

should be less than or equal the maximum
capacity of the classroom.

Soft constraints are:
• Students should not have large number

consecutive classes.
• Instructors should not have long free time

between lectures.
• Students should not have long free time

between lectures.
• Instructors should not have very late classes

daily.
• A group of students should not have

consecutive classes at different large
distance locations.

3.1 Parallel Evolutionary Algorithm
There are two main reasons for

parallelizing an evolutionary algorithm: the first
is to minimize the execution time by
distributing the computation. And the second is
to get benefit from the parallel setting, in
analogy with the natural parallel evolution of
spatially distributed populations [13]. In the
parallel evolutionary algorithms, computation
and communication are the most time
consuming factors. These two factors have an
inverse relationship, so if the communication
increases, the computation time deceases and
vice-versa [8],[1]. In [4] they noticed that the
main drawback of the sequential algorithm is
the large execution time. This prevents
continuing the search for better solutions
regarding the willingness of students and staff.

Regarding our algorithm, the number of
course sections is stored in a parameter called
numOfGenes which determines how many
genes will be in each chromosome or individual,

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

133

and then a dynamic array is built for the class
rooms, students groups, instructors, and courses
sections. The number of individuals on each
population is defined at the beginning of the
program called popSize, also a variable called
numGener is defined to determine the total
number iterations for the evolutionary algorithm.
The evolutionary algorithm and its functions are
shown below:
 Initialize_Population; // Initial population.
 t 0;
 while t < numGener - 1 do
 Evaluate_Population; // Evaluate fitness
 Do_Selection; // Select new population
 Do_Mutation; // Mutate the new population.
 t t + 1;
 end while
 Evaluate_Population; //Evaluate fitness

The algorithm contains a number of
functions:

First: the function Initialize_Population,
creates the initial population of individuals based
on the population size (popSize).

Second: the function
Evaluate_Population, evaluates the fitness of the
population. After constructing the population,
fitness evaluation is achieved for each individual
in the population. Population cost is measured as
the sum of cost for each gene in the individual.
The cost is determined by scanning the genes of
the individual orderly for violations to hard or soft
constraints; for example a hard constraint
violation happens if, in some gene, a course
section is assigned in an occupied time slot for the
teacher, room, or a student group. On the other
hand, a soft constraint violation happens if a
course section is assigned in a time slot that
makes many consecutive lectures for the teacher.
The fitness is calculated for the individual x by
the simple function

1)(cos
1)(

+
=

xt
xf

Where cost(x): is the sum of the hard and
soft costs of the individual x. The value of this
function is important in determining whether this
individual will pass to next step (new population)
or not. The hard cost is multiplied by a very big
constant “infinity” and added to a hard cost array
for the individual, and the soft cost is represented
through its priority by a smaller constant.

Third: the function Selection, selects a
new parent population for the next generation
based on the fitness of current individual the

probability to select an individual is increased
as its fitness increases

Fourth: the function Mutation,
performs a random modification on the genes in
the individual; this change can be done with a
probability. Every individual in the population
is ordered according to the gene’s hard and soft
costs, where genes with cost sum equal to zero
are put at the beginning of the individual. Then
the mutation starts from the first gene whose
cost is greater than zero.

Load balancing is a very important
issue for maximizing utilization and speedup.
The load balancing between the processors is
achieved using the algorithm called Exploitation
of the Fastest Processor (EFP) from [3].

4. EXPERIMENTAL RESULTS

This section presents the testing
environment in terms of software, hardware,
and data, then obtained results is explained.

4.1 Testing Environment
The application is implemented using C

programming on a workstation with dual
processor Intel (R) XeonTM at 3 GH, 512 KB
cache, 2 GB memory and runs under Linux. In
our experiments real data available on the
database of Palestine Polytechnic University is
used. The data is coded into numbers and stored
in text files which are used as inputs to the
program, see Figure 4.

Figure 4: Testing environment

4.2 Results
A series of experiments is listed in this

section to show the relationship between
variables in diagrams, and the analysis of the
results. Figure 5 shows that execution time of
the parallel multi-objective algorithm decreases

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

134

efficiently as the number of processors increases,
where the population size is 300 and the number
of generations is 20.

Figure 5: The relationship between the execution

time and the number of processors.

Figure 6 shows that the average fitness is
enhanced over generations, where the population
size is 700 and the number of generations 700.

Figure 6: The average fitness evolution

Figure 7 shows that the fitness of the best

individual is enhanced over generations.

Figure 7: The best fitness evolution

Figure 8 shows the relation between

number of generations and the best hard cost per
generation, where the average hard cost is
decreased efficiently.

Figure 8: The hard cost evolution

In the same way, Figure 9 shows the

relation between number of generations and the
best soft cost per generation, where the average
soft cost is decreased also efficiently.

Figure 9: The soft cost evolution

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

135

As a result the multi-objective

optimization is achieved, and both objectives:
zero hard cost and minimum soft cost can be
satisfied. The above figures show that execution
time is reduced, in a way, allowing for more
exploration to get better solutions in a very
complex search space.

5. CONCLUSION AND FUTURE WORK

In this research a new methodology for
solving university course scheduling is proposed
and implemented using real data set from the
College of Administrative Sciences and
Informatics at Palestine Polytechnic University.
We have reduced the soft cost without affecting
the hard cost by using multi-objective
optimization. In addition, we have speeded up the
algorithm by distributing it among a cluster of
machines, overcoming the main problem in [4]
regarding the large execution time.

Also, the communication process consumes
small time compared with computational process,
most of execution time consumed by mutation
function. Furthermore, the load balancing
algorithm becomes more complex under the
random behaviour of the algorithm, because it is
not possible to determine which node will reach
the goal faster.

As a future work, it could be good idea to
enhance the algorithm by trying other methods
and evolutionary techniques such as particle
swarm optimization “PSO” algorithm. Also, to
consider more soft constraints to better satisfy the
willingness of the students and teachers.
Enhancement of the load balancing algorithm
could be another contribution.

REFERENCES:

[1] Abraham, A., L. Jain, and R. Goldberg, 2005.
Evolutionary multiobjective optimization:
theoretical advances and applications.
Springer Verlag London Limited, Printed in
USA, ISBN 1852337877.

 [2] Adeyemo, J.A., 2011. Reservoir operation
using multi-objective evolutionary
algorithms-a review. Asian J. Sci. Res., 4: 16-
27.

 [3] Aldasht, M.M., J. Ortega, and C.G. Puntonet,
2007. Dynamic load balancing in
heterogeneous clusters-exploitation of the

processing power," 2nd PICCIT, Hebron,
Palestine.

[4] Aldasht, M.M., M.H. Saheb, S.I. Adi, and
M.M. Qopita, 2009. University course
scheduling using evolutionary algorithms,
4th ICCGI-IARIA, Cannes, France.

[5] Belkadi, K., M. Gourgand, M. Benyettou,
and A. Aribi, 2006. Sequential and parallel
genetic algorithms for the hybrid flow shop
scheduling problem. J. Applied Sci., 6:
775-778.

[6] Benedict, S. and V. Vasudevan, 2008.
Improving scheduling of scientific
workflows using tabu search for
computational grids. Inform. Technol. J., 7:
91-97.

[7] Datta, D., K. Deb, and C.M. Fonseca, 2006.
Solving class timetabling problem of IIT-
Kanpur using multi-objective evolutionary
algorithm. Technical Report, Department of
Mechanical Engineering, Indian Institute of
Technology Kanpur, Kanpur - 208 016,
India.

 [8] Ghaemi, S., M.T. Vakili, and A.
Aghagolzadeh, 2007. Using a genetic
algorithm optimizer tool to solve
university timetable scheduling. 9th
International Symposium on Signal
Processing and Its Application. pp. 1-4,
ISBN: 978-1-4244-0778-1

 [9] Grama, A., and V. Kumar, 1993. A survey
of parallel search algorithms for discrete
optimization problems. ORSA JOURNAL
ON COMPUTING

 [10] Opera, M., 2006. Multi-agent system for
university course timetable scheduling. The
1st International Conference on Virtual
Learning, pp. 231-237.

 [11] Park, H.H., A. Grings, M. Santos, and A.
Soares, 2008. Parallel hybrid evolutionary
computation: Automatic tuning of
parameters for parallel gene expression
programming. Applied Mathematics and
Computation,Volume 201, Issues 1-2, 15
July 2008, Pages 108-120.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

136

 [12] Pongcharoen, P., W. Promtetn, P. Yenradee,
and C. Hicks, 2008. Stochastic optimisation
timetabling tool for university course
scheduling. journal International Journal of
Production Economics, Elsevier. Volume
112, Issue 2, pp. 903-918.

[13] Tomassini, M., 1999. Parallel and distributed
evolutionary algorithms: A review. Institute
or computer science, University of Lausanne,
1015 Lausanne.

 [14] Zhang, L., and S. Lau, 2005. Constructing
university timetable using constraint
satisfaction programming approach.
Proceedings of CIMCA-IAWTIC'06 -
Volume 02, pp. 55-60. ISBN:0-7695-2504-0-
02.

