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ABSTRACT 

 
Evolutionary Algorithm (EA) provides a mechanism that can achieve efficient exploration for design 
spaces. Thus, it constitutes an efficient tool for identifying the best alternatives to implement the solution 
of a certain problem. In this work, EA is implemented to solve the university course scheduling problem 
and a real data from Palestine Polytechnic University (PPU) databases is used for testing. Sequential 
implementation of such a complex problem will suffer a long execution time to find sub-optimal solution. 
On the other hand, using single objective optimization model soft and hard constraints could not be well 
satisfied. In this work, we have implemented the EA using parallel programming techniques. This permits 
the execution of the program in a cluster computer to reduce the execution time. Also, many soft 
constraints can be considered along with the hard constraints in order to get better solutions. Results show 
that, after redrafting the algorithm to be multi-objective, soft cost could be reduced to the minimum when 
using enough individuals and iterations, at the same time, hard constraints are still satisfied. After 
distributing the algorithm on 7 machines with 11 processors the obtained speedup is around 6 on average 
and the quality of the obtained solution has improved considerably. 
 
Keywords: Parallel Evolutionary Algorithms, Multi-objective Optimization, University Course 

Scheduling. 
 

 
1. INTRODUCTION 

University Course Scheduling (UCS) can 
be considered as an instant of what so called 
timetabling problem. In which time slots and 
teachers must be assigned to a set of courses in a 
way that satisfies a set of hard constraints and 
minimize the cost of another set of soft constraints 
[8]. This problem is considered to be a non-
polynomial-time hard (NP-hard) problem, which 
means that the amount of computation required 
for finding solutions increases exponentially with 
problem size [14]. Evolutionary algorithms are 
good algorithms for solving complex and non-
linear scheduling problems [2]. 

Scheduling problem, in general, can be 
defined as a problem of finding the optimal 
sequence for executing a finite set of operations 
under a set of certain constraints [10]. 
University course scheduling problem includes 
the process of assigning a set of classrooms and 
set of instructors to a given set of courses taking 
into account a set of constraints. The final 
solution is required to satisfy a set of 
constraints, these constraints are divided into 
hard constraints, which must be satisfied and 
soft constraints which should be satisfied. 

Examples of hard constraints are: no 
person can be in more than one place at a time, 
and the total resources allocated to some time 
slot must be less than or equal to the resources 
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that are available in that period, etc. Examples of 
soft constraints are: some lecturer should not have 
very late classes daily; a group of students should 
not have consecutive classes in different and large 
distant places, and other individual’s preferences, 
etc. [4]. 

Various choices of objectives, such as a 
compact timetable, minimum number of 
consecutive classes of teachers and so on, lead the 
scheduling of a class timetable to a multi-
objective optimization problem. However, a very 
limited number of researchers considered multiple 
objectives in the problem [12]. 

On the other hand, there are two types of 
algorithms could be used for solving the problem, 
sequential and parallel. Parallelization can 
improve considerably the quality of the solutions 
obtained, compared with sequential 
implementation of the algorithm [5]-[6]. 

The performance of all different evolutionary 
algorithms, most notably GAs, in solving the 
university course scheduling problem has been 
widely studied. Those algorithms are highly 
dependent on their special operators, i.e., mutation 
and crossover. Because the search space of the 
problem is very complex, a more general 
approach is needed to guarantee a robust 
exploration and to avoid the local minimum 
problem which is frequent in such search spaces. 
In this paper, our approach, built after [4] using 
parallel approach, while keeping its simple 
representation for the solution and a robust 
exploration for the search space.  
 
2. THE RESEARCH METHODOLOGY 

The academic class timetabling problem is 
being studied for more than four decades, a 
general solution technique for it, considering 
different aspects of its variants, is yet to be 
formulated. Despite multiple criteria to be met 
simultaneously, the problem was generally 
tackled as single-objective optimization problem. 
Moreover, most of the earlier works were 
concentrated on school timetabling, and only a 
few on university class timetabling [1]. 

On the other hand, in many cases, the problem 
was over-simplified by skipping many complex 
class-structures. To overcome these shortages the 
multi-objective approach was identified. Multi-
objective optimization (MOOP) methods 
introduce a new approach for optimization that is 
founded on compromises and trade-offs among 
the various objectives. The aim of MOOP 
methods is to discover a set of satisfactory 
compromises and, through them, the global 

optimal solution by optimizing numerous 
dependent properties simultaneously. 

 
2.1 Problem Modelling 

In this work, timetabling problem has been 
implemented on one of the four colleges of the 
university which is the College of 
Administrative Sciences and Informatics. Then, 
the methodology can be generalized on the rest 
of colleges. In this college there are four 
academic 4-years programs. Thus, courses are 
offered at the beginning of each semester for 4 
student groups in each academic program. In 
total we have 16 groups (4 levels * 4 programs). 
On the other hand, we have five work days a 
week (Sunday to Thursday). On Sunday, 
Tuesday, and Thursday there are nine 60- 
minutes time slots a day, and on Monday and 
Wednesday there are six 90-minutes time slots a 
day. 

To handle the problem, six different sets 
have been defined. Which are: student groups 
“S”, instructors “I”, course sections “C”, class 
rooms “R”, timeslots-lectures “L”, and a set of 
constrains “O”. Then, the problem is formulated 
as P = {S, I, C, R, L, O}. Where: S = {s1, s2, ..., 
si} is the set of student groups, each element in 
S is a vector (m, y, std_slot) where m: is the 
major (IT, IS, GM, or BA), y: is the group 
number which will be represented by academic 
year of that group. This vector determines a 
group of students of the same major and 
academic year. So, for the considered college, m 
ranges from 1 to 4, and y ranges from 1 to 4, 
and std_slot is an array of timeslots that 
indicates when the student groups are available. 
I = {i1, i2, ..., ij} is the set of instructors in the 
college at the current semester, each element in 
I is a vector (inst_no, inst_slot) where inst_no: 
is the number of a specific instructor, inst_slot: 
is an array indicating to timeslots when the 
instructor can give a lecture. C = {c1, c2, ..., cn} 
is the set of course sections offered for the 
student in the current semester, each element in 
C is a vector (si, co_no, section, cap, tj , th, ph, 
ph_type, ph_inst ) where si: is the group of 
students, which this course is offered for, 
co_no: is the course number, section: is the 
section number of this course, cap: is the 
maximum capacity of the section, tj : is the 
instructor of this section, th: is the number of 
theoretical hours of this course, ph: is the 
number of practical hours of this course, ph 
type: is the type of the practical hour it is set to 
0:if the course has no practical hour, 1: if this 
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hour is lab, set to 2 if this hour is multimedia lab, 
set to 3 if this hour is photo lab, and set to 4 to 
indicate that this hour is workshop, ph_inst: the 
period that the teacher must be in the lab it is set 
to 0: no hour in the lab, 1: half of the lab period, 
2: all the lab period. 

R = {r1, r2, ..., rm} is the set of classrooms, each 
element in R is a vector (cap, d, t) where cap: is 
the maximum capacity of this room (number of 
students can be assigned to this classroom), d: is a 
flag set to 1 if this room has data show, t: is a flag 
used to determine the type of this classroom, set 
to 0 to indicate that the classroom is a room, set to 
1 to indicate that the classroom is PC lab, set to 2 
to indicate that the classroom is a multimedia lab, 
set to 3 to indicate that the classroom is photo lab, 
and set to 4 to indicate that the classroom is 
workshop. L= {l1, l2, ..., lk} is the set of time slots 
of the week, each element in L is a vector (n, d) 
where n: is the time slot number, and ranges from 
1 to 9 for days 1, 3, and 5, and ranges from 1 to 6 
for days 2 and 4, and d is the day ranges from 1 to 
5. Thus, L = {(1,1), (2,1),..., (9,1), (1,2), (2,2), ..., 
(6,2), ..., (8,5), (9,5)} where (1,1) means: the first 
lecture in the first working day (Sunday), and so 
on. Each lecture (theoretical hour) on 1, 3, and 5 
is 60 minutes, so the working hour is 3 timeslots 
(3 hours) in these days. 

On days 2 and 4 each lecture (theoretical hour) 
is 90 minutes, so the working hour is 2 timeslots 
(3 hours) in these days. For example if the course 
has 3 theoretical hours then it takes 3 timeslots in 
days 1, 3, and 5 or 2 timeslots in days 2 and 4. 
Except on 1 and 5 the fifth lecture is 2 timeslots 
because on 3 there is no fifth lecture. 

O = {o1, o2, ..., oq} is the set of constraints, 
where oq: is the penalty weight (cost) of this 
constraint. Hard constraints will be assigned 
infinity cost, while soft constraints will assigned 
some constant cost to indicate the weight of 
violating each one. The set of solutions of such 
problem is a very large set. Each solution will be 
evaluated using an indicator to determine how 
much this solution is good (fitness). Our 
methodology will use an evolutionary algorithm 
to search for some optimal solution.  

Parallel programming is used to implement the 
optimization algorithm, to get faster execution. 
Message-Passing Interface (MPI) library was the 
suitable choice for distributing such a problem on 
a distributed memory parallel machines, to get 
benefit from the available network computing 
resources which lead to faster execution and 
higher utilization.  

In this work, domain decomposition is used 
to parallelize the algorithm. Population will be 
divided into subpopulations which then are 
distributed among various processes; each of 
these processes will produce a set of solutions. 
Then, a main process will choose the optimal 
solution form the results of each one. This 
mechanism permits finding the solution form a 
larger population, which means there is a 
chance for better solutions, and a reduction of 
execution time because each machine has small 
number of individuals [7]. 

To achieve the above mentioned goal the 
master-worker model is used where many 
worker processes should execute under the 
control of one master or root process. Each 
process should communicate to the root process 
to get the parameters, do processing and then 
return the result back to the root. Because the 
root should communicate with all processes, we 
will use global centralized communication 
technique. Also, dynamic load balancing is used 
because there is a need to change the population 
size in many cases during execution. 
 
3. SOLUTION DEFINITION AND 

ALGORITHM 
 

G= {g1, g2, ..., gw}, represented in 
Figure 1, is the set of assigned classes “genes” 
which constitute the candidate solutions 
“individual”. 
 

 
Figure 1: Chromosome and Gene representation 
 

Every gene is a vector contains course 
number, room number, practical hour’s time 
slot, lab number, and theoretical hour’s time 
slot. See Figure 2. 
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Figure 2: The individual 

 
The search domain of the problem is a 

complex one, where, for each course section, 
suitable classroom and/or lab are chosen and time 
slots are assigned so that they are suitable for the 
student group and the lecturer. In order to reduce 
the search time and complexity, a heuristic is used 
to choose the suitable place and time for the 
course section so that the lecturer has no time 
conflicts. Then, the search is dedicated for 
optimizing the solution considering the hard and 
soft constraints for the students and only the soft 
constraints for the lecturers. The individual is 
constructed in a way that every individual from 
the set of solutions has different number of 
options when choosing timeslot and classroom; so 
that, course section in the individual G1 has the 
maximum number of options available when 
selecting a classroom and a timeslot, course 
section in the individual G2 has 1 option less than 
those were available for the individual G1, and the 
last one, gene Gw has the least number of option. 

For experimentation purposes, the initial 
parameter used as follows: 14 classrooms and 7 
labs available. The seven days of the week, are 
divided into 41 theoretical classes (1 hour each) 
and 13 practical classes or labs (3 hours each). 
Which means, there are (41*14) = 574 theoretical 
classes, and (13*7) = 91 practical classes along 
the week as shown in Figure 3. Where 1 means 
time slot is available and 0 means time slot is not 
available. 

 
Figure 3: The timeslots 

 
The final solution should satisfy a set of 

constraints. These constraints are divided into 
hard constraints, which must be satisfied 
(violation cost is infinity), and soft constraints 
which should be satisfied (violation cost is a 
constant relative to the constraint importance). 
Hard constraints are: 
• A teacher must not have more than one 

class at any given time slot.  
• At any given time slot no student group can 

have more than one class. 
• An instructor can be assigned classes only 

in his available time, like part timers. 
• A room must not assigned more than one 

class at any given time slot. 
• The number of students in any lecture 

should be less than or equal the maximum 
capacity of the classroom. 

Soft constraints are: 
• Students should not have large number 

consecutive classes.  
• Instructors should not have long free time 

between lectures. 
• Students should not have long free time 

between lectures. 
• Instructors should not have very late classes 

daily. 
• A group of students should not have 

consecutive classes at different large 
distance locations. 

 
3.1 Parallel Evolutionary Algorithm 
There are two main reasons for 

parallelizing an evolutionary algorithm: the first 
is to minimize the execution time by 
distributing the computation. And the second is 
to get benefit from the parallel setting, in 
analogy with the natural parallel evolution of 
spatially distributed populations [13]. In the 
parallel evolutionary algorithms, computation 
and communication are the most time 
consuming factors. These two factors have an 
inverse relationship, so if the communication 
increases, the computation time deceases and 
vice-versa [8],[1]. In [4] they noticed that the 
main drawback of the sequential algorithm is 
the large execution time. This prevents 
continuing the search for better solutions 
regarding the willingness of students and staff. 

Regarding our algorithm, the number of 
course sections is stored in a parameter called 
numOfGenes which determines how many 
genes will be in each chromosome or individual, 
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and then a dynamic array is built for the class 
rooms, students groups, instructors, and courses 
sections. The number of individuals on each 
population is defined at the beginning of the 
program called popSize, also a variable called 
numGener is defined to determine the total 
number iterations for the evolutionary algorithm. 
The evolutionary algorithm and its functions are 
shown below: 
 Initialize_Population; // Initial population. 
 t 0; 
 while t < numGener - 1 do 
 Evaluate_Population; // Evaluate fitness 
 Do_Selection; // Select new population 
 Do_Mutation; // Mutate the new population. 
 t t + 1; 
 end while 
 Evaluate_Population; //Evaluate fitness 
 

The algorithm contains a number of 
functions: 

First: the function Initialize_Population, 
creates the initial population of individuals based 
on the population size (popSize). 

Second: the function 
Evaluate_Population, evaluates the fitness of the 
population. After constructing the population, 
fitness evaluation is achieved for each individual 
in the population. Population cost is measured as 
the sum of cost for each gene in the individual. 
The cost is determined by scanning the genes of 
the individual orderly for violations to hard or soft 
constraints; for example a hard constraint 
violation happens if, in some gene, a course 
section is assigned in an occupied time slot for the 
teacher, room, or a student group. On the other 
hand, a soft constraint violation happens if a 
course section is assigned in a time slot that 
makes many consecutive lectures for the teacher. 
The fitness is calculated for the individual x by 
the simple function 

1)(cos
1)(

+
=

xt
xf  

Where cost(x): is the sum of the hard and 
soft costs of the individual x. The value of this 
function is important in determining whether this 
individual will pass to next step (new population) 
or not. The hard cost is multiplied by a very big 
constant “infinity” and added to a hard cost array 
for the individual, and the soft cost is represented 
through its priority by a smaller constant. 

Third: the function Selection, selects a 
new parent population for the next generation 
based on the fitness of current individual the 

probability to select an individual is increased 
as its fitness increases 

Fourth: the function Mutation, 
performs a random modification on the genes in 
the individual; this change can be done with a 
probability. Every individual in the population 
is ordered according to the gene’s hard and soft 
costs, where genes with cost sum equal to zero 
are put at the beginning of the individual. Then 
the mutation starts from the first gene whose 
cost is greater than zero. 

Load balancing is a very important 
issue for maximizing utilization and speedup. 
The load balancing between the processors is 
achieved using the algorithm called Exploitation 
of the Fastest Processor (EFP) from [3].  
 
4. EXPERIMENTAL RESULTS 

This section presents the testing 
environment in terms of software, hardware, 
and data, then obtained results is explained. 
 

4.1 Testing Environment 
The application is implemented using C 

programming on a workstation with dual 
processor Intel (R) XeonTM at 3 GH, 512 KB 
cache, 2 GB memory and runs under Linux. In 
our experiments real data available on the 
database of Palestine Polytechnic University is 
used. The data is coded into numbers and stored 
in text files which are used as inputs to the 
program, see Figure 4. 
 

 
Figure 4: Testing environment 

 
4.2 Results 
A series of experiments is listed in this 

section to show the relationship between 
variables in diagrams, and the analysis of the 
results. Figure 5 shows that execution time of 
the parallel multi-objective algorithm decreases 
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efficiently as the number of processors increases, 
where the population size is 300 and the number 
of generations is 20. 

 
Figure 5: The relationship between the execution 

time and the number of processors. 
 

Figure 6 shows that the average fitness is 
enhanced over generations, where the population 
size is 700 and the number of generations 700. 

 
Figure 6: The average fitness evolution 

 
Figure 7 shows that the fitness of the best 

individual is enhanced over generations. 
 

 
Figure 7: The best fitness evolution 

 
Figure 8 shows the relation between 

number of generations and the best hard cost per 
generation, where the average hard cost is 
decreased efficiently. 

 
Figure 8: The hard cost evolution 

 
In the same way, Figure 9 shows the 

relation between number of generations and the 
best soft cost per generation, where the average 
soft cost is decreased also efficiently. 

 
Figure 9: The soft cost evolution 
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As a result the multi-objective 

optimization is achieved, and both objectives: 
zero hard cost and minimum soft cost can be 
satisfied. The above figures show that execution 
time is reduced, in a way, allowing for more 
exploration to get better solutions in a very 
complex search space.  
 
5. CONCLUSION AND FUTURE WORK 

In this research a new methodology for 
solving university course scheduling is proposed 
and implemented using real data set from the 
College of Administrative Sciences and 
Informatics at Palestine Polytechnic University. 
We have reduced the soft cost without affecting 
the hard cost by using multi-objective 
optimization. In addition, we have speeded up the 
algorithm by distributing it among a cluster of 
machines, overcoming the main problem in [4] 
regarding the large execution time. 

Also, the communication process consumes 
small time compared with computational process, 
most of execution time consumed by mutation 
function. Furthermore, the load balancing 
algorithm becomes more complex under the 
random behaviour of the algorithm, because it is 
not possible to determine which node will reach 
the goal faster. 

As a future work, it could be good idea to 
enhance the algorithm by trying other methods 
and evolutionary techniques such as particle 
swarm optimization “PSO” algorithm. Also, to 
consider more soft constraints to better satisfy the 
willingness of the students and teachers. 
Enhancement of the load balancing algorithm 
could be another contribution. 
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