CALCULATION OF THE WIENER INDEX FOR SOME PARTICULAR TREES

M. EL MARRAKI, G. AL HAGRI
Department of Computer Sciences Faculty of Sciences University of Mohammed V, Rabat-Morocco

E-mail: marraki@fsr.ac.ma, chima_gapr@yahoo.fr

Abstract

The wiener index $W(G)$ of a connected graph G is the sum of the distances between all pairs of vertices of G. In this paper, we give theoretical results for calculating the wiener index for some composites trees (chain-trees, path-trees, etc.). In the end we give an application of its results on particular families of trees. These formulas are the part of a future attempt to demonstrate the wiener index conjecture (see introduction).

1. INTRODUCTION

A graph $G=(V, E)$ consists of a finite non-empty set $\mathrm{V}=\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}-1}$ (the vertex set of G), and a set E (of two elements subsets of V , the edge set of G). We also write V (G), E (G) for the vertex (resp. edge) set of G. A tree is connected graph without cyclic $[5,6]$. The distance $d(u, v)$ between the vertices u and v of the graph G is equal to the length of the shortest path that connects u and v, $[1,7]$ The Wiener index $\mathrm{W}(\mathrm{G})$ of a connected graph G is the sum of all the distances between pairs of vertices of G.

$$
W(G)=\sum_{u \in V(G)} \sum_{v \in V(G)} d(u, v)
$$

This index was introduced by the chemist Wiener [2] in the study of relations between the structure of organic compounds and their properties. It has since been studied extensively by both chemists and mathematicians, especially for trees; see the survey [3, 6, 7, 8, 9] for many results and references, the wiener index of a vertex v in G is defined as:

$$
W(v, G)=\sum_{u \in V(G)} d(u, v)
$$

The Wiener index is, apart from a constant factor, the geometric mean of the extremely values, which are given for the star E_{m} and the path P_{m} respectively [1]:

$$
(m-1)^{2}=W\left(E_{m}\right) \leq W\left(T_{m}\right) \leq W\left(P_{m}\right)=\binom{m+1}{3}
$$

$W\left(E_{m}\right) \leq W\left(C_{m}\right) \leq W\left(P_{m}\right)$

Where E_{m} is a map defined in article [2].
Conjecture: [Wiener Index Conjecture [4, 10]]
Except for some finite set, every positive integer is the Wiener index of a tree.

2. THE MAIN RESULT

Let E_{m} be star tree with \boldsymbol{m} vertices
$v_{0}, v_{1}, \ldots, v_{m-1} \quad(m \geq 3)$.(See Fig. 1)

Fig. 1 Star tree E_{m}

Lemma 1 :

We have: $W\left(v_{0}, E_{m}\right)=m-1$,
$W\left(v_{i}, E_{m}\right)=2 m-3$ for $i=1,2, \cdots, m-1$.

Let P_{m} Chain Tree with m vertices
$v_{0}, v_{1}, \ldots, v_{m-1}(m \geq 2)($ see Fig. 2).
It has same result for a map C_{m}

Fig. 2 Path tree P_{m}

Lemma 2:

We have

$$
\begin{aligned}
& W\left(v_{i}, P_{m}\right)=\frac{m^{2}-m(2 i-1)+2 i^{2}}{2} \\
& \quad \text { for } i=0,1, \cdots, m-1
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& W\left(v_{i}, P_{m}\right)=(1+2+\cdots+i)+ \\
& (1+2+\cdots+(m-i)) \\
& =\frac{i(i+1)}{2}+\frac{(m-i)(m-i+1)}{2} \\
& =\frac{1}{2}\left(m^{2}-m(2 i-1)+2 i^{2}\right) .
\end{aligned}
$$

Let T_{m} a tree with m vertices for a vertex, $\mathrm{s} \notin \mathrm{T}$ (see Fig. 3)

Fig. 3

Lemma 3:

$W\left(T_{m} \cdot\{s\}\right)=w\left(T_{m}\right)+W\left(s_{0}, T_{m}\right)+m$

Proof:

$$
\mathrm{W}\left(T_{m} \cdot\{s\}\right)=\sum_{u \in V\left(T_{m}\right)} \sum_{v \in V\left(T_{m}\right)} d(u, v)
$$

$$
+\sum_{u \in V\left(T_{m}\right)} d(u, s)
$$

$$
=W\left(T_{m}\right)+\sum_{u \in V\left(T_{m}\right)} d(u, s)
$$

Width $d(u, s)=d\left(u, s_{0}\right)+d\left(s_{0}, s\right)$ then:
$W\left(T_{m} \cdot\{s\}\right)=w\left(T_{m}\right)+W\left(s_{0}, T_{m}\right)+m$.

Let $T_{m_{1}}$ and $T_{m_{2}}$ be two trees that possess respectivelym m_{1}, m_{2} vertices connected by a vertex s (see Fig. 4)

Fig. 4 The tree $T_{m_{1}} \cdot T_{m_{2}}$

Lemma 4:

The wiener index of $T_{m_{1}} \cdot T_{m_{2}}$ is:
$W\left(T_{m_{1}} \cdot T_{m_{2}}\right)=W\left(T_{m_{1}}\right)+W\left(T_{m_{2}}\right)+$
$\left(m_{1}-1\right) w\left(s, T_{m_{2}}\right)+\left(m_{2}-1\right) w\left(s, T_{m_{1}}\right)$
Proof:

$$
\begin{aligned}
& V^{*}\left(T_{m_{i}}\right)=V\left(T_{m_{i}}\right) \backslash\{s\}, \quad i=1,2 \\
& W\left(T_{m_{1}} \cdot T_{m_{2}}\right)=\sum_{u \in V^{*}\left(T_{m_{1}} \cdot T_{m_{2}}\right)} \sum_{v \in V^{*}\left(T_{m_{1}} \cdot T_{m_{2}}\right)} d(u, v) \\
& =\sum_{\left.m_{m_{1}}\right)} \sum_{v \in V^{*}\left(T_{m_{1}}\right)} d(u, v)+
\end{aligned}
$$

$$
\sum_{u \in V^{*}\left(T_{m_{2}}\right)} \sum_{v \in V^{*}\left(T_{m_{2}}\right)} d(u, v)+\sum_{\substack{u \in V^{*}\left(T_{m_{1}}\right) \\ v \in V^{*}\left(T_{m_{2}}\right)}} d(u, v)
$$

$$
=W\left(T_{m_{1}}\right)+W\left(T_{m_{2}}\right)+\sum_{\substack{u \in V^{*}\left(T_{m_{1}}\right) \\ v \in V^{*}\left(T_{m_{2}}\right)}}(d(u, s)+d(s, v))
$$

$$
=W\left(T_{m_{1}}\right)+W\left(T_{m_{2}}\right)+\sum_{\substack{u \in V^{*}\left(T_{m_{1}}\right) \\ v \in V^{*}\left(T_{m_{2}}\right)}} d(u, s)+\sum_{\substack{u \in V^{*}\left(T_{m_{1}}\right) \\ v \in V^{*}\left(T_{m_{2}}\right)}} d(s, v)
$$

$$
=W\left(T_{m_{1}}\right)+W\left(T_{m_{2}}\right)+\left(m_{1}-1\right) w\left(s, T_{m_{2}}\right)+
$$

$$
\left(m_{2}-1\right) w\left(s, T_{m_{1}}\right) .
$$

We generalize the lemma 4:

Let T_{N} be the tree formed by the trees $T_{m_{1}}, T_{m_{2}}, \ldots, T_{m_{n}}$ that possess respectively $m_{1}, m_{2}, \ldots, m_{n}$ vertices connected by a vertex s (see Fig. 5).

$$
V^{*}\left(T_{m_{i}}\right)=V\left(T_{m_{i}}\right) \backslash
$$

Fig. 5: Star- trees

Lemma 5:

The wiener index of star - tree T_{N} is:
$W\left(T_{N}\right)=\sum_{i=1}^{n} w\left(T_{m_{i}}\right)+$
$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left[\left(m_{j}-1\right) w\left(s, T_{m_{i}}\right)+\left(m_{i}-1\right) w\left(s, T_{m_{j}}\right)\right]$
Proof:
$W\left(T_{N}\right)=\sum_{u \in V\left(T_{N}\right)} \sum_{v \in V\left(T_{N}\right)} d(u, v)$
$=\sum_{u \in V^{*}\left(T_{m_{n-1}}\right)} \sum_{v \in V^{*}\left(T_{m_{n}}\right)} d(u, v)+$
$\sum_{u \in V^{*}\left(T_{m_{n-2}}\right)} \sum_{v \in V^{*}\left(T_{m_{n-1}}\right)} d(u, v)+$
$\sum_{u \in V^{*}\left(T_{m_{n-2}}\right)} \sum_{v \in V^{*}\left(T_{m_{n}}\right)} d(u, v)+$
$\sum_{u \in V^{*}\left(T_{m_{i}}\right)} \sum_{v \in V^{*}\left(T_{m_{i+1}}\right)} d(u, v)+\cdots+$
$\sum_{u \in V^{*}\left(T_{m_{i}}\right)} \sum_{v \in V^{*}\left(T_{m_{n}}\right)} d(u, v)+\cdots+$
$\sum_{u \in V^{*}\left(T_{m_{1}}\right)} \sum_{v \in V^{*}\left(T_{m_{2}}\right)} d(u, v)+\cdots+$
$\sum_{u \in V^{*}\left(T_{m_{1}}\right)} \sum_{v \in V^{*}\left(T_{m_{n}}\right)} d(u, v)$
$W\left(T_{N}\right)=\sum_{i+1}^{n} w\left(T_{m_{i}}\right)+$
$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\sum_{u \in V^{*}\left(T_{m_{i}}\right)} \sum_{v \in V^{*}\left(T_{m_{j}}\right)} d(u, v)\right)$
Or $\quad d(u, v)=d(u, s)+d(s, v)$ then
$\sum_{u \in V^{*}\left(T_{m_{i}}\right)} \sum_{v \in V^{*}\left(T_{m_{j}}\right)} d(u, v)=$
$\left(m_{j}-1\right) \sum_{u \in V^{*}\left(T_{m_{i}}\right)} d(u, s)+\left(m_{i}-1\right) \sum_{v \in V^{*}\left(T_{m_{j}}\right)} d(s, v)$
$=\left(m_{j}-1\right) w\left(s, T_{m_{i}}\right)+\left(m_{i}-1\right) w\left(s, T_{m_{j}}\right)$
hence the result.

Particular case:

If the trees $T_{m_{i}}$ have the same number of vertices $m\left(m_{i}=m\right.$ for $\left.i=1, \ldots, n\right)$, we have:
(1) $\left\{\begin{array}{l}w\left(s, T_{m_{i}}\right)=w\left(s, T_{m_{j}}\right) \\ T_{m_{i}}=T_{m_{j}}=T_{m} \\ N=n m-n+1\end{array} \quad\right.$ for $i, j \in\{1,2, \ldots, n\}$

We obtain :

Fig. 6: Star trees $\mathrm{T}_{\mathrm{N}}: \mathrm{T}_{\mathrm{m}} . \mathrm{T}_{\mathrm{m}} . \ldots . \mathrm{T}_{\mathrm{m}}$

Corollary 1:

The wiener index of T_{N} is:

$$
W\left(T_{N}\right)=n w\left(T_{m}\right)+n(n-1)(m-1) w\left(s, T_{m}\right)
$$

Proof :
We use (1) in the lemma 5, we have:
www.jatit.org

$$
\begin{aligned}
& W\left(T_{N}\right)=n w\left(T_{m}\right)+2(m-1) w\left(s, T_{m}\right) \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1 \quad \sum_{\substack{u \in V\left(T_{m_{2}}\right) \\
v \in V\left(T_{m_{3}}\right)}}\left(d\left(u, s_{2}\right)+d\left(s_{2}, v\right)\right) \\
= & n w\left(T_{m}\right)+2(m-1) w\left(s, T_{m}\right) \frac{n(n-1)}{2} . \quad \square \quad=W\left(T_{m_{1}}\right)+w\left(T_{m_{2}}\right)+
\end{aligned}
$$

Let T_{N} be the tree formed by trees
$T_{m_{1}}, T_{m_{2}}, T_{m_{3}}$ that possess respectively m_{1}, m_{2}, m_{3} vertices connected by two vertices s_{1}, s_{2} (see Fig. 7). We denote by $T_{m_{1}}-T_{m_{2}}-T_{m_{3}}$ the tree T_{N} (with $N=m_{1}+m_{2}+m_{3}-2$).

Fig . 7

Lemma 6:

The wiener index of T_{N} is:

$$
\begin{aligned}
& W\left(T_{N}\right)=W\left(T_{m_{1}}\right)+W\left(T_{m_{2}}\right)+W\left(T_{m_{3}}\right)+ \\
& \left(m_{1}-1\right)\left[W\left(s_{1}, T_{m_{2}}\right)+W\left(s_{2}, T_{m_{3}}\right)\right]+ \\
& \left(m_{2}-1\right)\left[W\left(s_{1}, T_{m_{1}}\right)+W\left(s_{2}, T_{m_{3}}\right)\right]+ \\
& \left(m_{3}-1\right)\left[W\left(s_{1}, T_{m_{1}}\right)+W\left(s_{2}, T_{m_{2}}\right)\right]+ \\
& \left(m_{1}-1\right)\left(m_{3}-1\right) d\left(s_{1}, s_{2}\right) .
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& W\left(T_{m_{1}}-T_{m_{2}}-T_{m_{3}}\right)= \\
& \sum_{u \in\left(T_{m_{1}}, T_{m_{2}}, T_{m_{3}}\right)} \sum_{v \in\left(T_{m_{1}}, T_{m_{2}}, T_{m_{3}}\right)} d(u, v) \\
& =W\left(T_{m_{1}}\right)+W\left(T_{m_{2}}\right)+W\left(T_{m_{3}}\right)+ \\
& \sum_{\substack{u \in V\left(T_{m_{1}}\right) \\
v \in V\left(T_{m_{2}}\right)}} d\left(u, s_{2}\right)+d\left(s_{1}, v\right)+ \\
& \sum_{u \in V\left(T_{m_{1}}\right)}\left(d\left(u, s_{1}\right)+d\left(s_{1}, s_{2}\right)+d\left(s_{2}, v\right)\right)+ \\
& v \in V\left(T_{m_{3}}\right)
\end{aligned}
$$

$W\left(T_{m_{3}}\right)\left(m_{2}-1\right) W\left(s_{1}, T_{m_{1}}\right)+$

$$
\begin{aligned}
& \left(m_{1}-1\right) W\left(s_{1}, T_{m_{2}}\right)+\left(m_{3}-1\right) W\left(s_{1}, T_{m_{1}}\right)+ \\
& \left(m_{1}-1\right)\left(m_{3}-1\right) d\left(s_{1}, s_{2}\right)+ \\
& \left(m_{1}-1\right) W\left(s_{2}, T_{m_{3}}\right)+\left(m_{3}-1\right) W\left(s_{2}, T_{m_{2}}\right)+ \\
& \left(m_{2}-1\right) W\left(s_{2}, T_{m_{3}}\right)
\end{aligned}
$$

hence the result .
We generalize the lemma 6:
Let T_{N} be tree formed by the trees
$T_{m_{1}}, T_{m_{2}}, \ldots, T_{m_{n}}$ that possess respectively
$m_{1}, m_{2}, \ldots, m_{n}$ vertices, those trees are connected by the vertices $s_{1}, s_{2}, \cdots, s_{n-1}$ (see Fig.8). We denote the tree $T_{m_{1}}-T_{m_{2}}-\cdots-T_{m_{n}}$ by T_{N}

$$
\text { where } N=\sum_{i=1}^{n} m_{i}-(n-1)
$$

Fig. 8 The path-trees

Lemma 7:

The wiener index of T_{N} is:

$$
\begin{aligned}
& W\left(T_{N}\right)=\sum_{i=1}^{n} w\left(T_{i}\right)+ \\
& \left.\left.\sum_{\substack{i=1 \\
n-1}}^{n_{1}-2} m_{i+1}^{n}-1\right) w\left(s_{i}, T_{i}\right)+\left(m_{i}-1\right) w\left(s_{i}, T_{i+1}\right)\right]+ \\
& \sum_{i=1}^{n} \sum_{j=i+2}\left[\left(m_{j}-1\right) w\left(s_{i}, T_{i}\right)+\right. \\
& \left.\left(m_{i}-1\right) w\left(s_{j-1}, T_{j}\right)+\left(m_{i}-1\right)\left(m_{j}-1\right) d\left(s_{i}, s_{j-1}\right)\right]
\end{aligned}
$$

Proof:
$V\left(T_{i}\right)$ is the set of the vertices of T_{i} and
$V^{*}\left(T_{i}\right)=V\left(T_{i}\right) \backslash\left\{s_{i}\right\}$
$W\left(T_{N}\right)=\sum_{i=1}^{n} w\left(T_{i}\right)+\sum_{u \in V^{*}\left(T_{n-1}\right)} \sum_{v \in V^{*}\left(T_{n}\right)} d(u, v)+$
$\sum_{u \in V^{*}\left(T_{n-2}\right)} \sum_{v \in V^{*}\left(T_{n-1}\right)} d(u, v)+\sum_{u \in V^{*}\left(T_{n-2}\right)} \sum_{v \in V^{*}\left(T_{n}\right)} d(u, v)$
$\sum_{u \in V^{*}\left(T_{i}\right)} \sum_{v \in V^{*}\left(T_{i+1}\right)} d(u, v)+\sum_{u \in V^{*}\left(T_{i}\right)} \sum_{v \in V^{*}\left(T_{i+2}\right)} d(u, v)$
$+\cdots+\sum_{u \in V^{*}\left(T_{i}\right)} \sum_{v \in V^{*}\left(T_{j}\right)} d(u, v)+$
$\sum_{u \in V^{*}\left(T_{i}\right)} \sum_{v \in V^{*}\left(T_{n}\right)} d(u, v)+\cdots+\sum_{u \in V^{*}\left(T_{1}\right)} \sum_{v \in V^{*}\left(T_{2}\right)} d(u, v)+$
$\sum_{u \in V^{*}\left(T_{1}\right)} \sum_{v \in V^{*}\left(T_{3}\right)} d(u, v)+\cdots+\sum_{u \in V^{*}\left(T_{i}\right)} \sum_{v \in V^{*}\left(T_{n}\right)} d(u, v)$
We have for $u \in V^{*}\left(T_{i}\right)$ and $v \in V^{*}\left(T_{j}\right)$:
$d(u, v)=d\left(u, s_{i}\right)+d\left(s_{i}, v\right)$
$\sum_{u \in V^{*}\left(T_{i}\right)} \sum_{v \in V^{*}\left(T_{i+1}\right)} d(u, v)=$
$\left(m_{i+1}-1\right) w\left(s_{i}, T_{i}\right)+\left(m_{i}-1\right) w\left(s_{i}, T_{i+1}\right)$
And we have
for $u \in V^{*}\left(T_{i}\right)$ and $v \in V^{*}\left(T_{j}\right), j \geq i+2$:
$d(u, v)=\left(d\left(u, s_{i}\right)+d\left(s_{i}, s_{j-1}\right)+d\left(s_{j-1}, v\right)\right)$
$\sum_{u \in V\left(T_{i}\right)^{*}} \sum_{v \in V\left(T_{j}\right)^{*}} d(u, v)=$
$\left(m_{j}-1\right) w\left(s_{i}, T_{i}\right)+\left(m_{i}-1\right) w\left(s_{j-1}, T_{j}\right)+$
$\left(m_{i}-1\right)\left(m_{j}-1\right) d\left(s_{i}, s_{j-1}\right)$
hence the result .
Particular case:

If $m_{i}=m$ for $i=1, \ldots, n$ then
(2) $\left\{\begin{array}{l}W\left(s_{i}, T_{m}\right)=W\left(s_{1}, T_{m}\right) \text { for } \mathrm{i}=1, \ldots, \mathrm{n}-1 \\ d\left(s_{1}, s_{2}\right)=d\left(s_{i}, s_{i+1}\right) \text { for } \mathrm{i}=1, \ldots, \mathrm{n}-2 \\ \mathrm{~N}=\mathrm{nm}-\mathrm{n}+1\end{array}\right.$
T_{N} is the tree $T_{m}-T_{m}-\cdots-T_{m}$ (see Fig. 9)

Fig. 9: The chain trees

Corollary 2:

The wiener index of T_{N} is:
$W\left(T_{N}\right)=n w\left(T_{m}\right)+n(m-1)(n-1) w\left(s_{1}, T_{m}\right)$
$+\frac{n(n-2)(n-1)(m-1)^{2}}{6} d\left(s_{1}, s_{2}\right)$
Proof:

We use (1) in lemma 7:
$w\left(T_{N}\right)=n w\left(T_{m}\right)+2(m-1)(n-1) w\left(s_{1}, T_{m}\right)+$
$2(m-1)\left(s_{1}, T_{m}\right) \sum_{i=1}^{n-2} \sum_{j=i+1}^{n} 1+$
$(m-1)^{2} \sum_{i=1}^{n-2} \sum_{j=i+2}^{n} d\left(s_{i}, s_{j-1}\right)$
where
$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1=\sum_{i=1}^{n-2}((n-1)-i)=\frac{(n-1)(n-2)}{2}$

We poses
$d=d\left(s_{i}, s_{i+1}\right)$,
We have $d\left(s_{i}, s_{i+2}\right)=2 d, \ldots$
$d\left(s_{i}, s_{n-1}\right)=(n-1-i) d$,

Then:
$\sum_{j=i+1}^{n} d\left(s_{i}, s_{j-1}\right)=d(1+2+\cdots+(n-1-i))$
$=\frac{d}{2}\left[n^{2}+n+i(1-2 n)+i^{2}\right]$

$$
\begin{aligned}
& \sum_{i=1}^{n-2} \sum_{j=i+2}^{n} d\left(s_{i}, s_{j-1}\right)=\frac{d}{2}\left(n^{2}+n\right)(n-2)+ \\
& \frac{d}{2}(1-2 n) \sum_{i=i}^{n-2} i+\frac{d}{2} \sum_{i=1}^{n-2} i^{2} \\
& =\frac{d}{2} n(n+1)(n-2)+\frac{d}{2}(1-2 n) \frac{(n-2)(n-1)}{2}+ \\
& \frac{(n-2)(n-1)(2 n-3) d}{12}=\frac{n(n-1)(n-2) d}{6} .
\end{aligned}
$$

3. APPLICATION

Let T_{N} the tree formed by star E_{n} and a chain P_{m} : T_{N} is the tree $E_{n} \cdot P_{m}$ where $(N=n+m-1)$ (see Fig. 10)

Fig. $10 \quad E_{n} \cdot P_{m}$

Theorem 1:

The wiener index of T_{N} is:

$$
\begin{aligned}
& W\left(T_{N}\right)=(n-1)^{2}+\frac{m(m-1)(m+1)}{6} \\
& \quad+(m-1)(2 n-3)+\frac{(n-1) m(m-1)}{2}
\end{aligned}
$$

Proof:

It suffices to apply lemmas 1,2 and 4 .

Let T_{N} where by the starry tree whose branches are chains $P_{m}: T_{N}=P_{m} . P_{m} \ldots . P_{m}$ (see Fig. 11). ($\mathrm{N}=\mathrm{nm}-\mathrm{n}+1$).

Fig. 11 The tree $P_{m} . P_{m} \ldots P_{m}$

Theorem 2:

The wiener index of T_{N} is:
$W\left(T_{N}\right)=\frac{n m(m-1)(m+1)(3 n-1)}{12}$
Proof :

It suffices to apply corollaire 1 .

Let T_{N} be the tree formed by a chained stars E_{m} (See Fig. 12),
T_{N} is the tree $E_{m}-E_{m}-\ldots-E_{m}$.
$\mathrm{N}=\mathrm{nm}-\mathrm{n}+1$

Fig. 12: $E_{m}-E_{m}-\ldots-E_{m}$

Theorem 3:

The wiener index of T_{N} is.
$W\left(T_{N}\right)=n(m-1)^{2}+$
$n(n-1)(m-1)(2 m-3)+\frac{n(n-1)(n-2)}{3}(m-1)^{2}$

Proof:
It suffices to apply corollary 2.

Let T_{N} be the tree formed by n stars E_{m} connected by a vertex s [4].
T_{N} is $E_{m} . E_{m} . \ldots . E_{m}$ (see Fig. 13).
$\mathrm{N}=\mathrm{nm}-\mathrm{n}+1$

Fig. 13 The tree $E_{m} . E_{m}$. E_{m}

Theorem 4:

The wiener index of T_{N} is.
$W\left(T_{N}\right)=n(m-1)^{2}+n(n-1)(m-1)(2 m-3)$

Proof:

It suffices to apply corollary 1 .

Conclusion

In this article we give the Wiener index of some families of trees. These formulas are useful from the perspective of the proof of the Wiener Index Conjecture given in the introduction to this article, see $[4,10]$.

REFRENCES:

[1] A. A. Dobrynin, R. Entringer and I. Gutman, "Wiener index of trees: theory and applications", Acta Appl. Math, Vol. 66 (2001), No. 3, pp. 211-249, 2001.
[2] M. El Marraki, A. Modabish, " Wiener index of planar maps ", Journal of Theoretical and Applied Information Technology (JATIT), Vol. 18, 2010, no. 1,7-10.
[3] R. C. Entringer, A. Meir, J.W. Moon, and
L. A. Sz'ekely, " The Wiener index of trees from certain families ", Australas.J.Combin 10:211-224, 1994.
[4] Sergey Bereg, "Wiener Indices of Balanced Binary Trees", Journal Discrete Applied Mathematics, 1-8 ,2007.
[5] S.K.Lando and A. Zvonkin, "Graphs on Surfaces and Their Applications",SpringerVerlag, 2004.
[6] H. Wang. "The extremal values of the Wiener index of a tree with given degree Sequence ", Discrete Applied Mathematics, 156(2009) 2647-2654.
[7] D. B. West, "Introduction to Graph Theory", Second Edition, University of Illinois - Urbana, 2002.
[8] H. Wiener, "Structural determination of paraffin boiling points", J. Am. Chem. Soc., 1947, 69(1), 17-20.
[9] X. D. Zhang, "The Wiener index of trees with given degree sequences", MATCH (Соттии. Math. Comput. Chem), 60 (2008), pp. 623-644, 2008.
[10] Yih-En Andrew Ban, Sergey Bereg, Nabil H. Mustafa " A Conjecture on Wiener Indices in Combinatorial Chemistry", Algorithmica © 2004 Springer-Verlag New York, LLC.

