
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

1

A PARALLEL ALGORITHM FOR COMPUTATION OF 2D
IMAGE MOMENTS

WAFA KHADER ALDABABAT1, MOHAMMAD HJOUJ BTOUSH2, ADNAN I. ALRABEA3

Information Technology Department, Al-Balqa’ Applied University
 Al Salt-JORDAN

ABSTRACT

Moment functions of the two dimensional image intensity distributions are used as descriptors of shape in a
variety of applications. In this work, an improvement on the moment computation time is considered by
providing the design and implementation of a parallel algorithm that will speedup moment computation.

Keywords: Third Order Moments, Parallel Algorithm, Digital Filter, Moment Invariants.

I. INTRODUCTION
Image feature representation techniques using

moment functions have been used in many
applications, such as, invariant pattern
recognition, object identification and image
reconstruction. Low order moments are
commonly used to find the location and
orientation of an object. The zero through second
order moments provide information about the
area, center of gravity and about approximation
of an object to an ellipse. High order moments
are combined to form moment invariants to
certain shape transformations, such as translation,
rotation and scaling. Moment invariants have
been used as features for pattern recognition.

Orthogonal moment functions can be defined
as continuous integrals over a domain of
normalized coordinates [5,3,9], but these
moments involve a major source of error which
is, the discrete approximation of the continuous
integrals. Discrete orthogonal polynomials are
used as basis functions for image moments, to
solve the above problem [3,8]. Moment
invariants were proposed by Hu [8], and have
been used as a basis for many applications of
image recognition. Regardless of the moment
function used, the problem considered is that
computation of moments requires a large
computation time. Many researchers have
proposed fast and efficient algorithms to reduce
the computation time [2], [6], [7], [10], [11], [12],
[14], [15], [16] and [17] .

In this paper, a parallel algorithm based on the
improved filter algorithm [13] will be proposed

and implemented on different parallel
architectures using different partitioning methods.

The rest of this paper is organized as follows.
Section 2 introduces 2D image moments,
straightforward sequential and parallel
algorithms for moment computation, and striped
partitioning of images is discussed. Section 3
discusses third order moments and their fast
computation using digital filter method [13]. In
Section 4, we introduce our work by presenting a
parallel algorithm for third order moments
computation based on the digital filter method.
Efficiency analysis for the parallel algorithm on
different architectures is discussed in section 5.
We end this paper by concluding some remarks
in Section 6.

II. 2D IMAGE MOMENTS

A. Moment definition function
In this work, the moment definition function

that will be considered is in equation Eq.1

 .. (1)

Where:
p, q= 0,1,2,3,4,… (Positive integer numbers)
f(x,y) is the two dimensional image intensity
function.
p+q = 0,1,2,3,4,… is the moment order, which is
defined as the summation of p and q.
N is the vertical dimension of the image.
M is the horizontal dimension of the image.

A sequential algorithm for computation of the
moments based on equation Eq.1 is presented as
given in algorithm.1.

∑∑
= =

=
N

x

M

y

qp
pq yxfyxM

1 1
),(

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

2

Algorithm.1. A sequential algorithm for
computation of moments of a 2D image

1. Input the values of p and q
2. Momentp+q=0
3. For x=1 to x=N
4. For y=1 to y=M
5. Evaluate temp=xp*yq*f(x,y)
6. Momentp+q= Momentp+q+temp
7. Endfor y
8. Endfor x
9. Output momentp+q

The above sequential algorithm requires N*M
(additions, multiplications, (p-1) multiplications,
(q-1) multiplications), this is a very large number
of time-consuming doing multiplication and
addition operations.

B. A Parallel Version of the Moment
computation Function

Equation 2 can be derived from equation 1 as
given in eq.2 without affecting the result of
computation. Thus; xp will be evaluated only N
times instead of N*M times.

∑ ∑
= =

=
N

x

M

y

qp
pq yxfyxM

1 1
),(.. (2)

Figure Fig.1 shows the parallel approach of
the moment function.

Fig.1. Moments Of a 2D Image

From Fig.1, the following were noticed about
the parallel implementation of the moments:
Vertical moments are chosen to be computed in
parallel so that the term yq will be evaluated only
once by each processor since each processor will
be responsible for one column (one value of y).
• Vertical moments of the image, as shown in

the inner box, can be evaluated in parallel
because they do not depend on each other;
hence each one of them represents a value

(or values) computed from one column of
the matrix that implements the 2D image.

• Horizontal moments can then be evaluated
for each row, shown in outer box, depending
on the values of the vertical moments of that
row. The final value of the moment can be
evaluated by accumulating the horizontal
moments.

• Computation of vertical and horizontal
moments must be serialized, which means
that a horizontal moment can’t be evaluated
until the vertical moments of that row have
been computed.

So, depending on the previous analysis,
Algorithm.2 is a parallel algorithm for
computation of 2D image moments.

Algorithm.2. A parallel algorithm for
computation of moments of a 2D image

1. Input the values of p and q
2. Momentp+q=0
3. Evaluate in parallel the vertical

moments of the image.
Vx,y=Yq(F(x,y)) ,∀y∈[1,M], x∈[1,N].

4. Compute in parallel the horizontal
moments of the image, depending on the
values of the vertical moments that have
been evaluated in 3.

Hx=Xp*(Vx,y) ,∀y∈[1,M], x∈[1,N].
5. Momentp+q= ∑Hx ,∀ x∈[1,N].
6. Output momentp+q

C. Striped Partitioning
Three approaches for data decomposition can

be implemented: columnwise, rowwise and
checkerboard partitioning. In our algorithm, the
most suitable partitioning method is the column
wise striped portioning.

Using columnwise striped portioning, the
image is partitioned into column wise stripes,
and different processors are assigned different
stripes of the image. Assuming the number of
processors equals the number of columns in the
image (N=P), moments should be computed as
shown in the following steps:

1. Each processor is assigned one stripe
(column), assuming processor (P1) is assigned
column Y1, processor (P2) is assigned column
Y2… and processor PN is assigned column YN.

2. All processors in parallel will compute the
vertical moments of the column they own.

3. (A transposition of the vertical moments
stored in each processor is made), so that each

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

3

processor will be assigned suitable vertical
moment values, this can easily be achieved by all
to all personalized communication between the
processors.

4. All processors now concurrently estimate
the horizontal moments.

5. The result then can easily be achieved by a
single node accumulation of the horizontal
moments computed in step 4.

Figure Fig.2 shows the entire steps of the
proposed columnwise striped partitioning

Fig.2. Striped Partitioning / Column Wise.

Scaling down the number of processors used
can be made (number of processors less than
number of columns in the image P<N). In this
case, the stripe size will be N/P.

In step 1, each processor will be assigned N/P
columns. Then, in step 2, each processor will
evaluate the vertical moments of N/P columns.
after that in step 3, the message size will be N/P.

In step 4, each processor will be responsible
for computing the horizontal moments of N/P
rows. Finally, in step 5, the message size during
accumulation will be N/P.

III. THIRD ORDER MOMENTS OF A 2
DIMENSIONAL IMAGE

The third order moments of a 2D image are
the moments with p+q=3. These include the
moments m00, m01, m10, m11, m02, m03, m12, m20,
m21 and m30.

A. Improved digital filter method
One of the best known algorithms for

computing third order moments of a 2D image is

the improved digital filter [13]. Algorithm.3
presents this sequential algorithm, where the
image size is NxM, and f is a two dimensional
image intensity function.

Algorithm.3. A sequential algorithm for
computation of 3rd order moments of a 2D image

y00=0, y01=0, y02=0, y03=0, y10=0, y11=0, y12=0,
y20=0, y21=0, y30=0
m00=0, m01=0, m10=0, m11=0, m02=0, m03=0,
m12=0, m20=0, m21=0, m30=0

 For j= M to 1 do {
 y0=0; y1=0; y2=0; y3=0;
 For i = N to 1 do {
 y0=y0+f(i,j)
 y1=y1+y0
 y2=y2+y1
 y3=y3+y2 }
 y00=y00+y0
 y01=y01+y00
 y02=y02+y01
 y03=y03+y02
 y10=y10+y1
 y11=y11+y10
 y12=y12+y11
 y20=y20+y2
 y21=y21+y20
 y30=y30+y3 }
m00=y00
m01=y01
m10=y10
m11=y11
m02=y02+y02-y01
m03=6*(y03-y02)+y01
m12=y12+y12-y11
m20=y20+y20-y10
m21=y21+y21-y11
m30=6*(y30-y20)+y10

For an input pattern with NxM data, it takes
(4N+10)*M additions to pass through the loops.
After the completion of the outer loop, only 12
additions and two multiplications are needed to
generate all the third order moments [13].
Moreover, since the multiplication operation is
more time-consuming than the addition
operation, the multiplications have been
completely eliminated by replacing them with
additions. So, the overall computation
complexity will be ((4N + 10)*M+24) additions.
Thus, the running time complexity TS(N,M)=
O(NM).

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

4

B. Parallel version of the improved filter
algorithm

The task graph of the improved filter algorithm
for computation of third order moments, with
input size (M=4, N=4) is shown in Fig.3.

Regarding the algorithm for moments
computation presented in Alg.3., we have
developed a parallel algorithm based on it. This
can be done by following the steps presented in
Alg.2. The image is decomposed into column
stripes, these stripes are distributed on the
processors. Then, all processors in parallel will
compute the values(y0, y1, y2 and y3). The
values of y0, y1, y2 and y3 from the previous
step will be gathered in four different processors.
Each of these processors will compute part of the
horizontal moment values (y00, y01, y02, y03,
y10, y11, y12, y20, y21 and y30). The horizontal
moments are gathered into one processor for
final evaluation of the moments (m00, m01,
m10, m11, m02, m03, m12, m20, m21, and
m30). This algorithm is presented in
Algorithm.4. Assuming (P=M).

Algorithm.4.a. is a main program of the
parallel algorithm for computing the third order
moments based on improved filter algorithm.
This program resides on main processor.

1. Decompose the image into M stripes
(columns), each stripe of size N rows.
2. Distribute the M columns on M
processors.
3. Receive the horizontal moment values
y00, y01, y02, y03 from processor P1. y10, y11,
y12 from processor P2. y20, y21 from
processors P3, and y30 from processor P4.
4. Compute the values of the third order
moments :
 m00=y00
 m01=y01
 m10=y10
 m11=y11
 m02=y02+y02-y01
 m03=6*(y03-y02)+y01
 m12=y12+y12-y11
 m20=y20+y20-y10
 m21=y21+y21-y11
 m30=6*(y30-y20)+y10

Algorithm.4.b. Slave program of the parallel
algorithm for computing the third order moments
based on improved filter algorithm.

1. Receive the image stripe of size N from

the main processor.
2. All M processors compute in parallel
the vertical moments y0, y1, y2 and y3.
 For i = N to 1 do {
 y0=y0+f(i,j) , where j is the index of the
column assigned to the processor
 y1=y1+y0
 y2=y2+y1

 y3=y3+y2 }
3. The M processors initiate four single
node accumulations for the four vertical
moments on four different processors.

3.1. P1 will gather the values of y0
from the M processors in the array Y0.
Y0={ y0_1, y0_2, y0_3,…, y0_M}.
3.2. P2 will gather the values of y1
from the M processors in the array Y1.
Y1={ y1_1, y1_2, y1_3,…, y1_M}.
3.3 P3 will gather the values of y2
from the M processors in the array Y2.
Y2={ y2_1, y2_2, y2_3,…, y2_M}.
3.4. P4 will gather the values of y3
from the M processors in the array Y3.
Y3={ y3_1, y3_2, y3_3,…, y3_M}.

4. Processors P1, P2, P3 and P4 compute in
parallel the horizontal moments depending
on the M values of the vertical moments
gathered in step 3 in array Y.
4.1. P1 computes y00, y01, y02, y03.
 y00=0, y01=0, y02=0, y03=0
 For j= M to 1 do {
 y00=y00+Y0(j)
 y01=y01+y00
 y02=y02+y01
 y03=y03+y02 }
4.2. P2 calculates y10, y11, y12.

y10=0, y11=0, y12=0
 For j= M to 1 do {
 y10=y10+Y1(j)
 y11=y11+y10

 y12=y12+y11 }
4.3. P3 calculates y20, y21.

y20=0, y21=0
 For j= M to 1 do {
 y20=y20+Y2(j)

 y21=y21+y20 }
4.4. P4 computes y30.

 y30=0
 For j= M to 1 do {

 y30=y30+Y3(j) }
5. Processors P0, P1, P2 and P3 sends the
horizontal moments values computed in step 4 to
the main program.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

5

Accordingly; more speedup may be gained by
using a pipeline for the computation of the
vertical moments in each processor.

.

Fig.3. Task Graph of the Improved Filter Algorithm for image size 4X4 (A) Computing Y values B)
computing the third order moments

IV. PERFORMANCE ANALYSIS OF THE
PRESENTED PARALLEL ALGORITHM
ON DIFFERENT ARCHITECTURES

The parallel algorithm presented in
Algorithm.4. can be implemented on different
parallel architectures [1], the architectures used
in this work are the hypercube and the
wraparound mesh interconnection networks, see
fig.4 [1].
The following assumptions are used in the
performance analysis:
- TP : the parallel time of the algorithm
- E : the efficiency
- S : the speedup
- M : the number of columns in the image
- N : the number of rows in the image
- P : the number of processors
- Tw : the transmission time per element
- Ts : the start-up time

Fig.4. Interconnection networks. (a) 2D mesh
with wraparound link (B) 3-D hypercube

A. Striped Partitioning.(P=M)
1) Hypercube Interconnection Network

Assuming that the image is already distributed
on the processors, then (TP) will be composed of
the following:

1. Evaluation of the vertical moments
in all processors in parallel will take (4*(N-
1)) additions.

2. Four single node gather for the
values (y0, y1, y2 and y3) on four different
processors, assuming SF routing is used,
will take (Ts*Log2M + Tw*(M-1))*4.

3. The four processors in parallel will
evaluate horizontal moments, this is limited

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

6

by the slowest processor (P1), which
requires ((M-1)*4) additions.

4. Finally, single node gather of the 10
horizontal moments in one processor of the
hypercube requires a maximum time of
(Ts*Log24+Tw*(4-1))*4=((2Ts+3Tw)*4)=
(8Ts+12Tw).

5. The single processor will now
evaluate the moments sequentially; this
requires 10 additions, and 2 multiplications.
Assuming that a basic communication operation
time equals a single multiplication operation
time, then TP is the summation of all previous
times

TP=((Ts*Log2
M+Tw*(M-1))*4+(4*(N-1))+(M-

1)*4+(8Ts+12Tw)+10+2),which is approximately
Θ(N+M+ Log2

M).
S=N*M/(N+ M +Log2

M).
E= N*M/M(N+M+Log2

M) = N/(N+M+Log2
M),

when M≅N E=1/(2+ Log2
M /N). for large values

of M E is approximately Θ(1), meaning that the
parallel system is cost optimal.

Assuming that the image is stored on the
source processor, and number of processors
equals number of columns (P=M), then
additional time is needed for decomposing the
image on the M processors, one to all
personalized communication is needed with
message size = N, the time required will be
(Ts*Log2

M +Tw*N*(M-1)). And in this case, the
parallel time will be,

TP=((Ts*Log2
M+Tw*(M-1))*4+(4*(N-1))+(M-

1)*4+(8Ts+12Tw)+10+2+(Ts*Log2
M +Tw*N*(M-

1))).
Θ(N+M+ Log2

M+N*M), which is apparently
not cost optimal.

2) Wraparound Mesh Interconnection
Network

Assuming that the image is already distributed
on the processors, then (TP) will be composed of
the following:

1. Evaluation of the vertical moments
in all processors in parallel will take (4*(N-
1)) additions.

2. Four single node gather for the
values (y0, y1, y2 and y3) on four different
processors, will take 4*(2Ts*(M1/2-
1)+Tw*(M-1)).

3. The fours processors in parallel will
evaluate horizontal moments, this is limited
by the slowest processor (P1), which
requires ((M-1)*4) additions.

4. Finally, single node gather of the 10
horizontal moments in the mesh requires a

maximum time of four single node gather on
a ring of 4 processors =((Ts+Tw)*(4-1) *4)=
((Ts+Tw)*12).

5. The single processor will now
evaluate the moments sequentially; this
requires 10 additions, and 2 multiplications.

When a basic communication operation time
equals a single multiplication operation time, TP
is the summation of all previous times.

TP=(4*(2Ts*(M1/2-1)+Tw*(M-1)+4*(N-
1)+(M-1)*4+(Ts+Tw)*12+10+2),which is
approximately Θ(M1/2+N+ M).
Then S=N*M/(M1/2+N+ M).
E= N*M/M(M1/2+N+ M) = N/(M1/2+N+ M
when M≅N E=1/(2+ M1/2/N). for large values of
M E is approximately Θ(1), meaning that the
parallel system is cost optimal.

Assuming that the image is stored on the
source processor, and the number of processors
equals the number of columns (P=M), then an
extra time is needed for decomposing the image
on the M processors, one to all personalized
communication is needed with message size = N,
the time needed will be (2Ts*(M1/2-1)
+Tw*N*(M-1)). And in this case, the parallel
time will be,

TP=(4*(2Ts*(M1/2-1)+Tw*(M-1)+4*(N-
1)+(M-1)*4+(Ts+Tw)*12+10+2+Tw*N*(M-1))).
Θ(N+M+ M1/2+N*M), which is apparently

not cost optimal.

B. Striped Partitioning (P<M)
A scaling down of the number of processors

used can be made (the number of processors is
less than number of columns in the image P<M).
And in this case the stripe size will be M/P.
Computation of the moments will be the same as
illustrated in Alg.4 , with the following
differences: In step 1. Each processor will be
assigned M/P columns instead of 1. In step 2.
Each processor will evaluate the vertical
moments of M/P columns. In step 3. The
message size will be M/P instead of 1.

1) Hypercube Interconnection Network
Assuming that the image is already distributed

on the processors; then TP will be composed of
the following:
1- Evaluation of the vertical moments in
all processors in parallel will take
4*(M/P)*(N-1) additions.
2- Four single node gather for the values
(y0, y1, y2 and y3) on four different
processors, assuming SF routing is used,
will take (Ts*Log2P + Tw*M/P*(P-1))*4.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

7

3- The fours processors in parallel will
evaluate horizontal moments, this is limited
by the slowest processor (P!), which
requires ((M-1)*4) additions.
4- Finally, single node gather of the 10
horizontal moments in the hypercube
requires a maximum time of (Ts*Log24 +
Tw*M/P*(4-1)*4)= (8Ts+12Tw*M/P).
5- The single processor will now evaluate
the moments sequentially; this requires 10
additions, and 2 multiplications.

Assuming that a basic communication
operation time equals a single multiplication
operation time, then TP equals the summation of
all previous times.

TP=((Ts*Log2
P + Tw*M/P*(P-1))*4+4*(N-

1)*(M/P)+(M-1)*4+8Ts+12Tw*M/P+10+2),
which is approximately Θ((N*M/P+ M +Log2

P).
Then S=N*M/(N*M/P+ M +Log2

P).
And E= N*M/P(N*M/P+ M +Log2

P)=
1/(1+(P/N)+P*(Log2

P)/(N*M)), for P<<M, it will
be Θ(1), meaning that the parallel system is cost
optimal.

Assuming that the image is stored on the
source processor, and the number of processors
is less than the number of columns (P<M), then
an extra time is needed for decomposing the
image on the P processors, one to all
personalized communication is needed with
message size = N*M/P, the time needed will be
(Ts*Log2

P +Tw* N*M/P *(P-1)). And in this case,
the parallel time will be,

TP= ((Ts*Log2
P + Tw*M/P*(P-1)) *4+ (N-

1)*(M/P) + (M-
1)*4+((Ts+Tw)*8)+10+2+(Ts*Log2

P +Tw*
N*M/P *(P-1))), which is Θ(N*M/P+ M
+Log2

P+N*M).
S= N*M/(N*M/P+ M +Log2

P+N*M).
E= N*M/P(N*M/P+ M +Log2

P+N*M) =
1/(1+(P/N)+(P*(Log2

P)/(N*M))+P), for P<<M, it
will be Θ(1/(1+P)) < Θ(1), meaning that the
parallel system is not cost optimal.

2) Wraparound Mesh Interconnection
Network

Assuming that the image is already distributed
on the processors, let TP be the parallel time of
the algorithm; then TP will be composed of the
following:

1. Evaluation of the vertical moments
in all processors in parallel will
4*(M/P)*(N-1)additions.

2. Four single node gather for the
values (y0, y1, y2 and y3) on four different

processors, assuming CT routing is used,
will take 4*(2Ts*(P1/2-1)+Tw*M/P*(P-1)).

3. The fours processors in parallel will
evaluate horizontal moments, this is limited
by the slowest processor (P1), which
requires ((M-1)*4) additions.

4. Single node gather of the 10
horizontal moments in the mesh requires a
maximum time of a four single node gather
on a ring of 4 processors =((Ts+Tw)*(4-1)
*4)= ((Ts+Tw)*12).

5. The single processor will now
evaluate the moments sequentially; this
requires 10 additions, and 2 multiplications.

TP=(4*(2Ts*(P1/2-1)+Tw*M/P*(P-1))+4*(N-
1)*(M/P)+(M-1)*4+((Ts+Tw)*12)+10+2), which
is approximately Θ((N*M/P+ M + P1/2).

S=N*M/(N*M/P+ M + P1/2).
E= N*M/P(N*M/P+ M + P1/2)=

1/(1+(P/N)+P*(P1/2)/(N*M)), for P<<M, it will
be Θ(1), meaning that the parallel system is cost
optimal.

Assuming that the image is stored on the
source processor, and number of processors
equals number of columns (P<M), then an extra
time is needed for decomposing the image on the
P processors, one to all personalized
communication is needed with message size =
N*M/P, the time needed will be (2Ts*(P1/2-1)
+Tw*N*M/P*(P-1)). And in this case, the
parallel time will be TP=(4*(2Ts*(P1/2-
1)+Tw*M/P*(P-1))+(N-1)*(M/P)+(M-
1)*4+((Ts+Tw)*8)+10)+(2Ts*(P1/2-1)+Tw*N*
M/P*(P-1))).
Θ(N+M+ Log2

P+ P1/2+N*M).
E=(N*M)/ P(N+M+P1/2+N*M), for P<<M, it

will be Θ(1/(1+P)) < Θ(1), which is apparently
not cost optimal.

V. CONCLUSION
This work has proposed a parallel algorithm

for computation of third order moments of a 2D
image by showing the architectures on which
this algorithm can be parallelized with optimal
costs in comparison with these on which the
algorithm is costly.

The parallel algorithm analysis presented in
this paper can benefit programmers and
algorithm developers by presenting a systematic
way to tackle a sequential problem,
implementing and analysing it using a parallel
algorithm on different architectures.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

8

REFERENCES
[1] Ananth Grama, Anshul Gupta,

George Karypis, Vipin Kumar.
2003. Introduction to Parallel
Computing. Addison-Wesley.

[2] M. Hatamian, A real time two-
dimensional moment generation
algorithm and its single chip
implementation, IEEE Transactions
on ASSP 34 (1986), pp. 546–553.

[3] Patrick C Hew, Michael D Alder,
Zernike Or Orthogonal Fourier
Mellon Moments For Representing
And Recognising Printed Digits,
1996.

[4] M.K. Hu, Visual pattern
recognition by moment invariants,
IRE Transactions on Information
Theory 8 (1962), pp. 179–187.

[5] Drew E. Kornreich, Anthony B.
Davis, and Charles A. Rohde,
“Analysis of the I3RC Two-
Dimensional Step Cloud Problem
with TWODANT”,1995.

[6] B.C. Li, High-order moment
computation of grey-level images,
IEEE Transactions on Image
Processing 4 (1995), pp. 502–505.

[7] J. Martinez and F. Thomas,
Efficient computation of local
geometric moments, IEEE
Transactions on Image Processing
11 (2002), pp. 1102–1112.

[8] Mukundan R, S.H.Ong, P.A.Lee,
Discrete Orthogonal Moment
Features using Chebyshev
Polynomials, Image and Vision
Computing, NewZealand NOV
2000, pp. 20-25.

[9] R. Mukundan, S.H.Ong, P.A. Lee,
Discrete vs. Continuous Orthogonal
Moments in Image Analysis",Intnl.
Conf. on Imaging Science, Systems
and Technology-CISST’01, Las
Vegas, (25-28 June 2001) pp. 23-
29.

[10] W. Philips, A new fast algorithm
for moment computation, Pattern
Recognition 26 (1993), pp. 1619–
1621.

[11] A.P. Reeves, A parallel mesh
moment computer, in: Proc. 6th
ICPR, 1982, pp. 465–467.

[12] T.W. Shen, D.P.K. Lun and W.C.
Siu, On the efficient computation

of 2-D image moments using the
discrete radon transform, Pattern
Recognition 31 (1998), pp. 115–
120.

[13] W.H.Wong, W.C.Siu, Improved
Digital Filter Structure For Fast
Moments Computation, Image
Signal Process, Vol. 146, No. 2,
April 1999.

[14] C.H. Wu, S.J. Horng and P.Z. Lee,
A new computation of shape
moments via quadtree
decomposition, Pattern Recognition
34 (2001), pp. 1319–1330

[15] C.H. Wu and S.J. Horng, Run-
length chain coding and scalable
computation of a shape’s moments
using reconfigurable optical buses,
IEEE Transactions on Systems,
Man and Cybernetics, Part B:
Cybernetics 34 (2004), pp. 845–
855

[16] C.H. Wu , S.J. Horng, C.F. Wen
and Y.R Wang, Fast and scalable
computations of 2D image
moments, Image and Vision
Computing, Volume 26, Issue 6, 2
June 2008, pp. 799-811

[17] L. Yang and F. Albregtsen, Fast
and exact computation of Cartesian
geometric moments using discrete
Green’s theorem, Pattern
Recognition 29 (1996), pp. 1061–
1073.

