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ABSTRACT 

Hierarchical agglomerative clustering merges the clusters basing on their distance similarity. In this paper 
we present a new mathematical method called D metric spaces by Indian mathematician B.C.Dhage who 
has submitted his thesis in 1984 at Maratwada university. We present  an algorithm for hierarchical 
clustering using D metric concept  instead of Euclidean distance  which reduces the total number of 
iterations ,complexity and computation time. Here we showed an example that contains the results of both 
techniques and also comparisons. 
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1.  INTRODUCTION   

Clustering (12-25) also called as data 
segmentation has variety of goals, all relates to 
grouping or segmenting a collection of objects 
(also called as observations, individuals, cases or 
data rows) into subsets or clusters such that those 
with in each cluster are more closely related to  
one another  than objects assigned to different 
clusters. Central to all other goals of clustering is 
the notion of degree of similarity or dissimilarity 
between individual objects being clustered. 

So the basic principle of clustering 
hinges on a concept of distance metric or 
similarity metric. Since the data are invariably 
real numbers for statistical applications and 
pattern recognition, a large class of matrices 
exists and one can define one’s own metric 
depending on a specific requirement. 
The main emphasis of this is to cluster with a 
high  accuracy as possible, while keeping the I/O 
costs high. Thus it is not relevant to apply the 
classical clustering algorithms in the context of  

 

data mining and it is necessary to investigate the 
principle of clustering is to devise efficient 
algorithms, which meets the specific 
requirements of minimizing the I/O operations. 

2. HIERARCHICAL   CLUSTERING 

Here the data are not partitioned into a 
particular cluster in a single step. Instead, a 
series of partitions takes place, which may run 
from a single cluster containing all objects to n 
clusters each containing a single object.  
Hierarchical Clustering is subdivided into 
agglomerative methods, which proceed by series 
of fusions of the n objects into groups, and 
divisive methods, which separate n objects 
successively into finer groups.     (12-25). 
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The hierarchical agglomerative algorithm can 
be written as   

Given a set of N items to be clustered, and an N 
x N distance (or similarity) matrix, the basic 
process of hierarchical clustering is this:  

1. Start by assigning each item to its own 
cluster, so that if you have N items, you 
now have N clusters, each containing just 
one item. Let the distances (similarities) 
between the clusters equal the distances 
(similarities) between the items they 
contain.  

2. Find the closest (most similar) pair of 
clusters and merge them into a single 
cluster, so that now you have one less 
cluster.  

3. Compute distances (similarities) between 
the new cluster and each of the old clusters. 

4.  Repeat steps 2 and 3 until all items are 
clustered into a single cluster of 

5. size N.  

Step 3 can be done in different ways, which is 
what distinguishes single-link from complete-link 
and average-link clustering.  

1. Single linkage method :  Here  the similarity 
of two clusters is the similarity of their most 
similar members This single-link merge criterion 
is local. Here we consider where the two clusters 
come closest to each other. Other, more distant 
parts of the cluster and the clusters' overall 
structure are not taken into account.  

 

Graphically it can be represented as  ,…. 

 

Algorithm that illustrates single linkage 
clustering with the following example: 

 

The matrix is follows. 

 

Input distance matrix (L = 0 for all the 
clusters): 

 

 BA FI MI NA RM TO
BA 0 662 877 255 412 996 
FI 662 0 295 468 268 400 
MI 877 295 0 754 564 138 
NA 255 468 754 0 219 869 
RM 412 268 564 219 0 669 
TO 996 400 138 869 669 0 

TO 

MI 

BA 

NA 

877 

662 

754 

295 

FI 

RM 869 

400 

669 

564 

996 
412 

468 219 255 
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138 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT & LLS. All rights reserved.                                                                      
 

www.jatit.org 

 
75 

 

1. Begin with the disjoint clustering having 
level L(0) = 0 and sequence number m = 0. 

2. Find the least dissimilar pair of clusters in 
the current clustering, say pair (r), (s), 
according to d[(r),(s)] = min d[(i),(j)] 
where the minimum is over all pairs of 
clusters in the current clustering. 

3. Increment the sequence number : m = m 
+1. Merge clusters (r) and (s) into a single 
cluster to form the next clustering m. Set 
the level of this clustering to 
L(m) = d[(r),(s)] 

4. Update the proximity matrix, D, by deleting 
the rows and columns corresponding to 
clusters (r) and (s) and adding a row and 
column corresponding to the newly formed 
cluster. The proximity between the new 
cluster, denoted (r,s) and old cluster (k) is 
defined in this way: 
d[(k),(r,s)] = min d[(k),(r)], d[(k),(s)] If all 
objects  are  in  one cluster , stop. Else, go 
to step 2. 
 

now see a simple example: a hierarchical 
clustering of distances in kilometers between 
some Italian cities. The method used is single-
linkage. 
The nearest pair of cities is MI and TO, at 
distance 138. These are merged into a single 
cluster called "MI/TO". The level of the new 
cluster is L(MI/TO) = 138 and the new sequence 
number is m = 1. 
Then we compute the distance from this new 
compound object to all other objects. In single 
link clustering the rule is that the distance from 
the compound object to another object is equal to 
the shortest distance from any member of the 
cluster to the outside object. So the distance from 
"MI/TO" to RM is chosen to be 564, which is the 
distance from MI to RM, and so on. 
 

After merging MI with TO we obtain the 
following matrix: 

 BA FI MI/TO NA RM
BA 0 662 877 255 412 

FI 662 0 295 468 268 

MI/TO 877 295 0 754 564 

NA 255 468 754 0 219 
RM 412 268 564 219 0 

min d(i,j) = d(NA,RM) = 219 => merge NA and 
RM into a new cluster called NA/RM 
L(NA/RM)=219  and m = 2 

 BA FI MI/TO NA/RM
BA 0 662 877 255 
FI 662 0 295 268 

MI/TO 877 295 0 564 
NA/RM 255 268 564 0 

min d(i,j) = d(BA,NA/RM) = 255 => merge BA 
and NA/RM into a new cluster called 
BA/NA/RM 
L(BA/NA/RM)=255   m = 3 

 BA/NA/RM FI MI/TO
BA/NA/RM 0 268 564 

FI 268 0 295 
MI/TO 564 295 0 

min d(i,j) = d(BA/NA/RM,FI) = 268 => merge 
BA/NA/RM and FI into a new cluster called 
BA/FI/NA/RM L(BA/FI/NA/RM)=268   m = 4 

 

 BA/FI/NA/RM MI/TO
BA/FI/NA/RM 0 295 

MI/TO 295 0 

Finally, we merge the last two clusters at level 
295. 

The process is summarized by the following 
hierarchical tree: 
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 The above example shows the single linkage 
algorithm which requires more number of 
iterations , computation time and complex. So to 
get fast results than the above we have 
introduced a new method of fixed point theorem 
in D metric spaces  from applied mathematics by 
Indian mathematician B.C.Dhage who has 
submitted his thesis to Maratwada University in 
1984 which is used to calculate the perimeter of 
the triangle.(1-11) 

3. DEFINITION: 
 

Let X be a non-empty set. R denotes the real 
numbers.A real valued function d on X * X * X 
is said to be a D-metric on X if 
1. To each pair of distinct points x,y in X, 

there exists a point z in X such that d(x,y,z) 
≠ 0. 

2. d(x,y,z) = 0 when at least two of x,y,z are 
equal.(coincidence). 

3. d(x,y,z)=d(y,x,z)=d(y,z,x) for all x,y,z in X  
symmetry and 

4. d(x,y,z)≤d(x,y,w)+d(x,w,z)+d(w,y,z) for all 
x,y,z ,w in X. 

 
If X is a nonempty set and d is a D-metric on X, 
then the ordered pair (X,d) is called a D-metric 
space.When the D-metric  is understood, X itself 
is called a D-metric space.(1-11) 
    Here we present triple linkage clustering 
algorithm followed by an example instead of 
using single linkage  

1. Begin with disjoint clustering having level 
L(0) =0 and sequence number m=0 
 

2. Find the least dissimilar triplet of clusters in 
the current clustering, say triplet (r),(s),(t), 
according to d[(r),(s),(t)]=min d[i,j,k], 
Where the minimum is over all triplets of 
clusters in the current clustering. 

3. Increment the sequence number; m=m+1. 
Merge  clusters (r),(s) and (t) into a single 
cluster to form the next clustering m. Set 
the level of this clustering to L(m) 
=d[(r),(s),(t)]. 

 

4. Update the values d (i,j,k) by considering 
the newly formed compound cluster  in step 
3. The proximity between the new cluster, 
denoted (r,s,t) and old clusters (k) and (l) is 
defined in this way d[(k),(l),(r,s,t)]= 
min{[d[(k),(l),(r)],d[(k),(l),(s)], (k),(l),(t)]}. 

 

5. If all objects are in one cluster, stop. Else, go 
to step 2. 

6. If there are only two clusters, namely (r) and 
(s), then we use usual Euclidian  metric 
d[(r),(s)] to merge the two clusters (r) and 
(s). 
 

4.  AN EXAMPLE 

Let us consider a simple example in which a 
hierarchical clustering of distance in kilometers 
between some Italian cities. 

 
In this method, we use triple-linkage 

clustering using D-metric spaces 
 

 BA FI MI NA RM TO 
BA 0 662 877 255 412 996 
FI 662 0 295 468 268 400 
MI 877 295 0 754 564 138 
NA 255 468 754 0 219 869 
RM 412 268 564 219 0 669 
TO 996 400 138 869 669 0 

 
                 Input distance matrix 

 

The nearest triplet of cities is MI, TO 
and FI, at distance  (perimeter of the triangle 
joining the three cities) 833. These are merged 
into a single cluster “MI/TO/FI”. The level of the 
new cluster is L(MI/TO/FI)=833 and the new 
sequence number is m=1. 

 Then we compute the distance 
(perimeter) from this new compound object to all 
other pairs of objects. In triple-linkage clustering 
the rule is that the perimeter of the triangle 
formed by the compound object with another 
pair of objects is equal to the smallest perimeter 
values of the triangles formed by each member 
of the compound cluster with the pair of outside 
objects. Here the perimeter of the triangle 
formed with MI/TO/FI and the pair RM and NA 
is chosen to be 955, which is the perimeter of the 
triangle formed with FI, RM and NA. Similarly, 
we can compute the perimeters of the triangles 
formed with the compound cluster and with 
other pairs of clusters. 

Perimeters of the Triangles with MI/TO/FI is one 
vertex: 

 (RM, 
NA) 

(RM, 
BA) (NA, BA) 

MI/TO/FI 955 1342 1385 
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Perimeters of the Triangles with RM is one   
vertex. 

 MI/TO/FI, 
BA 

MI/TO/FI, 
NA (NA, BA) 

RM 1342 955 886 
 

Perimeters of the Triangles with NA is one  
vertex: 

 MI/TO/FI, 
RM MI/TO/FI, BA (RM,BA) 

NA 955 1385 886 
 

Perimeters of the Triangles with BA is one 

vertex: 

 MI/TO/FI, 
RM 

MI/TO/FI, 
NA (RM,NA) 

BA 1342 1385 886 

 

We can observe that the perimeter of the triangle 
formed with vertices RM,NA,BA is the smallest 
one. Hence we merge these three clusters into one 
compound cluster namely ‘RM/NA/BA’.  
L(RM/NA/BA)=886 and m=2. Now we have 
only two (compound) clusters. We merge these 
two clusters using Euclidian metric. 

D(MI/TO/FI,RM/NA/BA)=d(FI/RM)=268. 

Merge MI/TO/FI with RM/NA/BA into a new 
cluster MI/TO/FI/RM/NA/BA. 

L(MI/TO/FI/RM/NA/BA)=268 and m=3. 

 

 

   The above is hierarchical diagram. 

      

6. COMPARISON OF RESULTS: 
 

Now we compare the results (clustering of six 
cities) of the same example using both methods 
one is single linkage and other one is triple 
linkage of D metric spaces. Following figures 
show the result of applying the single link ,triple 
link to our example data of six points . D-metric 
spaces is much better (faster) than the Euclidian 
metric (existing method) and triple linkage is 
faster than single linkage algorithm.. We are 
giving two types of results (1) Clustering of 
ellipses and (2) Dendrograms  

 

 

 

 

clustering using D Metric 

 
 
 
 
 

MI 

TO 

FI 

RM 

BA 

NA 

MI    TO      FI                              RM     NA     BA  
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7. CLUSTERING USING EUCLIDIAN 
METRIC 

 

A hierarchical clustering is often 
displayed graphically using a tree-like diagram 
(Hierarchical tree) called a Dendrogram, which 
displays both the cluster-sub cluster relationships 
and the order in which the clusters were merged 
(agglomerative view). A hierarchical clustering 
can also be graphically represented using a 
nested cluster diagram. 

. The Figures of above show the nested 
clusters as a sequence of nested ellipses, where 
the numbers associated with the ellipses indicate 
the order of the clustering. Figures below show 
the same information, but as Dendrograms. 

Dendrogram using EUCLIDEAN 

In view of the above diagrams, it is 
clear that the clustering D-metric takes less 
number of steps or iterations than the clustering 
using Euclidian metric and requires less 

computation time. 

Dendrogram using Dmetric spaces 

8. CONCLUSION 

              In this paper using the  D–metric 
concepts, we designed a triple linkage algorithm 
in agglomerative clustering can be done much 
faster than the previous techniques. 

Fixed point theorem in D metric spaces 
concept we have used and observed that it is a 
very use full concept in clustering. Many 
clustering algorithms (algorithms that are 
designed using the Euclidian metric) can be 

modified using this and can get the results much 
faster. 
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