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ABSTRACT 

In a database the data concepts changes over time and this is called concept drift. Genetic algorithm is 
widely used for mining classification rules. If the data set is of three or four years old, the mined rules may 
not reflect the current concept due to concept drift.  Applying the incremental genetic (IGA) algorithm in a 
batch mode can mine accurate rules reflecting the current concept. But applying genetic algorithm without 
monitoring for a change in an incremental manner repeatedly on arriving data will result in an unnecessary 
increase in the learning cost. There is also another problem, Due to change in the data distribution some of 
the rules which are generated may be lost when we apply  genetic algorithm in an incremental fashion.  In 
this paper a new incremental genetic algorithm is proposed to rectify the above problems. The New IGA 
applies the Genetic algorithm iteration step only when required, so that learning cost may be reduced. The 
new method also keeps track of the rules which are generated earlier and which would have been lost due 
to change in data distribution.  In the proposed method each record of the incoming dataset is monitored. If 
they are correctly classified they are dropped and misclassified records are added to a window. When the 
window is full, the genetic algorithm is applied to the records in the window and new rules are generated 
based only on the misclassified examples and on the examples of new classes. The invalid rules are 
replaced with the newly generated valid rules. The new method   ensures that the next iteration of genetic 
algorithm is called only when there is a concept drift or when there is a change in the data distribution and 
sufficient number of records is available. This will reduce the learning cost particularly when there is no 
concept drift or when there is a slow drift and also ensures that no rule is lost due to change in data 
distribution. 
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1. INTRODUCTION: 
 

Genetic Algorithm (GA) is a stochastic 
search method which has been inspired by the 
data mining community. It is widely used in 
discovering classification rules [2, 3, 4, 5, and 6]. 
The rules that GA finds are more general 
because of its global nature. GA shows great 
promise in complex domains because it operates 
in an iterative improvement fashion where search 
is probabilistically  concentrated  towards 
regions of the model representation space that 
have been found to produce a good classification 
behavior.  

  

 
Today’s data like stock market, 

customer buying are liable to concept drift. The 
target concept changes due to changes in the 
under lying context [7]. This phenomenon is 
called concept drift. Due to this the classification 
models built using genetic algorithm on three to 
four years data will not reflect the current 
concept.  Incremental genetic algorithm (IGA) is 
proposed by Huai li et al [1] to rectify this 
problem. Incremental genetic algorithm will 
produce accurate rules reflecting the latest 
concept but with a considerable learning cost 
overhead because it applies IGA in a repeated 
manner without analyzing the nature of the 
concept drift.  When we look into the real world 
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data, all the rules will not change from valid to 
invalid due to the concept drift and also even 
there may not be any concept drift at all. The 
concept drift can also occur at any time and it 
may be a slow or a fast drift.  So Executing 
genetic algorithm [1] for each batch in an 
incremental fashion without analyzing the data 
for concept drift is an unnecessary act 
particularly when there is no concept drift. The 
new method proposed in this paper ensures that 
incremental genetic algorithm is applied only 
when there is a need. This will prevent 
unnecessary call to genetic algorithm particularly 
when there is no concept drift.   
 

The paper is organized as follows, section 
1 describes about previous work, section 2 
describes the proposed method, Section 3 
describes the experimental results and section 4 
concludes the paper. 
1. Previous work 

Traditional classification methods like 
C4.5 are designed to deal with static data [14].  
Subsequently many new non GA based methods 
have been proposed to deal with concept drifts 
[9, 10, 11, 12, and 13]. An incremental GA was 
proposed by Gaun et al [8] which updates the 
rules based on the new data. Due to the arrival of 
new data or new attribute or class, the 
classification model may change. So to deal with 
this the author proposes an incremental based 
GA.  As discussed earlier Huai li et al [1] 
proposes a memory based incremental genetic 
algorithm to deal with the concept drift. They 
make an assumption that the new training data 
pass through a fixed-size window at a steady 
rate. When the window is full, genetic algorithm 
is applied to determine the set of classification 
rules. Old instance of the window are replaced 
with the arriving new training samples. Once all 
the original samples have been replaced by new 
samples, the GA is called to determine the new 
set of best classification rules. This procedure is 
repeated sequentially as long as learning is 
required. Their GA utilizes a memory-based 
random immigrant module, in which the initial 
population pool of the GA applied at each stage 
of the incremental learning process comprises a 
mix of best solutions obtained in the previous 
stage and an appropriate number of random 
immigrants. Their results demonstrate that IGA 
achieves a comparable classification 

performance to that obtained using existing 
incremental and non-incremental methods.  

 In practical data sets, concept drift may 
or may not be present. If present, it may occur at 
any time (i.e.) it may appear in the second 
window or at the last window.  All the records 
will not be changed due to concept drift and so 
all the rules will not go invalid. The concept drift 
may be very slow and requires certain time to 
become effective. So repeatedly applying IGA 
without monitoring the nature of concept drift 
will increase the learning cost significantly.  
There is also another important problem of lose 
of some of the old rules in IGA which affects the 
accuracy of the model. If the underlying data 
distribution changes and if some of the data does 
not reappear, we may also lose some of the rules 
due to the incremental nature of genetic 
algorithm. 
   

For example, consider the data in the 
given three consecutive blocks   described in 
Table 1, Table2 and Table 3 respectively. 
Table 1 Example Block1 data 

Table 2 Example Block2 data 
RID Record  Class 

1 
2 
3 
4 
5 
6 
7 

   8 

a1 b3c3 
a1 b1c1 
a1b1c3 
a3 b3c3 
a1 b3c3 
a1 b1c1 
a3 b1c1 
a1 b3c3 

c2 
   c1 
   c1 

c2 
c2 

   c3 
c3 

   c2 

 
 
 
 
 

RID Record  Class 
1 
2 
3 
4 
5 
6 
7 

   8 

a1b1 c1  
a1b1c2 
a1b3c3  
a3b3c3 
a3b1c1  
a3b2c1  
a3b2c1 
a1b1c1 
  

c1 
c1 
c2 
c2 
c3 
c3 
c3 
c1 
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Table 3 Example Block 3 data 
RID Record  Class 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 

a1 b3c3 
a2 b3c3   
a3 b1c1   
a2 b1c1 
a3 b2c1 
a1 b2c3 
a2 b2c3 
a1 b3c3 

 c2 
 c2 
c3 
c3 
c3 
c4 
c4 
c2 

 
 IGA method is used to mine the 

classification rules for the given three blocks of 
data. Let the window size be ten so that each 
block will fit to a window. According to IGA 
method, a fixed sized window is made to slide 
over the examples and the genetic algorithm is 
called whenever the window is full. The rules 
generated in one iteration forms the initial 
population for the next iteration. So when the 
IGA is applied for the above example there are 
three iterations of genetic algorithm for the given 
three blocks of data.   
 
The rules mined during first iteration by using 
first block are  

a1b1→c1,   b3c3→c2,   b1c1→c3         (1) 
Considering the next block of data and the rules 
mined are  

a1b1→c1,  b3c3→c2,     b1c1→c3       (2) 

 
In the third iteration the rules mined are  

b2c3→ c4,   b3c3→c2,     b1c1→c3     (3) 
When examining the above three rule sets 
(Equations 1, 2 and 3), three important 
characteristics of the rules generated can be 
identified. First, there is no difference between 
the rules in the rule set one and rule set two. This 
similarity is due to non existence of concept drift 
in the second block. So applying genetic 
algorithm during second iteration is an 
unnecessary act because it has not changed the 
rule set. Second, When Applying IGA to the 
third block, only one rule has changed and there 
is no change in the remaining rules when 
compared to the rules in rule set two. There are 
only two misclassified records in the third block 
and remaining records are classified correctly by 
the previous rule set. So we can notice that the 
correctly classified examples does not change the 
rule set significantly. Third, In the third iteration 

rule set, rules of class c1 does not appear because 
there is a change in data distribution when we 
compare data in the second and  the third block .  
This proves that we may also lose some of the 
rules due to change in the data distribution even 
though there is no concept drift.  

 
From the above discussion following 

conclusions can be made 
 
1. If there is no concept drift IGA need 

not be applied. 
2. Correctly classified records can be 

dropped since they do not change the rule set   
significantly, 

3.  Remembering all the rules from the 
first iteration of IGA and replacing only the 
invalid rules in the subsequent iterations will 
prevent lose of rules due to change in the data 
distribution . 

The method proposed in this paper is 
based on the above three points. It is not 
necessary to apply the IGA repeatedly batch after 
batch of samples. Instead it can be applied only 
after detecting concept drift and also only to the 
misclassified records.  This will greatly reduce 
the computational overhead particularly when 
there is no concept drift or when there is a slow 
drift. 

The core genetic algorithm of the 
method proposed in this paper is similar to the 
method proposed by Huai li et al[1]. In Genetic 
Algorithm the potential solutions are encoded as 
chromosomes. This is called population. The 
population is processed using heuristic search, 
selection, crossover, mutation and evaluation 
operation such that the best solution gradually 
emerges. Section 1.1 describes the encoding 
process and   Section 1.7 describes the basic 
architecture of the Genetic algorithm. Rest of the 
sub sections describes each of the other 
processes involved.   

 
1.1Encoding 

Let there be n input attributes and one 
target attribute. The chromosome contains n+ 1 
gene. Each gene in the chromosome represents 
an input attribute and the last gene represents the 
target attribute.  Suppose if an attribute can take  
m different values it is encoded by  m+1 binary 
bits ,m bits for each value of  the attribute .and  
one  bit to indicate whether or not the attribute 
forms part of classification rule or not. Each 
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chromosome represents a rule of classification. A 
population is a set of chromosomes representing 
the best solution at that instant.  Initial 
population is created randomly. 
 

Consider a set of a training sample with 
three attributes A1, A2, A3 and a target attribute 
A4. They take 3,4,2,3 values respectively. Table 
4 represents the chromosome coding and its 
meaning.  Since Flag bit of A2 is Zero, A2 does 
not take part in the rule. 
Table 4 Chromosome Coding 
  
Attribute 
 

   A1    A2  A3  A4    

   Code   1001 00001 110   100 

 
    Rule 
 

 
IF A1= Value3 and  A3= Value1 
Then  A4= Value1 

 
 1.2 Heuristic search module 

Two different heuristic search strategies 
are applied after crossover. In the first strategy, 
the value which appears most frequently for each 
attribute is identified and replaced within each 
chromosome by a randomly selected value. If the 
value of the fitness function is improved, the 
randomly selected value is accepted as the new 
attribute value; else the original value is restored.  
In the second search strategy, one attribute in the 
chromosome string is chosen at random and its 
first bit is inspected if it is “1” it is changed to 
“0” so that it is discarded from the rule. The 
fitness of the resulting chromosome is then re-
evaluated. If the fitness value is found to 
improve, then the attribute is discarded from the 
classification rule, else it is retained. 
 
 1.3 Crossover 

Two point crossover method is 
employed. Two chromosomes are selected 
randomly according to the crossover probability 
for reproduction using roulette wheel selection 
method [1]. Two cutting points are randomly 
selected between the pair of chromosomes. The 
bit string between cutting points are simply 
exchanged between the two chromosomes. 
 
1.4 Mutation 

A single chromosome within the 
population is chosen in random and a bit within 
the population is also chosen at random and its 

value is flipped. The mutation probability is 
dynamic and depends upon the average fitness 
value of the chromosomes according to the 
equation 4.    It is initialized to 0.5 before  the 
first generation begins. 
 
Mut-rate=1-avgfit/2              (4) 
 
1.5 Selection 

Best n elite chromosomes are chosen 
from both the parent and child for the next 
generation population pool. Remaining 
chromosomes are chosen from the child 
population to form the initial population pool for 
the next generation. The GA process is continued 
and stopped such that there is no significant 
increase in the fitness function for say some m 
generations. It can also be stopped after specific 
number of generation has been elapsed. 
 
1.6. Fitness Function calculation 

 The   quality of each of the 
chromosomes within the population is evaluated 
using the fitness function represented by 
Equation (7); this fitness function comprises two 
components, namely a sensitivity term (see 
Equation(5)) and a specificity term (see Equation 
(6)). 

Sensitivity=tp/tp+fn                            (5) 
Specificity=tn/tn+fp                            (6) 
Fintness=tp/(tp+A.fn) * tn/(tn+B.fp)   (7) 

0.2<A<2   1<B<20 
In the equation  tp denotes true positive, 

fp denotes false positive, tn denotes true 
negative, and fn denotes false negative . A and B 
are user-defined parameters which determine the 
rate of convergence of the solution procedure 
and are determined experimentally in accordance 
with the requirements 
 
If the rules are of form X → Y Then 
 
1. True positive (tp): the actual class is Y and 
the predicted class is also Y. 
2. False positive (fp): the actual class is Y, but 
the predicted class is not Y. 
3. True negative (tn): the actual class is not Y 
and the predicted class is also not Y. 
4. False negative (fn): the actual class is not Y, 
but  
The predicted class is Y. 
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1.7 Genetic Algorithm 
1. [Start] Generate random population of n 
chromosomes (Section 1.1) 
 
2. [Fitness] Evaluate the fitness of each 
chromosome in the population (section 1.6). 
3. [New population] Create a new population by 
repeating following steps until the new 
population is complete 

1. [Selection] Select two parent 
chromosomes from a population 
according to their fitness (section1.3). 
2. [Crossover] With a crossover 
probability cross over the parents to 
form new offspring (section 1.3). 
3. [Heuristic Function] Apply the 
heuristic Function to the new 
Chromosomes (Section 1.2) 
4. [Mutation] With a mutation 
probability mutate the new offspring 
(Section 1.4). 

4. [Accepting] Select new population for a 
further run of the algorithm (Section 1.5). 
5. [Test] If the end condition (section 1.5) is 
satisfied, stop, and return the current population 
as best solution, otherwise go to step 2. 
 
2.  PROPOSED METHOD 
 

 Two phases are there in the proposed 
method. First is the initialization phase   A 
window   Wi of size i is considered. The size of 
the window is fixed based on the number of 
samples required to mine accurate rules. The 
records from the incoming data set are copied 
one by one   to the window.  When the window 
is full the genetic algorithm is applied and the 
rules are mined. 
      
Definition 1 (Misclassified Records).  A Record 
is called as a misclassified record if 1) it is 
assigned a wrong class label by a rule or 2) it has 
no matching rule. 
 

Second phase is the update phase.  In 
this phase two counts called misclassified record 
count (MCi) and correctly classified record count 
(CCi) are maintained for each rule i. Both the 
counts are initialized to zero.   Remaining 
Records are read one by one from the arriving 
data set and they are matched with the rules in 
the rule set.  If a record is classified correctly by 
a rule in the rule set it is dropped and the 

corresponding rules CC is increased by one. If a 
record is misclassified (Definition 1) by the rule 
set, it is added to the window. Simultaneously 
The MC of the rule which misclassified it is 
increased by one.  When the window becomes 
full next iteration of genetic algorithm is called 
again and new rules are generated.  For each rule 
i in the old rule set, the percent of misclassified 
record count (PMCi) is calculated using equation 
8. The old rules whose PMC is greater than 
certain threshold are removed from the memory 
and replaced by the new rules. Next the CC and 
MC values of all the rules in the memory are 
again set to zero.  The process is repeated until 
when there is no more examples.   
 
PMCi = MCi / (CCi + MCi)*100      (8) 

 
With the help of the above process, 

iteration step of the genetic algorithm is applied 
only when required.  Testing of the accuracy of 
the generated rules is also performed 
simultaneously. This will ensures that only 
accurate rules will be generated and retained.  
Unnecessary application of the genetic algorithm 
step is also avoided.  This will reduce 
computational overhead significantly.   
 
2.1 The New IGA  
1. [Initialization] Add the example records one 
by one to the Window of size i. 
 
2. If window is full, apply the GA to the records 
in the window and generate new rules. Save the 
new rules in the memory. 
 
3. Empty the window and create two counters 
MC and CC for each rule and initialize them to 
zero. 
 
4. Read the next record in the incoming data set 
if it is classified correctly by some rule say j then 
increase the CC count of j by one and drop the 
record  
 
5. Else if it is misclassified by some rule say m 
then increase the MC count of m by one and add 
the record to the window or else if the record 
belongs to a new class add it to the window 
 
6. If the window is not full repeat the steps from 
4 again 
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7. If the window is full Apply GA [Section 2.7] 
for the records in the window and generate new 
rules  
 
8. Calculate the percentage of misclassified 
record count for the rules in the memory 
[Equation 4]. 
 
9. Remove the rules whose PMC is above the 
threshold from the memory and Add the new 
rules to the memory 
 
10. Repeat again from step 2 if end condition is 
not reached. 
 
 3 . EXPERIMENTAL STUDY 
 

The experiments were performed using 
the zoo data set downloaded from the University 
of California at Irvine-Machine Learning 
Repository (UCI) (15).  The Zoo data set 
contains 101 training instances. There are 18 
attributes and samples in the zoo data set belong 
to any one of the seven different classes. Out of 
the 18 attributes, one attribute indicates the name 
of the animal, two are numeric and the remaining 
are Boolean variables.  
 

In the IGA simulations, the dataset was 
partitioned into four blocks of equal size. The 
population size was specified as 20 
chromosomes and the fitness function parameters 
were specified as A=1 and B=1, respectively.  
Table 5 describes number of records of each 
class in all the four blocks.  When IGA is applied 
the results are in par with results proposed by 
Huai li et al[1] and the results are tabulated in 
table 6.  Next the proposed New IGA algorithm 
was applied and the results are tabulated in table 
7.  During the experiment study the size of the 
window is kept equivalent to the size of a block.     
So for the initialization phase the first block is 
used. The first block contains examples for 
classes 1, 2, 4, and 7 so the rules mined are for 
class 1, 2, 4 and 7 with an average 98% accuracy 
and requires 65 generations. Next in the update 
phase remaining records are read one by one, 
correctly classified record of classes 1, 2, 4 and 7 
are dropped. Only misclassified records and 
records of new classes are added to the window. 
Even after reading all the examples the window 
is not full.   Since there is no more records 
genetic algorithm is called again. New rules for 

the classes 3, 5 and 6 are generated in the second 
iteration. The average accuracy of all the rules 
after second iteration is 98%.  Note here the 
genetic algorithm is applied only twice compared 
to four times in IGA. The average number of 
generations in the proposed method is also 
reduced considerably compared to IGA.  Thus, 
this proves that learning cost is considerably less 
for the proposed method compared with the IGA. 

 
Table 5 The Number of Training Examples of 
the given classes in each block 

Class 
label 
 

  
Block1 

 
Block2 

 
Block3  

 
Block4 

 
Total 

1 
2 
3 
4 
5 
6 
7 

11 
  5  
  0   
  5  
  0   
  0   
  4 

12   
  4   
  0   
  2 
  2 
  5 
  1 

12  
  5   
  1   
  3    
  1   
  1  
  2 

5   
6    
4   
3  
1  
2  
4 

40 
20 
  5 
13 
  4 
  8 
11 

Table 6 Results obtained when classifying Zoo 
using IGA 
Simulation 
step 

Evaluation 
generation 

Accuracy 

1 
2 
3 
4 

65 
54 
35 
25 

99% 
92% 
100% 
100% 

 
Table 7 Results obtained when classifying Zoo 
using proposed New IGA 
Simulation 
step 

Evaluation 
generation 

Accuracy 
 

1 
2 

65 
63 

99% 
98% 

 
4. CONCLUSION: 
 

Incremental genetic algorithm is used to 
build accurate classification model when the 
example data is affected by concept drift. Two 
problems in the IGA methods are identified. 
First, incrementally applying genetic algorithm 
without monitoring concept drift will increase 
the learning cost. Next, if the data distribution 
changes, IGA may also forget some of the rules, 
if the data of that rules does not reappear. A new 
Incremental genetic algorithm is proposed to 
rectify the above two problems. With a sample 
data set, it has also been proved that the 
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proposed method reduces the learning cost 
significantly when the data distribution is not 
uniform. In future studies, the effect of noise will 
be thoroughly investigated and the proposed 
algorithm will be modified accordingly to handle 
the effect of noise. The proposed method will 
also be rigorously tested with real data sets with 
concept drift to ascertain its efficiency.  
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