
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

36

A NEW INCREMENTAL GENETIC ALGORITHM BASED
CLASSIFICATION MODEL TO MINE DATA WITH CONCEPT

DRIFT
1P.VIVEKANANDAN , 2 DR. R. NEDUNCHEZHIAN,

1Department of Computer Science and Engineering

Park College of Engineering and Technology
Coimbatore, India

2Department of Computer Science and Engineering
KalaignarKarunanidhi Institute of Technology

Coimbatore, India

ABSTRACT

In a database the data concepts changes over time and this is called concept drift. Genetic algorithm is
widely used for mining classification rules. If the data set is of three or four years old, the mined rules may
not reflect the current concept due to concept drift. Applying the incremental genetic (IGA) algorithm in a
batch mode can mine accurate rules reflecting the current concept. But applying genetic algorithm without
monitoring for a change in an incremental manner repeatedly on arriving data will result in an unnecessary
increase in the learning cost. There is also another problem, Due to change in the data distribution some of
the rules which are generated may be lost when we apply genetic algorithm in an incremental fashion. In
this paper a new incremental genetic algorithm is proposed to rectify the above problems. The New IGA
applies the Genetic algorithm iteration step only when required, so that learning cost may be reduced. The
new method also keeps track of the rules which are generated earlier and which would have been lost due
to change in data distribution. In the proposed method each record of the incoming dataset is monitored. If
they are correctly classified they are dropped and misclassified records are added to a window. When the
window is full, the genetic algorithm is applied to the records in the window and new rules are generated
based only on the misclassified examples and on the examples of new classes. The invalid rules are
replaced with the newly generated valid rules. The new method ensures that the next iteration of genetic
algorithm is called only when there is a concept drift or when there is a change in the data distribution and
sufficient number of records is available. This will reduce the learning cost particularly when there is no
concept drift or when there is a slow drift and also ensures that no rule is lost due to change in data
distribution.

Key words: Classification, Incremental Genetic Algorithm, Concept Drif

1. INTRODUCTION:

Genetic Algorithm (GA) is a stochastic
search method which has been inspired by the
data mining community. It is widely used in
discovering classification rules [2, 3, 4, 5, and 6].
The rules that GA finds are more general
because of its global nature. GA shows great
promise in complex domains because it operates
in an iterative improvement fashion where search
is probabilistically concentrated towards
regions of the model representation space that
have been found to produce a good classification
behavior.

Today’s data like stock market,

customer buying are liable to concept drift. The
target concept changes due to changes in the
under lying context [7]. This phenomenon is
called concept drift. Due to this the classification
models built using genetic algorithm on three to
four years data will not reflect the current
concept. Incremental genetic algorithm (IGA) is
proposed by Huai li et al [1] to rectify this
problem. Incremental genetic algorithm will
produce accurate rules reflecting the latest
concept but with a considerable learning cost
overhead because it applies IGA in a repeated
manner without analyzing the nature of the
concept drift. When we look into the real world

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

37

data, all the rules will not change from valid to
invalid due to the concept drift and also even
there may not be any concept drift at all. The
concept drift can also occur at any time and it
may be a slow or a fast drift. So Executing
genetic algorithm [1] for each batch in an
incremental fashion without analyzing the data
for concept drift is an unnecessary act
particularly when there is no concept drift. The
new method proposed in this paper ensures that
incremental genetic algorithm is applied only
when there is a need. This will prevent
unnecessary call to genetic algorithm particularly
when there is no concept drift.

The paper is organized as follows, section
1 describes about previous work, section 2
describes the proposed method, Section 3
describes the experimental results and section 4
concludes the paper.
1. Previous work

Traditional classification methods like
C4.5 are designed to deal with static data [14].
Subsequently many new non GA based methods
have been proposed to deal with concept drifts
[9, 10, 11, 12, and 13]. An incremental GA was
proposed by Gaun et al [8] which updates the
rules based on the new data. Due to the arrival of
new data or new attribute or class, the
classification model may change. So to deal with
this the author proposes an incremental based
GA. As discussed earlier Huai li et al [1]
proposes a memory based incremental genetic
algorithm to deal with the concept drift. They
make an assumption that the new training data
pass through a fixed-size window at a steady
rate. When the window is full, genetic algorithm
is applied to determine the set of classification
rules. Old instance of the window are replaced
with the arriving new training samples. Once all
the original samples have been replaced by new
samples, the GA is called to determine the new
set of best classification rules. This procedure is
repeated sequentially as long as learning is
required. Their GA utilizes a memory-based
random immigrant module, in which the initial
population pool of the GA applied at each stage
of the incremental learning process comprises a
mix of best solutions obtained in the previous
stage and an appropriate number of random
immigrants. Their results demonstrate that IGA
achieves a comparable classification

performance to that obtained using existing
incremental and non-incremental methods.

 In practical data sets, concept drift may
or may not be present. If present, it may occur at
any time (i.e.) it may appear in the second
window or at the last window. All the records
will not be changed due to concept drift and so
all the rules will not go invalid. The concept drift
may be very slow and requires certain time to
become effective. So repeatedly applying IGA
without monitoring the nature of concept drift
will increase the learning cost significantly.
There is also another important problem of lose
of some of the old rules in IGA which affects the
accuracy of the model. If the underlying data
distribution changes and if some of the data does
not reappear, we may also lose some of the rules
due to the incremental nature of genetic
algorithm.

For example, consider the data in the
given three consecutive blocks described in
Table 1, Table2 and Table 3 respectively.
Table 1 Example Block1 data

Table 2 Example Block2 data
RID Record Class

1
2
3
4
5
6
7

 8

a1 b3c3
a1 b1c1
a1b1c3
a3 b3c3
a1 b3c3
a1 b1c1
a3 b1c1
a1 b3c3

c2
 c1
 c1

c2
c2

 c3
c3

 c2

RID Record Class
1
2
3
4
5
6
7

 8

a1b1 c1
a1b1c2
a1b3c3
a3b3c3
a3b1c1
a3b2c1
a3b2c1
a1b1c1

c1
c1
c2
c2
c3
c3
c3
c1

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

38

Table 3 Example Block 3 data
RID Record Class
 1
 2
 3
 4
 5
 6
 7
 8

a1 b3c3
a2 b3c3
a3 b1c1
a2 b1c1
a3 b2c1
a1 b2c3
a2 b2c3
a1 b3c3

 c2
 c2
c3
c3
c3
c4
c4
c2

 IGA method is used to mine the

classification rules for the given three blocks of
data. Let the window size be ten so that each
block will fit to a window. According to IGA
method, a fixed sized window is made to slide
over the examples and the genetic algorithm is
called whenever the window is full. The rules
generated in one iteration forms the initial
population for the next iteration. So when the
IGA is applied for the above example there are
three iterations of genetic algorithm for the given
three blocks of data.

The rules mined during first iteration by using
first block are

a1b1→c1, b3c3→c2, b1c1→c3 (1)
Considering the next block of data and the rules
mined are

a1b1→c1, b3c3→c2, b1c1→c3 (2)

In the third iteration the rules mined are

b2c3→ c4, b3c3→c2, b1c1→c3 (3)
When examining the above three rule sets
(Equations 1, 2 and 3), three important
characteristics of the rules generated can be
identified. First, there is no difference between
the rules in the rule set one and rule set two. This
similarity is due to non existence of concept drift
in the second block. So applying genetic
algorithm during second iteration is an
unnecessary act because it has not changed the
rule set. Second, When Applying IGA to the
third block, only one rule has changed and there
is no change in the remaining rules when
compared to the rules in rule set two. There are
only two misclassified records in the third block
and remaining records are classified correctly by
the previous rule set. So we can notice that the
correctly classified examples does not change the
rule set significantly. Third, In the third iteration

rule set, rules of class c1 does not appear because
there is a change in data distribution when we
compare data in the second and the third block .
This proves that we may also lose some of the
rules due to change in the data distribution even
though there is no concept drift.

From the above discussion following

conclusions can be made

1. If there is no concept drift IGA need

not be applied.
2. Correctly classified records can be

dropped since they do not change the rule set
significantly,

3. Remembering all the rules from the
first iteration of IGA and replacing only the
invalid rules in the subsequent iterations will
prevent lose of rules due to change in the data
distribution .

The method proposed in this paper is
based on the above three points. It is not
necessary to apply the IGA repeatedly batch after
batch of samples. Instead it can be applied only
after detecting concept drift and also only to the
misclassified records. This will greatly reduce
the computational overhead particularly when
there is no concept drift or when there is a slow
drift.

The core genetic algorithm of the
method proposed in this paper is similar to the
method proposed by Huai li et al[1]. In Genetic
Algorithm the potential solutions are encoded as
chromosomes. This is called population. The
population is processed using heuristic search,
selection, crossover, mutation and evaluation
operation such that the best solution gradually
emerges. Section 1.1 describes the encoding
process and Section 1.7 describes the basic
architecture of the Genetic algorithm. Rest of the
sub sections describes each of the other
processes involved.

1.1Encoding

Let there be n input attributes and one
target attribute. The chromosome contains n+ 1
gene. Each gene in the chromosome represents
an input attribute and the last gene represents the
target attribute. Suppose if an attribute can take
m different values it is encoded by m+1 binary
bits ,m bits for each value of the attribute .and
one bit to indicate whether or not the attribute
forms part of classification rule or not. Each

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

39

chromosome represents a rule of classification. A
population is a set of chromosomes representing
the best solution at that instant. Initial
population is created randomly.

Consider a set of a training sample with
three attributes A1, A2, A3 and a target attribute
A4. They take 3,4,2,3 values respectively. Table
4 represents the chromosome coding and its
meaning. Since Flag bit of A2 is Zero, A2 does
not take part in the rule.
Table 4 Chromosome Coding

Attribute

 A1 A2 A3 A4

 Code 1001 00001 110 100

 Rule

IF A1= Value3 and A3= Value1
Then A4= Value1

 1.2 Heuristic search module

Two different heuristic search strategies
are applied after crossover. In the first strategy,
the value which appears most frequently for each
attribute is identified and replaced within each
chromosome by a randomly selected value. If the
value of the fitness function is improved, the
randomly selected value is accepted as the new
attribute value; else the original value is restored.
In the second search strategy, one attribute in the
chromosome string is chosen at random and its
first bit is inspected if it is “1” it is changed to
“0” so that it is discarded from the rule. The
fitness of the resulting chromosome is then re-
evaluated. If the fitness value is found to
improve, then the attribute is discarded from the
classification rule, else it is retained.

 1.3 Crossover

Two point crossover method is
employed. Two chromosomes are selected
randomly according to the crossover probability
for reproduction using roulette wheel selection
method [1]. Two cutting points are randomly
selected between the pair of chromosomes. The
bit string between cutting points are simply
exchanged between the two chromosomes.

1.4 Mutation

A single chromosome within the
population is chosen in random and a bit within
the population is also chosen at random and its

value is flipped. The mutation probability is
dynamic and depends upon the average fitness
value of the chromosomes according to the
equation 4. It is initialized to 0.5 before the
first generation begins.

Mut-rate=1-avgfit/2 (4)

1.5 Selection

Best n elite chromosomes are chosen
from both the parent and child for the next
generation population pool. Remaining
chromosomes are chosen from the child
population to form the initial population pool for
the next generation. The GA process is continued
and stopped such that there is no significant
increase in the fitness function for say some m
generations. It can also be stopped after specific
number of generation has been elapsed.

1.6. Fitness Function calculation

 The quality of each of the
chromosomes within the population is evaluated
using the fitness function represented by
Equation (7); this fitness function comprises two
components, namely a sensitivity term (see
Equation(5)) and a specificity term (see Equation
(6)).

Sensitivity=tp/tp+fn (5)
Specificity=tn/tn+fp (6)
Fintness=tp/(tp+A.fn) * tn/(tn+B.fp) (7)

0.2<A<2 1<B<20
In the equation tp denotes true positive,

fp denotes false positive, tn denotes true
negative, and fn denotes false negative . A and B
are user-defined parameters which determine the
rate of convergence of the solution procedure
and are determined experimentally in accordance
with the requirements

If the rules are of form X → Y Then

1. True positive (tp): the actual class is Y and
the predicted class is also Y.
2. False positive (fp): the actual class is Y, but
the predicted class is not Y.
3. True negative (tn): the actual class is not Y
and the predicted class is also not Y.
4. False negative (fn): the actual class is not Y,
but
The predicted class is Y.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

40

1.7 Genetic Algorithm
1. [Start] Generate random population of n
chromosomes (Section 1.1)

2. [Fitness] Evaluate the fitness of each
chromosome in the population (section 1.6).
3. [New population] Create a new population by
repeating following steps until the new
population is complete

1. [Selection] Select two parent
chromosomes from a population
according to their fitness (section1.3).
2. [Crossover] With a crossover
probability cross over the parents to
form new offspring (section 1.3).
3. [Heuristic Function] Apply the
heuristic Function to the new
Chromosomes (Section 1.2)
4. [Mutation] With a mutation
probability mutate the new offspring
(Section 1.4).

4. [Accepting] Select new population for a
further run of the algorithm (Section 1.5).
5. [Test] If the end condition (section 1.5) is
satisfied, stop, and return the current population
as best solution, otherwise go to step 2.

2. PROPOSED METHOD

 Two phases are there in the proposed
method. First is the initialization phase A
window Wi of size i is considered. The size of
the window is fixed based on the number of
samples required to mine accurate rules. The
records from the incoming data set are copied
one by one to the window. When the window
is full the genetic algorithm is applied and the
rules are mined.

Definition 1 (Misclassified Records). A Record
is called as a misclassified record if 1) it is
assigned a wrong class label by a rule or 2) it has
no matching rule.

Second phase is the update phase. In
this phase two counts called misclassified record
count (MCi) and correctly classified record count
(CCi) are maintained for each rule i. Both the
counts are initialized to zero. Remaining
Records are read one by one from the arriving
data set and they are matched with the rules in
the rule set. If a record is classified correctly by
a rule in the rule set it is dropped and the

corresponding rules CC is increased by one. If a
record is misclassified (Definition 1) by the rule
set, it is added to the window. Simultaneously
The MC of the rule which misclassified it is
increased by one. When the window becomes
full next iteration of genetic algorithm is called
again and new rules are generated. For each rule
i in the old rule set, the percent of misclassified
record count (PMCi) is calculated using equation
8. The old rules whose PMC is greater than
certain threshold are removed from the memory
and replaced by the new rules. Next the CC and
MC values of all the rules in the memory are
again set to zero. The process is repeated until
when there is no more examples.

PMCi = MCi / (CCi + MCi)*100 (8)

With the help of the above process,

iteration step of the genetic algorithm is applied
only when required. Testing of the accuracy of
the generated rules is also performed
simultaneously. This will ensures that only
accurate rules will be generated and retained.
Unnecessary application of the genetic algorithm
step is also avoided. This will reduce
computational overhead significantly.

2.1 The New IGA
1. [Initialization] Add the example records one
by one to the Window of size i.

2. If window is full, apply the GA to the records
in the window and generate new rules. Save the
new rules in the memory.

3. Empty the window and create two counters
MC and CC for each rule and initialize them to
zero.

4. Read the next record in the incoming data set
if it is classified correctly by some rule say j then
increase the CC count of j by one and drop the
record

5. Else if it is misclassified by some rule say m
then increase the MC count of m by one and add
the record to the window or else if the record
belongs to a new class add it to the window

6. If the window is not full repeat the steps from
4 again

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

41

7. If the window is full Apply GA [Section 2.7]
for the records in the window and generate new
rules

8. Calculate the percentage of misclassified
record count for the rules in the memory
[Equation 4].

9. Remove the rules whose PMC is above the
threshold from the memory and Add the new
rules to the memory

10. Repeat again from step 2 if end condition is
not reached.

 3 . EXPERIMENTAL STUDY

The experiments were performed using
the zoo data set downloaded from the University
of California at Irvine-Machine Learning
Repository (UCI) (15). The Zoo data set
contains 101 training instances. There are 18
attributes and samples in the zoo data set belong
to any one of the seven different classes. Out of
the 18 attributes, one attribute indicates the name
of the animal, two are numeric and the remaining
are Boolean variables.

In the IGA simulations, the dataset was
partitioned into four blocks of equal size. The
population size was specified as 20
chromosomes and the fitness function parameters
were specified as A=1 and B=1, respectively.
Table 5 describes number of records of each
class in all the four blocks. When IGA is applied
the results are in par with results proposed by
Huai li et al[1] and the results are tabulated in
table 6. Next the proposed New IGA algorithm
was applied and the results are tabulated in table
7. During the experiment study the size of the
window is kept equivalent to the size of a block.
So for the initialization phase the first block is
used. The first block contains examples for
classes 1, 2, 4, and 7 so the rules mined are for
class 1, 2, 4 and 7 with an average 98% accuracy
and requires 65 generations. Next in the update
phase remaining records are read one by one,
correctly classified record of classes 1, 2, 4 and 7
are dropped. Only misclassified records and
records of new classes are added to the window.
Even after reading all the examples the window
is not full. Since there is no more records
genetic algorithm is called again. New rules for

the classes 3, 5 and 6 are generated in the second
iteration. The average accuracy of all the rules
after second iteration is 98%. Note here the
genetic algorithm is applied only twice compared
to four times in IGA. The average number of
generations in the proposed method is also
reduced considerably compared to IGA. Thus,
this proves that learning cost is considerably less
for the proposed method compared with the IGA.

Table 5 The Number of Training Examples of
the given classes in each block

Class
label

Block1

Block2

Block3

Block4

Total

1
2
3
4
5
6
7

11
 5
 0
 5
 0
 0
 4

12
 4
 0
 2
 2
 5
 1

12
 5
 1
 3
 1
 1
 2

5
6
4
3
1
2
4

40
20
 5
13
 4
 8
11

Table 6 Results obtained when classifying Zoo
using IGA
Simulation
step

Evaluation
generation

Accuracy

1
2
3
4

65
54
35
25

99%
92%
100%
100%

Table 7 Results obtained when classifying Zoo
using proposed New IGA
Simulation
step

Evaluation
generation

Accuracy

1
2

65
63

99%
98%

4. CONCLUSION:

Incremental genetic algorithm is used to
build accurate classification model when the
example data is affected by concept drift. Two
problems in the IGA methods are identified.
First, incrementally applying genetic algorithm
without monitoring concept drift will increase
the learning cost. Next, if the data distribution
changes, IGA may also forget some of the rules,
if the data of that rules does not reappear. A new
Incremental genetic algorithm is proposed to
rectify the above two problems. With a sample
data set, it has also been proved that the

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

42

proposed method reduces the learning cost
significantly when the data distribution is not
uniform. In future studies, the effect of noise will
be thoroughly investigated and the proposed
algorithm will be modified accordingly to handle
the effect of noise. The proposed method will
also be rigorously tested with real data sets with
concept drift to ascertain its efficiency.

REFERENCES:

[1]. I-hui li, I-en liao and Wei-zhi pang,
“Mining classification rules in the
presence of Concept drift with an
incremental genetic Algorithm “,
journal of theoretical and applied
information technology, 2008.

[2]. K.A. De Jong., W.M. Spears and D.F.

Gordon, “Using genetic algorithms for
concept learning”, Machine Learning
volume 13, page(s) 161-188, 1993.

[3]. C.Z. Janikow, “A knowledge-intensive

genetic algorithm for supervised
learning”, Machine Learning volume
13, page(s) 189-228, 1993.

[4]. D.P.Greene and S.F.Smith,

“Competition-based induction of
decision models from examples”,
Machine Learning volume 13, page(s)
229-257, 1993.

[5]. K.A. De Jong and W.M. Spears, “Using

genetic algorithm for supervised
concept learning”, Proceedings of the
2nd International IEEE Conference on
Tools for Artificial Intelligence, 1990.

[6]. E. Noda, A.A. Freitas and H.S. Lopes,

“Discovering interesting prediction rule
with a genetic algorithm “, Proceedings
of the 1999 Congress on Evolutionary
Computation, Volume 2, 1999

[7]. G. Widmer and M. Kubat, “Learning in

the presence of concept drift and hidden
contexts,” Machine Learning, volume
23, no.1, page(s) 69–101, 1996.

[8]. S.U. Guan and F.ZhuCollard, “An
incremental approach to genetic-
algorithms based classification.
Systems”, Man and Cybernetics, Part
B, IEEE Transactions, volume 35, no. 2,
page(s) 227 – 239, 2005.

[9]. Jing Gao, Bolin Ding, Wei Fan, Jiawei

Han,Philip S.Yu, “Classifying Data
Streams with Skewed Class
Distributions and Concept Drifts”, IEEE
Internet Computing, Special Issue on
Data Stream
Management(IEEEIC),Nov/Dec. 2008,
page(s)37-49, 2008.

[10]. A. Tsymbal, “The problem of
concept drift: definitions and related
work,” Department of Computer
Science, Trinity College Dublin, Tech.
Rep. TCD-CS-2004-15, 2004.

[11]. H. Wang, W. Fan, P. S. Yu,
and J. Han, “Mining concept-drifting
data streams using ensemble
classifiers,” Proceedings of the 9th
ACM SIGKDD International
Conference on Knowledge Discovery
and Data Mining, page(s). 226–235,
2003.

[12]. G. Hulten, L. Spencer, and P.

Domingos, “Mining time-changing data
streams”, Proceedings of 7th ACM
SIGKDD International Conference on
Knowledge and Data Mining, page(s)
97-106, 2001.

[13]. Mihai Lazarescu, Svetha

Venkatesh and Hai Hung Bui (2004)
“Using Multiple Windows to Track
Concept Drift “, Intelligent Data
Analysis Journal, Volume 8 (1), 2004.

[14]. Quinlan, J. R. “C4.5: program

for machine learning”, Morgan
Kaufmann. 1992

[15]. http://www.ics.uci.edu/~mlearn

/ MLRepository.html

