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ABSTRACT 
 

Clustering is a process of discovering groups of objects such that the objects of the same group are similar, and objects 
belonging to different groups are dissimilar. A number of clustering algorithms exist that can solve the problem of 
clustering, but most of them are very sensitive to their input parameters. Minimum Spanning Tree clustering algorithm 
is capable of detecting clusters with irregular boundaries. Detecting outlier in database (as unusual objects) is a big 
desire. In data mining detection of anomalous pattern in data is more interesting than detecting inliers. In this paper we 
propose a Minimum Spanning Tree based clustering algorithm for noise-free or pure clusters. The algorithm constructs 
hierarchy from top to bottom. At each hierarchical level, it optimizes the number of cluster, from which the proper 
hierarchical structure of underlying dataset can be found. The algorithm uses a new cluster validation criterion based on 
the geometric property of data partition of the data set in order to find the proper number of clusters at each level. The 
algorithm works in two phases. The first phase of the algorithm produces subtrees(noise-free clusters). The second 
phase converts the subtrees into dendrogram. The key feature of our algorithm is it finds noise-free/error-free clusters 
for a given dataset without using any input parameters. The key feature of the algorithm is it uses both divisive and 
agglomerative approaches to find optimal Dual similarity noise-free clusters.    
 
Key Words: Center, Clustering, Cluster validity, Cluster Separation Dendrogram, Euclidean minimum spanning tree, 

Eccentricity, Hierarchical clustering, Outliers, Subtree,  
 

 
1.  INTRODUCTION 
 
An outlier is an observation of data that deviates 
from other observations so much that it arouses 
suspicious that was generated by a different 
mechanism from the most part of data [14]. 
Inlier, on the other hand, is defined as 
observation that is explained by underlying 
probability density function. In clustering, 
outliers are considered as noise observations that 
should be removed in order to make more 
reasonable clustering [15] Outlier may be 
erroneous or real in the following sense. Real 
outliers are observations whose actual values are 
very different than those observed for rest of the 
data and violate plausible  
 
relationship among variables. Outliers can often 
be individual or groups of clients exhibiting 
behavior outside the range of what is considered 
normal. Outliers can be removed or considered 
separately in regression modeling to improve 
accuracy which can be considered as benefit of 
outliers. Identifying them prior to modeling and 
analysis is important [47]. In clustering–based 
methods, outlier is  

 
 
 
defined as observation that does not fit to the 
overall clustering pattern [52]   
 
The importance of outlier detection is due to the 
fact that outliers in the data translate to 
significant (and often critical) information in a 
wide variety of application domains. For 
example, an anomalous traffic pattern in a 
computer network could mean that a hacked 
computer is sending out sensitive data to an 
unauthorized destination. In public health data, 
outlier detection techniques are widely used to 
detect anomalous pattern in patient medical 
records which could be symptoms of new 
diseases. Similarly, outliers in credit card 
transaction data could indicate credit card theft 
or misuse. Outliers can also translate to critical 
entities such as in military surveillance, whereas 
the presence of unusual region in a satellite 
image of enemy are could indicate enemy troop 
movement. Or anomalous readings from space 
craft would signify a fault in some of the craft. 
Outlier detection has been found to be directly 
applicable in large number of domains.  
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Many data-mining algorithms find outliers as a 
side-product of clustering algorithms. However 
these techniques define outlier as points, which 
do not lie in clusters. Thus, the techniques 
implicitly define outliers as the background noise 
in which the clusters are embedded. Another 
class of techniques defines outlier as points, 
which are neither a part of a cluster nor part of 
background noise; rather they are specifically 
points which behave very differently from the 
norm [1]. 
 
The outlier detection problem in some cases is 
similar to the classification problem. Clustering 
is a popular technique used to group similar data 
points or objects in groups or clusters [4]. 
Clustering is an important tool for outlier 
analysis. Several clustering–based outlier 
deduction techniques have been developed. Most 
of these techniques rely on the key assumption 
that normal objects belong to large and dense 
clusters, while outliers form very small clusters 
[32, 34]. The main concern of clustering–based   
outlier detection algorithms is to find clusters 
and outliers, which are often regarded as noise 
that should be removed in order to make more 
reliable clustering [19]. Some noisy points may 
be far away from the data points, whereas the 
others may be close. The far away noisy points 
would affect the result more significantly 
because they are more different from the data 
points. It is desirable to identify and remove the 
outliers, which are far away from all the other 
points in cluster [26]. So, to improve the 
clustering such algorithm use the same process 
and functionality to solve both clustering and 
outlier discovery [9].  
 
The problem of determining the correct number 
of clusters in a data set is perhaps the most 
difficult and ambiguous part of cluster analysis. 
The “true” number of clusters depends on the 
“level” on is viewing the data. Another problem 
is due to the methods that may yield the 
“correct” number of clusters for a “bad” 
classification [9]. Furthermore, it has been 
emphasized that mechanical methods for 
determining the optimal number of clusters 
should not ignore that the fact that the overall 
clustering process has an unsupervised nature 
and its fundamental objective is to uncover the 
unknown structure of a data set, not to impose 
one. For these reasons, one should  
be well aware about the explicit and implicit 
assumptions underlying the actual clustering 
procedure before the number of clusters can be 

reliably estimated or, otherwise the initial 
objective of the process may be lost. As a 
solution for this, Hardy [20] recommends that 
the determination of optimal number of clusters 
should be made by using several different 
clustering methods that together produce more 
information about the data. By forcing a 
structure to a data set, the important and 
surprising facts about the data will likely remain 
uncovered.    
 
In some applications the number of clusters is 
not a problem, because it is predetermined by the 
context [21]. Then the goal is to obtain a 
mechanical partition for a particular data using a 
fixed number of clusters. Such a process is not 
intended for inspecting new and unexpected facts 
arising from the data. Hence, splitting up a 
homogeneous data set in a “fair” way is much 
more straightforward problem when compared to 
the analysis of hidden structures from 
heterogeneous data set. The clustering 
algorithms [27, 35] partitioning the data set in to 
k clusters without knowing the homogeneity of 
groups. Hence the principal goal of these 
clustering problems is not to uncover novel or 
interesting facts about data. 
 
Given a connected, undirected graph G = ( V, E ) 
, where V is the set of nodes, E is the set of edges 
between pairs of nodes, and a weight w (u , v) 
specifying weight of the edge (u, v) for each 
edge (u, v) ∈ E. A spanning tree is an acyclic 
subgraph of a graph G, which contains all 
vertices from G. The Minimum Spanning Tree 
(MST) of a weighted graph is minimum weight 
spanning tree of that graph. Several well 
established MST algorithms exist to solve 
minimum spanning tree problem [39, 31, 33]. 
The cost of constructing a minimum spanning 
tree is O (m log n), where m is the number of 
edges in the graph and n is the number of 
vertices. More efficient algorithm for 
constructing MSTs have also been extensively 
researched [30, 11, 24]. These algorithms 
promise close to linear time complexity under 
different assumptions. A Euclidean minimum 
spanning tree (EMST) is a spanning tree of a set 
of n points in a metric space (En), where the 
length of an edge is the Euclidean distance 
between a pair of points in the point set. 
 
The hierarchical clustering approaches are 
related to graph theoretic clustering. Clustering 
algorithms using minimal spanning tree takes the 
advantage of MST. The MST ignores many 
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possible connections between the data patterns, 
so the cost of clustering can be decreased. The 
MST based clustering algorithm is known to be 
capable of detecting clusters with various shapes 
and size [50]. Unlike traditional clustering 
algorithms, the MST clustering algorithm does 
not assume a spherical shapes structure of the 
underlying data. The EMST clustering algorithm 
[38, 39] uses the Euclidean minimum spanning 
tree of a graph to produce the structure of point 
clusters in the n-dimensional Euclidean space. 
Clusters are detected to achieve some measures 
of optimality, such as minimum intra-cluster 
distance or maximum inter-cluster distance [5]. 
The EMST algorithm has been widely used in 
practice.  
 
Clustering by minimal spanning tree can be 
viewed as a hierarchical clustering algorithm 
which follows a divisive approach. Using this 
method firstly MST is constructed for a given 
input. There are different methods to produce 
group of clusters.  If the number of clusters k is 
given in advance, the simplest way to obtain k 
clusters is to sort the edges of minimum 
spanning tree in descending order of their 
weights and remove edges with first k-1 heaviest 
weights [5, 48].  
 
Geometric notion of centrality are closely linked 
to facility location problem. The distance matrix 
D can computed rather efficiently using 
Dijkstra’s algorithm with time complexity O( | 
V| 2 ln | V | ) [44]. 

The eccentricity of a vertex x in G and 
radius ρ (G), respectively are defined as 
e(x) = max d(x , y)    and      ρ(G)  = min 
e(x) 
               y∈V                                      x∈V 
The center of G is the set  
        C (G) = {x ∈V | e(x) = ρ (G)} 
 
C (G) is the center to the “emergency facility 
location problem” which is always contain 
single block of G. The length of the longest 
path in the graph is called diameter of the 
graph G. we can define diameter D (G) as 
                     D (G) = max e(x) 
                                    x∈V 
 
The diameter set of G is 
            Dia (G) = {x∈V | e(x) = D (G)} 

 
All existing clustering Algorithm require a 
number of parameters as their inputs and these 

parameters can significantly affect the cluster 
quality. Our algorithm does not require a 
predefined cluster number. In this paper we want 
to avoid experimental methods and advocate the 
idea of need-specific as opposed to care-specific 
because users always know the needs of their 
applications. We believe it is a good idea to 
allow users to define their desired similarity 
within a cluster and allow them to have some 
flexibility to adjust the similarity if the 
adjustment is needed. Our Algorithm produces 
clusters of n-dimensional points with a naturally 
approximate intra-cluster distance. 
 
Hierarchical clustering is a sequence of partitions 
in which each partition is nested into the next in 
sequence. An Agglomerative algorithm for 
hierarchical clustering starts with disjoint 
clustering, which places each of the n objects in 
an individual cluster [4]. The hierarchical 
clustering algorithm being employed dictates 
how the proximity matrix or proximity graph 
should be interpreted to merge two or more of 
these trivial clusters, thus nesting the trivial 
clusters into second partition. The process is 
repeated to form a sequence of nested clustering 
in which the number of clusters decreases as a 
sequence progress until single cluster containing 
all n objects, called the conjoint clustering, 
remains[4].  
 
Nearly all hierarchical clustering techniques that 
include the tree structure have two short 
comings: (1) they do not properly represent 
hierarchical relationship and (2) once the data are 
assigned improperly to a given cluster it cannot 
later reevaluate and placed in another cluster. 
 
In this paper, we propose a new algorithm 
Dynamically Growing Euclidean Minimum 
Spanning Tree Algorithm for Noise-free Clusters 
(DGEMSTANFC) which can overcome these 
shortcomings. The DGEMSTANFC algorithm 
optimizes the number of clusters at each 
hierarchical level with the cluster validation 
criteria during the minimum spanning tree 
construction process. Then the hierarchy 
constructed by the algorithm can properly 
represent the hierarchical structure of the 
underlying dataset, which improves the accuracy 
of the final clustering result. 
 
Our DGEMSTANFC clustering algorithm 
addresses the issues of undesired clustering 
structure and unnecessary large number of 
clusters. Our algorithm does not require a 
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predefined cluster number. The algorithm 
constructs an EMST of a point set and removes 
the inconsistent edges that satisfy the 
inconsistence measure. The process is repeated 
to create a hierarchy of clusters until optimal 
numbers of noise-free clusters (regions) are 
obtained. Hence the title! In section 2 we review 
some of the existing works on outliers and graph 
based clustering algorithms. In Section 3 we 
propose DGEMSTANFC algorithm which 
produces optimal number of noise-free clusters 
with Dendrogram. Hence we named this new 
cluster as Optimal Dual similarity noise-free 
clusters. Finally in conclusion we summarize the 
strength of our methods and possible 
improvements.   
                                           
2.  RELATED WORK. 
   
There is no single universally applicable or 
generic outlier detection approach [32, 34]. 
Therefore there is many approaches have been 
proposed to deduct outliers. These approaches 
are classified into four major categories as 
distribution-based, distance-based, density-
based and clustering-based [51]. Here we 
discuss about density-based and clustering-based 
outlier detection approaches.   
 
In Density-based methods outlier is defined from 
local density of observation. These methods used 
different density estimation strategies. A low 
local density on the observation is an indication 
of a possible outlier. Brito et al [8] proposed a 
Mutual k-Nearest-Neighbor (MkNN) graph 
based approach. MkNN graph is a graph where 
an edge exits between vertices vi and vj if they 
both belong to each others k-neighborhood. 
MkNN graph is undirected and is special case of 
k-Nearest-Neighbor (kNN) graph, in which 
every node has pointers to its k nearest 
neighbors. Each connected component is 
considered as cluster, if it contains more than one 
vector and an outlier when connected component 
contains only one vector.   Connected component 
with just one vertex is defined as an outlier. The 
problem with this approach is that outlier too 
close to inliers, can be misclassified. Density-
based approaches [7, 36] compute the density of 
the regions in the data and declare the objects in 
low dense regions as outliers.  
 
Clustering-based approaches [32, 12, 22, 26], 
consider clusters of small sizes as outliers. In 
these approaches, small clusters (clusters 
containing significantly less points than other 

clusters) are considered as outliers. The 
advantage of clustering- based approaches is that 
they do not have to be supervised.  
 
Jiang et al., [26] proposed a two-phase method to 
detect outliers. In the first phase, clusters are 
produced using modified K-means algorithm, 
and then in the second phase, an Outlier-Finding 
Process (OFP) is proposed. The small clusters 
are selected and regarded as outliers. Small 
cluster is defined as a cluster with fewer points 
than half the average number of points in the k 
number of clusters. Loureio [32] proposed a 
method for detecting outlier. Hierarchical 
clustering technique is used for detecting 
outliers. The key idea is to use the size of the 
resulting clusters as indicators of the presence of 
outliers. Almedia [2] is also used similar 
approach for detecting outliers. Using the K-
means clustering algorithm Yoon [49] proposed 
a method to detect outliers.  
 
Clustering by minimal spanning tree can be 
viewed as a hierarchical clustering algorithm 
which follows the divisive approach. Clustering 
Algorithm based on minimum and maximum 
spanning tree were extensively studied. In the 
mid of 80’s, Avis [6] found an O (n2 log2 n) 
algorithm for the min-max diameter-2 clustering 
problem. Asano, Bhattacharya, Keil and Yao [5] 
later gave   optimal  O (n log n) algorithm using 
maximum spanning trees for minimizing the 
maximum diameter of a bipartition. The problem 
becomes NP-complete when the number of 
partitions is beyond two [29]. Asano, 
Bhattacharya, Keil and Yao also considered the 
clustering problem in which the goal to 
maximize the minimum inter-cluster distance. 
They gave a k-partition of point set removing the 
k-1 longest edges from the minimum spanning 
tree constructed from that point set [5]. The 
identification of inconsistent edges causes 
problem in the MST clustering algorithm. There 
exist numerous ways to divide clusters 
successively, but there is not a suitable choice for 
all cases.   
 
Zahn [50] proposes to construct MST of point 
set and delete inconsistent edges – the edges, 
whose weights are significantly larger than the 
average weight of the nearby edges in the tree. 
Zahn’s inconsistent measure is defined as 
follows. Let e denote an edge in the MST of the 
point set, v1 and v2 be the end nodes of e, w be 
the weight of e. A depth neighborhood N of an 
end node v of an edge e defined as a set of all 
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edges that belong to all the path of length d 
originating from v, excluding the path that 
include the edge e. Let N1 and N2 be the depth d 
neighborhood of the node v1 and v2. Let ŴN1 be 
the average weight of edges in N1 and σN1 be its 
standard deviation. Similarly, let ŴN2 be the 
average weight of edges in N2 and σN2 be its 
standard deviation. The inconsistency measure 
requires one of the three conditions hold:  
 
1. w > ŴN1 + c x σN1 or  w > ŴN2 + c x σN2 
   
2. w > max(ŴN1 + c x σN1 , ŴN2 + c x σN2) 
       
3.     w    > f 
        max (c x σN1 , c x σN2)  
 
where c and f are preset constants. All the edges 
of a tree that satisfy the inconsistency measure 
are considered inconsistent and are removed 
from the tree. This result in set of disjoint 
subtrees each represents a separate cluster. 
Paivinen [37] proposed a Scale Free Minimum 
Spanning Tree (SFMST) clustering algorithm 
which constructs scale free networks and outputs 
clusters containing highly connected vertices and 
those connected to them.  
 
The MST clustering algorithm has been widely 
used in practice. Xu (Ying), Olman and Xu 
(Dong) [48] use MST as multidimensional gene 
expression data. They point out that MST- based 
clustering algorithm does not assume that data 
points are grouped around centers or separated 
by regular geometric curve. Thus the shape of 
the cluster boundary has little impact on the 
performance of the algorithm. They described 
three objective functions and the corresponding 
cluster algorithm for computing k-partition of 
spanning tree for predefined k > 0. The algorithm 
simply removes k-1 longest edges so that the 
weight of the subtrees is minimized. The second 
objective function is defined to minimize the 
total distance between the center and each data 
point in the cluster. The algorithm removes first 
k-1 edges from the tree, which creates a k-
partitions.  
 
Hierarchical clustering algorithm proposed by 
S.C.Johnson [28] uses proximity matrix as input 
data. The algorithm is an agglomerative scheme 
that erases rows and columns in the proximity 
matrix as old clusters are merged into new ones. 
The algorithm is simplified by assuming no ties 
in the proximity matrix.  Graph based 
Hierarchical Algorithm was proposed by Hubert 

[23] using single link and complete link 
methods. He used threshold graph for formation 
of hierarchical clustering. An algorithm for 
single-link hierarchical clustering begins with the 
minimum spanning tree (MST) for G (∞), which 
is a proximity graph containing n(n-1)/2 edge 
was proposed by Gower and Ross [25]. Later 
Hansen and DeLattre [19] proposed another 
hierarchical algorithm from graph coloring.    
 
Many different methods for determining the 
number of clusters have been developed. 
Hierarchical clustering methods provide direct 
information about the number of clusters by 
clustering objects on a number of different 
hierarchical levels, which are then presented by a 
graphical tree structure known as dendrogram. 
One may apply some external criteria to validate 
the solutions on different levels or use the 
dendrogram visualization for determining the 
best cluster structure.   
 
The selection of the correct number of clusters is 
actually a kind of validation problem. A large 
number of clusters provides a more complex 
“model” where as a small number may 
approximate data too much. Hence, several 
methods and indices have been developed for the 
problem of cluster validation and selection of the 
number of clusters [42, 18, 41, 43, 45]. Many of 
them based on the within and between-group 
distance.  
 
3.  OUR CLUSTERING ALGORITHM 

 
A tree is a simple structure for representing 
binary relationship, and any connected 
components of tree is called subtree. Through 
this MST representation, we can convert a multi-
dimensional clustering problem to a tree 
partitioning problem, ie., finding particular set of 
tree edges and then cutting them. Representing a 
set of multi-dimensional data points as simple 
tree structure will clearly lose some of the inter 
data relationship. However many clustering 
algorithm proved that no essential information is 
lost for the purpose of clustering.  This is 
achieved through rigorous proof that each cluster 
corresponds to one subtree, which does not 
overlap the representing subtree of any other 
cluster. Clustering problem is equivalent to a 
problem of identifying these subtrees through 
solving a tree partitioning problem. The inherent 
cluster structure of a point set in a metric space is 
closely related to how objects or concepts are 
embedded in the point set. In practice, the 
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approximate number of embedded objects can 
sometimes be acquired with the help of domain 
experts. Other times this information is hidden 
and unavailable to the clustering algorithm. In 
this section we preset DGEMSTANFC 
clustering algorithm which produce optimal 
number of clusters, with dendrogram for each of 
them.   

 
A. DGEMSTANFC Clustering Algorithm 

 
Given a point set S in En, the hierarchical 
method starts by constructing a Minimum 
Spanning Tree (MST) from the points in S. The 
weight of the edge in the tree is Euclidean 
distance between the two end points. So we 
named this MST as EMST1.  Next the average 
weight Ŵ of the edges in the entire EMST1 and 
its standard deviation σ are computed; any edge 
with W > Ŵ + σ or current longest edge is 
removed from the tree. This leads to a set of 
disjoint subtrees ST = {T1, T2 …} (divisive 
approach). Each of these subtrees Ti is treated as 
cluster. Oleksandr Grygorash et al proposed 
algorithm [35] which generates k clusters. Our 
previous algorithm [27] generates k clusters with 
centers, which used to produce Dual similarity 
clusters. Both of the minimum spanning tree 
based algorithms assumed the desired number of 
clusters in advance. In practice, determining the 
number of clusters is often coupled with 
discovering cluster structure. Hence we propose 
a new algorithm named, Dynamically Growing 
Euclidean Minimum Spanning Tree algorithm 
(DGEMSTANFC), which does not require a 
predefined cluster number. The algorithm works 
in two phases. The first phase of the algorithm 
partitioned the EMST1 into sub trees 
(clusters/regions). The centers of clusters or 
regions are identified using eccentricity of 
points. These points are a representative point for 
the each subtree ST. A point ci is assigned to a 
cluster i if ci  ∈ Ti.  The group of center points is 
represented as C = {c1, c2……ck}. These center 
points c1, c2 ….ck are connected and again 
minimum spanning tree EMST2 is constructed is 
shown in the Figure 4. This EMST2 is used for 
finding optimal number clusters. A Euclidean 
distance between pair of clusters can be 
represented by a corresponding weighted edge. 
Our algorithm is also based on the minimum 
spanning tree but not limited to two-dimensional 
points. There were two kinds of clustering 
problem; one that minimizes the maximum intra-
cluster distance and the other maximizes the 
minimum inter-cluster distances. Our Algorithm 

produces clusters with intra-cluster similarity. 
The Second phase of the algorithm converts the 
subtree/cluster into dendrogram (agglomerative 
approach). This algorithm use both divisive as 
well as agglomerative approach to find Dual 
similarity clusters.  Since the subtrees are 
themselves are clusters, are further, classified in 
order to get more informative similarity clusters. 
To detect the outliers from the clusters we use 
the degree number of points in the clusters. For 
any undirected graph G the degree of a vertex v, 
written as deg (v), is equal to the number of 
edges in G which contains v, that is, which are 
incident on v[13].  
 
We propose the following definition for outliers 
based on MST, 
   
Definition 1: Given a MST for a data set S, 
outlier is a vertex v, whose degree is equal to 1, 
with dist (v, Nearest-Neighbor (v)) > THR. 
 
where THR is a threshold value used as control 
parameter. The optimal number of subtrees 
(clusters) Ti, are created from the EMST1 using 
the first phase of the DGMSTANFC algorithm. 
Each Ti is treated as a MST. Then vertices v, 
which have degree 1 are identified. Then we find 
Nearest-Neighbors for the above vertices v. The 
distance between the vertices v and its nearest 
neighbor vertex is computed.  If the computed 
distance exceeds the threshold value THR then 
the corresponding vertices are identified as an 
outlier is shown in the Fig 2.  
 
Here, in this algorithm we use a cluster 
validation criterion based on the geometric 
characteristics of the clusters, in which only the 
inter-cluster metric is used. The DGMSTANFC 
algorithm is a nearest centroid-based clustering 
algorithm, which creates region or subtrees 
(clusters/regions) of the data space. The 
algorithm partitions a set S of data of data D in 
data space in to n regions (clusters). Each region 
is represented by a centroid reference vector. If 
we let p be the centroid representing a region 
(cluster), all data within the region (cluster) are 
closer to the centroid p of the region than to any 
other centroid q: 
 
    R (p) = {x ∈ D ⎪ dist(x, p) ≤ dist(x, q) ∀q}                
(1) 
 
Thus, the problem of finding the proper number 
of clusters of a dataset can be transformed into 
problem of finding the proper region (clusters) of 
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the dataset. Here, we use the MST as a criterion 
to test the inter-cluster property. Based on this 
observation, we use a cluster validation criterion, 
called Cluster Separation (CS) in DGMST 
algorithm [10]. 
 
Cluster separation (CS) is defined as the ratio 
between minimum and maximum edge of MST. 
ie 
 
                CS = Emin  / Emax ,                                        
(2) 
 
where Emax is the maximum length edge of MST, 
which represents two centroids that are at 
maximum separation, and Emin is the minimum 
length edge in the MST, which represents two 
centroids that are nearest to each other. Then, the 
CS represents the relative separation of 
centroids. The value of CS ranges from 0 to 1. A 
low value of CS means that the two centroids are 
too close to each other and the corresponding 
partition is not valid. A high CS value means the 
partitions of the data is even and valid. In 
practice, we predefine a threshold to test the CS.  
If the CS is greater than the threshold, the 
partition of the dataset is valid. Then again 
partitions the data set by creating subtree 
(cluster/region). This process continues until the 
CS is smaller than the threshold. At that point, 
the proper number of clusters will be the number 
of cluster minus one. The CS criterion finds the 
proper binary relationship among clusters in the 
data space. The value setting of the threshold for 
the CS will be practical and is dependent on the 
dataset. The higher the value of the threshold the 
smaller the number of clusters would be. 
Generally, the value of the threshold will be > 
0.8[10]. Figure 3 shows the CS value versus the 
number of clusters in hierarchical clustering. The 
CS value < 0.8 when the number of clusters is 5. 
Thus, the proper number of clusters for the data 
set is 4.  Furthermore, the computational cost of 
CS is much lighter because the number of 
subclusters is small. This makes the CS criterion 
practical for the DGEMSTANFC  algorithm 
when it is used for clustering large dataset.      
 
Algorithm: DGEMSTANFC ( ) 
 
Input      : S the point set, THR 
Output   : Optimal number of clusters with 
dendrograms               
 
Let e1 be an edge in the EMST1 constructed 
from S 

Let e2 be an edge in the EMST2 constructed 
from C 
Let We be the weight of e1 
Let σ be the standard deviation of the edge 
weights 
 in EMST1 
Let ST be the set of disjoint subtrees of the 
EMST1 
Let nc be the number of clusters  
 
 1.  Construct an EMST1 from S  
 2.  Compute the average weight of Ŵ of all the   
      Edges from EMST1 
 3.  Compute standard deviation σ of the edges 
 4.  ST = ø; nc = 1 
 5.  Repeat 
 6.    For each e1 ∈ EMST1 
 7.       If (We > Ŵ + σ) or (current longest edge 
e1) 
 8.          Remove e1 from EMST1 which result 
T’, a   
              is new disjoint subtree 
 9.          ST = ST U {T’} // T’ is new disjoint  
              subtree 
10.         nc = nc+1  
11.         C = UTi  ∈ ST {Ci} 
12.         Construct an EMST2 T from C 
13.         Emin = get-min-edge (T)  
14.         Emax = get-max-edge (T)  
15.         CS = Emin / Emax  
16.      For p = 1 to |Ti| do 
17.           If deg (vp) == 1 and dist (vp, Nearest- 
                       Neighbor (vp)) > THR then  
                           remove vp from Ti         
18.         Begin with T’, disjoint clusters with 
level     
              Lnc (0) = 0 and sequence number m = 0 
19.       While (T’ has some edge) 
20.             e2 = get-min-edge(T’) // for least  
                  dissimilar pair of clusters 
21.             (a, b) = get-vertices (e2)  
22.             Increment the  sequence number                       
                  m = m+1, merge the clusters (a) and 
(b),    
                  into single cluster to form next  
                  clustering m and  set the level of this  
                  cluster to Lnc(m) =  e2; 
23.             Update T’ by forming new vertex by  
                  combining the vertices a, b; 
24.  Until CS < 0.8     
25.  Return optimal noise-free clusters with 
dendrogram 
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Figure 1 shows a typical example of EMST1 
constructed from point set S, in which 
inconsistent edges are removed to create subtree 
(clusters/regions). Our algorithm finds the center 
of the each cluster, which will be useful in many 
applications. Figure 2 shows the possible 
distribution of the points in the two cluster 
structures with their center vertex as 5 and 3.  

 
  Figure 1. EMST1 - Clusters connected through a 
point  
 

 
 

 
 

          
 
 
 
 
 
                                                                                              
                                            
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. Two   Clusters/regions (MST) with 
center  points 5 and 3 (outliers 2 and 7)  
 

  Figure 3. Number of Clusters vs. Cluster Separation  
 

 
Figure 4. EMST2 From 4 region/cluster center points 
              
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
       
           
 
 
  Figure 5. Dendrogram for optimal noise-free clusters 
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   Our DGEMSTANFC algorithm works in two 
phases. The first phase of the algorithm (lines 1-
17) uses divisive approach of hierarchical 
clustering. Euclidean minimum spanning tree 
EMST1 is constructed in line 1. The average and 
standard deviation of the weighted edges of the 
Euclidean minimum spanning tree are computed 
to find inconsistent edges are specified in the 
lines 2-3. The inconsistent edges are identified 
and removed from Euclidean minimum spanning 
tree EMST1 in order to generate subtree T’ is 
specified in the lines 7-9. The center of each 
subtree is computed. Lines 13-15 in the 
algorithm are used find the value of cluster 
separation (CS). This value is useful to find 
optimal number of clusters. Outliers are 
identified and removed from clusters lines (16-
17). 
 
The second phase of the algorithm converts the 
subtrees T’ into dendrograms is shown in the 
figure 5 (only two dendrograms are shown). For 
the newly created subtree T’ again further 
hierarchical clustering is performed (lines 18-
23). It places the entire disjoint cluster at level 0 
(line 18). It then checks to see if T’ still contains 
some edge (line 19). If so, it finds minimum 
edge e2 (line 20). It then finds the vertices a, b of 
an edge e2 (line 21). It then merges the vertices 
and forms a new vertex (agglomerative 
approach). At the same time the sequence 
number is increased by one and the level of the 
new cluster is set to the edge weight (line 22). 
Finally, updation of Euclidean minimum 
spanning tree is performed at line 23. The lines 
19-23 in the algorithm are repeated until T’ has 
no edge to merge. Our algorithm uses both 
divisive as well as agglomerative approach in the 
DGEMSTANFC algorithm to find optimal Dual 
similarity noise-free clusters.  
            
4.  CONCLUSION 
 
Our DGEMSTANFC clustering algorithm does 
not assumes any predefined cluster number. The 
algorithm gradually finds clusters with center for 
each cluster. These clusters ensure guaranteed 
intra-cluster similarity. Our algorithm does not 
require the users to select and try various 
parameters combinations in order to get the 
desired output. Our DGEMSTANFC clustering 
algorithm uses a new cluster validation criterion 
based on the geometric property of partitioned 
regions/clusters to produce optimal number of 
“true” clusters with center for each of them. The 
inter-cluster distances between centers of 

clusters/regions are used to find optimal number 
of clusters. This could perhaps be accomplished 
by using some appropriate data structure. The 
DGEMSTANFC clustering algorithm generates 
dendrogram for optimal noise-free clusters, 
which is used to find the relationship between 
objects with in a cluster. All of these look nice 
from theoretical point of view. However from 
practical point of view, there is still some room 
for improvement for running time of the 
clustering algorithm. This could perhaps be 
accomplished  
 
by using some appropriate data structure. In the 
future we will explore and test our proposed 
clustering algorithm in various domains. The 
DGEMSTANFC algorithm uses both divisive as 
well agglomerative approaches. In this paper we 
used both the approaches to find optimal Dual 
similarity clusters. We will further study the rich 
properties of EMST-based clustering methods in 
solving different clustering problems.  
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