
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

52

A METHOD FOR REQUIREMENTS MANAGEMENT IN
DISTRIBUTED EXTREME PROGRAMMING ENVIRONMENT

1ALI AKBAR ANSARI, 2SAYED MEHRAN SHARAFI, 3NASER NEMATBAKHSH

1Computer Department, Islamic Azad University, Najafabad branch, Esfahan,
 IRAN

2Computer Department, Islamic Azad University, Najafabad branch, Esfahan,
 IRAN

3Computer Department, University of Isfahan, Faculty of Engineering, Esfahan,
IRAN

ABSTRACT

Both Distributed Software Development (DSD) and eXtreme Programming (XP) approaches have gained
significant Popularity. Both DSD and XP method are growing trends as software business requires quicker
quality production at a cheaper price. Requirement Management (RM) is not easy to perform even under
the best of circumstances and it becomes more difficult when performed globally because of the nature of
distributed development projects and the diversity of stakeholders. This article presents an investigation of
the possibility to integrate Requirement Management in Distributed eXtreme Programming. One reason
for integrating RM with DXP was that XP emphasizes lightweight documentation in XP based
development. We propose the development of model and tool for executing RM in DXP that are required
for proper software engineering and that activity should not restrict the efficient execution of XP method in
DSD.

Keywords: Distributed Software Development (DSD), eXtreme Programming (XP), Requirements
Management (RM).

1. INTRODUCTION

 Many reports highlight the importance of good
requirements engineering (RE). The CHAOS report
published in 1995 [22] shows that almost half of the
cancelled projects failed due to a lack of
requirements engineering effort and that a similar
percentage ascribes good requirements engineering
as the main reason for project success. Successful
projects do manage requirements, failed ones lack
requirements processes. On the European side, a
survey with over 3800 organizations in 17 countries
similarly concluded that most of the perceived
software problems are in the area of requirements
specification and requirements management [5].
 Globally distributed work is taken up as an
alternative to single-site mainly because of the
economic and strategic benefits it offers.
Distributed software development is becoming the
norm by promising potential advantages like global
resources, attractive cost structures, round-the-
clock development and closeness to local markets

[7]. Developing software in distributed teams has
brought about its own unique set of problems.
requirements management in global projects is one
of the essential challenges that shall be paid
adequate attention. Organizations need to
effectively define and manage requirements to help
ensure they are meeting customer needs, while
addressing compliance and staying on schedule and
within budget.
 Agile software development refers to a group of
software development methodologies aiming to
more nimble and lighter development processes,
making them more responsive to change. There are
studies indicating that it is possible to successfully
combine agile methods with distributed projects
[18, 17, 20, 16, 21, 15, 19].
 Extreme Programming (XP) [1] is undoubtedly
the hottest Agile approach to emerge in recent
years. the main weaknesses of the XP approach to
requirements management is the lack of
requirements documentation.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

53

 The objective of this paper is finding a solution
for managing user stories and tasks in electronic
format for change management and maintaining
traceability.
 This paper is organized as follows: The next
section briefly gives an overview on Distributed
Software Development, Extreme Programming, and
Requirement Management (RM). Section 3
describes about elicitation and managing
requirement in XP. In section 4 RM related
problems with XP are defined. Section 5 describes
our main approach and the proposed solution and
finally section 6 concludes the paper.

 2. BACKGROUND

 This section introduces the concepts of
distributed software development, extreme
programming, and requirements management.

2.1. DISTRIBUTED SOFTWARE

DEVELOPMENT
 Many organizations turn toward distributed
software development, software development
distributed beyond national borders, in an attempt
to produce cheap higher-quality software with the
shortest development cycle possible [3]. Distributed
development means co-operation between several
teams located at different sites. This includes large
software companies developing a single product out
of many parts where each part could be built at a
separate location.
 Distributed software development is becoming
the norm by promising potential advantages like
global resources, attractive cost structures, round-
the-clock development and closeness to local
markets [7]. The promises are intuitive. To unleash
the potential, methods and tools for distributed
software development are designed to enable
geographically dispersed team members to share
programming tasks and development practices [6].
 The many challenges of DSD are, perhaps
obviously related to the effects of increased
distance between people. Distance has been
identified as a key problem and by its very nature
introduces barriers and complexity into the
management of globally distributed projects. The
distance factor involved [23] in three dimensions -
geographical, temporal, and socio-cultural poses
challenges to communication, coordination as well
as control.

2.2. EXTREME PROGRAMMING

 Extreme Programming (XP) [1] is undoubtedly
the hottest Agile approach to emerge in recent
years. XP addresses issues of changing
requirements and their cost by simplifying
management tasks and documentation. The goal of
XP is to produce the software faster, incrementally
and to produce satisfied customer [1]. XP is a
collection of values, principles and practices to
maximize the software quality. It defines some
practices, in particular related to requirements
elicitation and coding phases in order to make the
process lighter and changes adaptable, as well as
informal and customer oriented. These practices are
organized in "feedback cycles", the most relevant
are the phase of requirements gathering ("User
Stories"), coding (Pair Programming and
Refactoring) and testing, during the development
(TDD - Test Driven Development) and validation
by the customer (Acceptance Test).
 In XP, Development starts with planning game.
Planning game can be divided into “release
planning” and “iteration planning” [2]. During the
planning game, the customer writes user stories.
Those cards are estimated by the developer, based
on those estimation customer priories them depends
on their needs to establish a timebox of an iteration.
Developers develop those story cards through pair
programming and test driven development. At last
customer provides acceptance test to accept the
developed functionality. In between they consider
all of the XP practices in mind to improve the
quality of the software.

2.3. REQUIREMENT MANAGEMENT
 Requirements Management (RM) activities
are understood to begin before actual
requirements engineering process phases and
continuing during design, implementation,
testing and maintenance phases [11]. On the
other hand, Requirements Management means
“the systematic process of organizing and storing
relevant information about requirements, while
ensuring requirements traceability, and managing
changes to these requirements during the whole
lifecycle of the information system” [13].
Requirement Management includes activities
related to maintenance, namely identification,
traceability and change management of
requirements.
 Requirements identification is an essential
pre-requisite for requirements management. It

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

54

focuses on the assignment of unique identifier
for each requirement [11]. These unique

identifiers are used to refer to requirements
during product development and management.

 Requirements traceability [9, 10] refers to the
ability to describe and follow the life of a
requirement, in both a forwards and backwards
direction (i.e., from its origins, through its
development and specification, to its subsequent
deployment and use, and through all periods of on-
going refinement and iteration in any of these
phases). Forward traceability is the ability to trace a
requirement to components of a design or
implementation. Backward traceability is the ability
to trace a requirement to its source, i.e. to a person,
institution, law, argument, etc [12].
 Requirements change management refers to
the ability to manage changes to the systems
requirements [11]. Requirement change
management process defines the set of
activities that need to be performed when there
are some new requirements or changes to
existing requirements.

3. ELICITATION AND REQUIREMENT

MANAGEMENT IN XP

 Requirements elicitation activity is done during
planning game and responsibility of this activity
lies largely on customer shoulders. XP employs the
use of unstructured requirements gathering
techniques referred to as User Stories. User Stories
are one of the important aspects of the XP. They are
playing vital role in XP. User stories are informal,
natural language descriptions of system features
that are written on an index card. User stories are
composed of three aspects [14]:
• A written description of the story used for

planning and as a reminder.
• Conversation about the story that serves to flush

out the details of the story.
• Tests that convey and document details and that

can be used to determine when a story is
complete.

 Stories can be decomposed into tasks,
quantifiable units of development effort. The
decomposition is made by the programmers that
also have to estimate how long it would take to
implement each task. System development is a
succession of such iterations where the
requirements are continuously being defined by
means of stories.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

55

 Today As projects become larger, Distributed and
more complex, traceability and change management
becomes increasingly difficult to maintain. In small
project using XP practices, the lack of documented
can be overcome by asking other team members
about a particular task, in essence, echoing the
original conversation. This solution becomes less

practical in distributed development environment.
The lack of requirement document causes problems
especially when managing changes to requirements
and maintaining traceability.
 Different objects that relate to requirements and
their relations are illustrated in Figure 1. Actors are

stakeholders. Arrows represent traces or links
between items and planning game phase represent
information that is stored in tool. Rounded cornered
and shaded boxes are objects that contain RE
information. Rounded corner boxes in
Development phase are implementation or design
objects. There also can be hierarchical relations
between stories which are also forward traceability
relations. Only modification is that stories are
written to automated tool. If customer provides
source documentation for stories, they are also
stored into tool environment. All stored items
(story/task) should be under version control.
However, in XP only the last item version is
relevant. Each user story can be linked to source of
user story which can be some document or most
often customer. Customer should prioritise all
stories and with the help of development team they
should identify and select core set for the first
iteration. When the team starts coding and selects
tasks they also maintain links between tasks and
code by selecting related implementation
components in tool environments and by assigning
them for task.
 When stories are ready (all tasks related to that
story are ready) and acceptance tests for that story

is written link is made between story and
acceptance test script.

4. CHALLENGES FOR REQUIREMENT

MANAGEMENT IN DXP

 According to Beck, once the stories (and their
task decomposition) are used, they are to be
discarded. This corresponds to the Embracing
change and travel light concept. In the author’s
idea there is no need to save the stories once they
had their impact on the code because it (the code) is
bound to change anyways. In DSD, This is not
necessarily good practice [4]. In XP there are three
sources of knowledge about the software to be
maintained [8]: code, test cases, and programmers'
memory. If the software remains unchanged for a
long enough period of time, the programmers will
forget many important things and - what is even
worse – some of programmers might get
unavailable (for instance they can move to another
company). Then, the only basis for maintenance is
code and test cases. That can make maintenance
hard. It would be easier if one had the requirement
documented.
 On the other hand, even though stories are the
first artifact created by XP projects, the stories are

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

56

often the result of a problem statement, request for
proposal, or a contract with the customer. Stories
often times, after the review process, restructured to
another form of requirements artifact. At the end,
when a team member is looking at a specific
development task, they may lack the understanding
and background information to complete the task.

 In extremely distributed projects, a team member
may not have been present for the conversation, or
simply not recall all the information about a
particular task. So, Access to documented is indeed
very valuable. Hence, an approach is needed that
integrates knowledge management and DXP.

5. PROPOSED MODEL AND TOOL

 In this section, we introduce our solution for the
management of user story and task cards called
M.R.D.X.P. (Managing Requirement in a
Distributed eXtreme Programming). M.R.D.X.P.
was developed to offer the customer and
developers a RM tool that is lightweight and
visible yet some of the

XP practices. M.R.D.X.P. needed to be easy to
use, fully distributed, accessible and have equal
facilitation for both sets of users.

 It was developed using ASP and Ajax to
ensure it could be fully distributed across the
Web.
 In tool framework which is proposed here, user
stories are managed in a database. Tool provides
simple version management for user stories with
the possibility to make baselines and browse
version history. Tool also stores tasks in the same
way that it stores user stories. Attributes of stories

or tasks are almost entirely up to user to define.
State(Defined, In-Progress, Completed, Accepted,
Blocked) of tasks are explicitly defined by the tool.
 In Figure 2 there is presented data model of
proposed system as UML class diagram.
Traceability is implemented by storing information
about traced items into database. Item entity has
multi value attribute item type, which can be one of
these: Task, Story or File. Actual traces are stored
in link tables which is constructed relationship
between item and story or task. Location attribute
stores Items identification which can be for
example path in tool workspace.
 HistoryChange table stores information relevant
to version management. Version management in
system is linear and on only the last version is
preserved. So the purpose of HistoryChange table is
gather and provide history information. Thus
accessing past versions of user stories is not
possible and therefore branching is not possible.
Entry is added to History- Change whenever user
story or task is modified. HistoryChange stores date
and version number of related requirement (Figure
3). Item and HistoryChange entity and their

Fig. 3.Item history

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

57

attributes are managed by tool and used do not need
to worry about them.
 User Story and Task tables contain information of
stories and tasks. Only ID field and multi-value
state field are mandatory. ID field is incremental ID
of task or story. This way tasks and stories always
have unique identifier. Other fields are user
definable and used when needed.
 Glossary table stored information relevant to
result of discussion about user stories between
customer and developer as well as vocabulary used
by the customer (business). Creation of glossary,
guaranteeing that both developers and customer
share a common understanding.

6. CONCLUSION

 Requirements management is needed to
ensure that requirements are identified,
traceable and all changes to requirements are
properly handled. However, in a Distributed
and fast moving Enviroment XP project,
traditional RM may tie up too much resources.
 Process proposed here resembles original XP
approach in great extend with the addition of tool
support for managing requirement engineering
related information. Tool support makes persistent
requirements documentation possible and
accessible. Tool also gives rigor for capturing
traceability information that would be otherwise
lost.

REFERENCES:

[1] Beck, K., "Extreme programming Explained

Embraced Change", Reading, MA: Addison-
Wesley, 2000.

[2] K. Beck and M. Fowler, "Planning extreme
 Programming", New York: Addison-Wesley,

2001.
[3] Moe, N. B. & Smite, D., “Understanding

lacking trust in global software teams: A multi-
case study”. Lecture Notes in Computer
Science, 2007.

 [4] Breitman, K., Leite, J. C. S., "Managing User
Stories", 10th IEEE Joint International
Requirements engineering Conference, RE'02
Essen, Germany, September 2002.

[5] European Software Institute, European User
 Survey Analysis, Report USV_EUR 2.1,
 ESPITI Project, January 1996.

[6] Canfora, G., Cimitile, A., Di Lucca, G. A. &
Visaggio, C. A., "How distribution affects the
success of pair programming", International
Journal of Software Engineering and
Knowledge Engineering, 2006.

[7] Damian, D. & Moitra, D., "Global software
development: How far have we

 come?", IEEE Software, 2006.
[8] Nawrocki, J., et al., "Extreme Programming

Modified: Embrace Requirements Engineering
Practices", 10th IEEE Joint International
Requirements Engineering Conference, RE'02
Essen, Germany, September 2002.

[9] Gotel,O. , Finkelstein, A. ,"Contribution
structures", Proceedings of RE’ 95, 2nd
International Symposium on Requirements
Engineering. York, England. Los Alamitos,
California: IEEE Computer Society Press,
1995.

[10] Gotel O. and Finkelstein A., "Revisiting
requirements production", Software Engineering
Journal, 1996.

[11] Sommerville, I., Sawyer, P., "Requirements
Engineering: A Good Practise Guide", John
Wiley & Sons, 1997.

[12] Wieringa, R.J., "An introduction to
requirements traceability", Technical Report
IR-389, Faculty of Mathematics and
Computer Science, University of Vrije,
Amsterdam, September 1995.

[13] Grehag, Å., "Requirements Management in a
Life-Cycle Perspective - A Position Paper", In
Ben Achour-Salinesi, C., Opdahl, A.L., Pohl,
K. and Rossi, M. (Eds) Proceedings of the
Seventh International Workshop on
Requirements Engineering: Foundation for
Software Quality, REFSQ’01, Interlaken,
Switzerland. Essenere Informatik Beiträge,
2001, pp. 183-188.

[14] Cohn, M., "User stories applied for Agile
Software Development", Reading, MA:
Addison-Wesley, 2003.

[15] J.Sutherland, A.Viktorov, J.Blount,
N.Puntikov, "Distributed Scrum: Agile Project

 Management with Outsourced Development
Teams", IEEE International Conference on
System Science, 2007.

[16] K.Sureshchandra, J.Shrinivasavadhani,
"Adopting Agile in Distributed Development",
IEEE International Conference on Global
Software Engineering 2008, p.217-221.

[17] M.Simmons, Internationally Agile, InformIT
March 15th , 2002.

[18] M.F.Nisar, T.Hameed, "Agile Methods
handling Offshore Software Development
Issues", Proceedings of INMIC, 8th IEEE

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

58

International Multitopic Conference 2004,
p.417-422.

[19] M.Kircher, P.Jain, A.Corsaro, D.Levin,
"Distributed eXtreme Programming",
Proceedings of the International Conference
on eXtreme Programming and Agile Methods
2004, p.147-154.

[20] M.Fowler, "Using an agile software process
with offshore development", 2006. (Available:
http://martinfowler.com/articles/agileOffshore
.html)

[21] M.Farmer, "DecisionSpace Infrastructure:
Agile Development in a Large Distributed
Team", Proceedings of the Agile Development
IEEE Conference 2004, p. 95-99.

 [22] CHAOS, Software Development Report by
the Standish Group 1995.

[23] Ågerfalk, P. J., Fitzgerald, B., Holmström, H.,
Lings, B., Lundell, B., Ó Conchúir, E. "A
Framework for Considering Opportunities and
Threats in Distributed Software
Development", In: Proceedings of the
International Workshop on Distributed
Software Development, Austrian Computer
Society 2005, p. 47–61

