
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

7

FAULT TOLERANCE OF DISTRIBUTED LOOPS

ABDEL AZIZ FARRAG

Faculty of Computer Science
Dalhousie University
Halifax, NS, Canada

ABSTRACT
 Distributed loops are highly regular structures that have been applied to the design of many locally

distributed systems. This family of networks includes many important configurations such as rings and circulant
graphs, for examples. In this paper, we examine the problem of extending a (unidirectional) distributed loop so as
to tolerate any given number of node failures. We study this problem when the parameters that define the loop are
given numerically (as constants) or symbolically (as variables). We demonstrate our formulation by developing
(fault tolerant) solutions for daisy-chain networks. Our results show that the solutions obtained are efficient (i.e.,
either optimal or nearly optimal).

Keywords: Networks, Graphs, Distributed Loops, Fault-Tolerant Solution.

1. INTRODUCTION

 Distributed loop networks have been widely used
in the design of local area computer networks and
also in some parallel processing systems [2,7,15].
This class of networks exhibits many useful
properties, such as simplicity, expandability and
regularity. Moreover, it includes (as special cases)
several important topologies such as rings and
circulant graphs, for examples.

 Distributed loops are highly regular structures,
and as a result, the failure of even one node or link
can change or break the network. Therefore, to make
the network fault-tolerant, some spare nodes and
links can be added so that when a failure occurs, the
network can be reconfigured to bypass the defective
components. This is the main approach used to
achieve fault-tolerance [1].

 Achieving fault-tolerance by extending a given
network has been examined for a variety of
architectures such as (undirected) rings [6,7,9], stars
[8,18], meshes [3-7,9,19] and hypercubes
[3,6,10,17,19]. The main optimization criterion used

in building a solution is to reduce the node degree of
the (extended) network. This objective is important in
practice due to the limitation on the number of links
allowed per node in VLSI design [2]. This is also the
same criterion used in this paper.

We examine the fault-tolerant extension problem for
the distributed loop configuration. Our formulation
can be used to tolerate any desired number of node
failures, and moreover, it can be applied whether the
parameters that define the distributed loop are stated
numerically (as constants) or symbolically (as
variables). For the former case, we develop a new
algorithm which finds a (fault-tolerant) solution for
the distributed loop G by first generating a family of
solutions, and then selecting the one with the least
node-degree. For the latter case, we demonstrate that
the formulation can be applied analytically, and use
the method to design a (fault tolerant) solution for the
distributed daisy-chain network.

Some important criterion affecting the performance
and the reliability of a distributed loop, (such as its
diameter, connectivity and routing), have been
previously examined for several special cases (see
[2,11,13,14,15,16]). To the best of our knowledge,
designing a fault-tolerant extension of a distributed
loop has not been studied, except for the special case
of a circulant graph (e.g., [7,9,10]). This paper
extends and generalizes this earlier work to the
(unidirectional) distributed loop.

 The rest of this paper is organized as follows.
First, we present the background material, and
develop a new theorem for designing fault-tolerant
solutions of any distributed loop (in Section 2). Then,
we develop a formalism to partition the jumps of a
distributed loop (in Section 3). This formalism will
be used (in Section 4) to develop a new algorithm to

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

8

design a fault-tolerant solution for a distributed loop.
This algorithm assumes that the parameters that
define the distributed loop are given numerically (as
constants). Forming solutions for cases where these
parameters are stated symbolically (as variables) will
be discussed in Section 5. Finally, we present
conclusions (in Section 6).

2. BACKGROUND

 In this section, we present the background
material used throughout this paper. The (directed)
graphs defined below represent multicomputer
networks, where the nodes represent processors and
the edges represent links.

Definition 2.1: (k-ft solution)
A graph H is a k-fault-tolerant (or k-ft) solution of a
graph G, if removing any k nodes from H will leave a
remainder that contains a subgraph isomorphic to G.

 For example, the graph G in Figure 2.1 has a 1-ft
solution H shown in Figure 2.2. (The thicker edges
inside H identify a subgraph isomorphic to G which
excludes one faulty node.)

 In designing a k-ft solution of a graph G, we
use the minimum number of spare nodes, i.e.,
the solution will have exactly k more nodes than
G. Throughout the rest of the paper, G will
represent a distributed loop network as defined
below.

Definition 2.2: (Distributed loop)
A distributed loop is a directed graph defined by a set
of nodes numbered �0,1,..,n-1�and a set of integers
called jumps denoted A = �a1, a2,.., ai�such that for
every node x and every jump aj, x is adjacent to node
x aj mod n.

 For example, the graph G in Figure 2.1 is a 5-
node distributed loop with only one jump equal to 1.
In what follows, we denote an n-node distributed
loop G with jumps {a1, a2, .., ai} as G(a1, a2,.., ai : n).
For example, the distributed loop in Figure 2.2 is
G(1,2: 6).

 It is convenient to arrange the nodes of the loop
around a circle in a clockwise direction (as shown in
Figure 2.1). We shall use only positive jumps, that
is, if a negative jump ai arises, we shall convert it into
the equivalent positive jump ai n (mod n).

 Notice that distributed loops generalize rings
and circulant graphs, e.g., an n-node directed ring
corresponds to the distributed loop G(1: n), whereas
an n-node undirected ring is equivalent to the
distributed loop G(1,n-1: n) in which two directed
links are used to represent each edge in the
(undirected) ring as shown in Figures 2.3 and 2.4.

 Checking whether a given node is adjacent
to another node can be done by finding the
(circulant) distance between them (along the
cycle) and checking if it is equal to one of the
jumps, where the (circulant) distance is defined as
follows.

Definition 2.3: (Circulant-distance)

 The circulant-distance from a node x to another
node y is defined as either y-x or y-x+n depending
on whether or not y is greater than x; respectively.
For examples, in Figure 2.1the circulant-distance
from node 1 to node 3 is 2 whereas the circulant-
distance from node 1 to node 0 is 4.

 The basic method to construct a k-ft of a
distributed loop is given in the theorem below
which generalizes that of [6].
Theorem 2.1: Given a graph G(a1,a2,.., ai : n), we
can construct a distributed loop H with n+k
nodes that is a k-ft of G where the jumps of H
consist of the union: �a1, a1+1, a1+2,..,
a1+k�� �a2, a2+1, a2+2,.., a2+k��... �� ai, ai
+1, ai +2,.., ai +k�.
Proof: Assume here that the number of faulty
nodes is k; (otherwise, if there are fewer than k
faulty nodes, we can make the difference by

4

3 2

1

0

Fig. 2.3 Undirected ring.

4

3 2

1
0

Fig. 2.4 A graph G(1,4:5).

4

3 2

1

0

Fig. 2.1 A graph G(1:5). Fig. 2.2 A 1‐ft of G(1:5).

3

5

4 2

1
0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

9

selecting some extra healthy nodes and treat them
as faulty). The remaining n healthy node of H will
be renumbered in the same order along the circle
starting at any healthy node as 0 and skipping
every faulty node. That is, after this renumbering,
the healthy nodes will be labeled 0,1,..,n-1.

 For every healthy node newly numbered as x,
let g(x) denote the node that corresponds to x
before this renumbering. To complete the proof,
we need only to show that for every such node x
and every jump ai, x must be adjacent to the
(healthy) node x ai mod n.

 First, assume that none of the nodes along the
circle over the interval from node x up-to node
y� x ai (mod n) is faulty. Then, the circulant-
distance from x to y is the same as that from g(x)
to g(y), i.e., equal to ai. Therefore, by the
definition of the distributed loop H given in this
theorem, node g(x) is adjacent to node g(y), which
means node x must be adjacent to y.
 Otherwise, let M denote the number of faulty
nodes (skipped) along the circle over the interval
from the node x to the node y�x ai (mod n), where x
and y are healthy nodes. In this case, the circulant-
distance from node g(x) to g(y) is equal to Mai where
M � k. Thus, by the definition of the distributed loop
H, node g(x) is adjacent to node g(y), which in turn
means node x is adjacent to node y�x  ai (mod n). ⁭

 For example, by the above theorem, the loop
G(1,9: 11) has a 1-ft of the form H(1,2,9,10: 12).
Although the above theorem finds only one k-ft for a
distributed loop G, a large family of k-ft solutions
can be generated as will be shown later. To compare
the costs, we shall count only the number of jumps
used in every solution as it relates directly to node-
degree. Notice that the degree of a graph H is defined
as the maximum degree of any node in H.

3. PARTITIONING THE JUMPS OF A

DISTRIBUTED LOOP

 A subset of the jumps of a distributed loop G is
called a block if they are physically consecutive, i.e.,
of the form �j, j1, j2, ...�. By the (k-ft) theorem
proven in the preceding section, the fewer the number
of blocks in G, the more efficient the cost of its k-ft.
Thus, the best-case for the k-ft constructed by this
theorem occurs when the jumps of G are all
consecutive (i.e., form only one block), whereas the
worst-case occurs when no pair of jumps are
consecutive (i.e., each block in G consists of only one
jump).

 In this section, we develop a new formalism called
m-distance subsets which generalizes the notion of
blocks. These subsets will be obtained by partitioning
the jumps of the given loop as explained below.

 In what follows, the greatest common divisor of
two integers x and y will be denoted gcd(x,y) and the
inverse of x (mod n) is denoted x1. Notice that x x1
(mod n) = 1. Two integers x and y are called coprime
or relatively prime, if gcd(x,y)= 1.

Definition 3.1: (Partitioning sequences)
Let n and m be any pair of integers where
gcd(n,m) �1 and n > m > 0. We define an ordered
sequence, based on n and m, denoted S(n,m) =
<s1, s2, .., sn1>, where si � i m (mod n), for all
1�i � n1.

 For instance, when n=7 and m=1, S(7,1)=
<1,2,3,4,5,6>. Similarly, for n=7 and m=3, we get
S(7,3) = <3,6,2,5,1,4>.

 It is not difficult to show that S(n,m) contains
all integers from 1 up-to n-1, that is, it includes
the whole range of valid jumps (of an n-node
distributed loop). After generating S(n,m), we
shall use it to partition the jumps of the distributed
loop as will be explained below.

Definition 3.2: (m-distance subset)
A subset S of the jumps of an n-node distributed
loop G is called an m-distance subset, where m is
any integer such that gcd(n,m) =1 and n > m > 0,
if there is a subsequence of consecutive elements
in S(n,m) that contains every jump in S and has
the same number of elements as in S. Further, an
m-distance subset is called maximal if it is not
contained in any other m-distance subset.

Example 3.1: The two jumps of the distributed
loop G(1,3: 9) form a 2-distance subset. This is
because S(9,2)= <2,4,6,8,1,3,5,7>, i.e., S(9,2) has
a subsequence <1,3> that contains these jumps.

Definition 3.3: (m-distance partition)
Let P(A,n,m) denote a collection of m-distance
subsets defined over a set A of jumps of an n-
node distributed loop. Then, P(A,n,m) is called an
m-distance partition of A, if every m-distance
subset in P(A,n,m) is maximal and every jump in
A appears (inside one subset) in P(A,n,m).

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

10

Example 3.2: Consider the distributed loop
G(1,2,5:7). Since S(7,1) = <1,2,3,4,5,6>, a 1-
distance partition of the jumps of G is equal to
1,2,5.

Similarly, since S(7,3) = <3,6,2,5,1,4>, a 3-
distance
partition of the jumps of G has only one subset
1,2,5.

 We present below the algorithm for partitioning
the jumps of a distributed loop G in which A
denotes the set of jumps in G, n denotes the
number of nodes of G, and m is any integer that is
coprime to n, where n > m > 0.

Algorithm Partition (A,n,m) {

1. Construct the sequence S(n,m) = <s1, s2,.., sn1> as
defined before;

2. For every element si in S(n,m), if si appears as a jump
in A, then keep si in S(n,m); otherwise, replace si in
S(n,m) by a special separation symbol, say "&";

3. For every (maximal) subsequence in S(n,m) that does
not include the separation symbol "&", form an m-
distance subset which has the same elements as those
in the subsequence;

4. Return a partition P(A,n,m) consisting of all
m-distance subsets formed above;
}

Since S(n,m) contains n-1 elements, and each of them
can be checked in Step 2 in only O(log �A�) time
(if A were sorted first), therefore, the time-
complexity of the above algorithm is O(n log �A�).

 It is not difficult to show that the sequences S(n,
m) and S(n, n-m) are the reverse of each other, and
therefore, if we partition the jumps of an n-node
graph using S(n,m) or S(n,n-m), we obtain the same
results. Accordingly, we shall use only sequences
S(n,m) that satisfy the condition m < n �2.

 The table below shows all possible ways to
partition the jumps of the distributed loop G(1,4,7,9:
11); each of them is based on a different value of m.

Table 3.1 Every row below gives a value of m
that is coprime to n, (where n= 11), the sequence
S(11,m), and a partition of the jumps 1,4,7,9
corresponding to m.

M S(11,m) Partition
of�1,4,7,9�

1 <1, 2,3,4,5,6,7,8,9,10> ��1�, �4�,
�7�, �9��
2 <2,4,6,8,10,1,3,5,7,9> ��1�, �4�,
�7,9��
3 <3,6,9,1,4,7,10,2,5,8> ��1,4,7,9��
4 <4,8,1,5,9,2,6,10,3,7> ��1�, �4�,
�7�, �9��
5 <5,10,4,9,3,8,2,7,1,6>
 ��1,7�,�4,9��

4. THE ALGORITHM

 Given a distributed loop G, we would like to
construct a k-ft solution for it. This can be done
by applying Theorem 2.1 directly as explained
before. However, if the jumps are not consecutive,
the solution obtained may be unnecessarily
expensive. Therefore, to improve over this, we
develop a new algorithm which works by
generating a large family of k-ft solutions that can
be compared to select the one with the least node-
degree. This method assumes that the jumps of G
are specified numerically as constants. Otherwise,
if the jumps of G are given symbolically (as
variables), we can use the method explained in the
next section.

Theorem 4.1: If n and p are relatively prime
integers, then the graph G(a1, a2,.., ai : n) must be
isomorphic to H(a1 p mod n, a2 p mod n,.., ai p
mod n: n).

Proof: We define a mapping "f" which transforms
each node x in G into a node f(x) in H such that
f(x)= x p (mod n). To prove that "f" is one-to-one,
it suffices to show that "f" cannot map distinct
nodes to the same value. To see why, let f(x)
� f(y), then x p (mod n) = y p (mod n), and
therefore, by multiplying each side by p1 we get x
p  p 1 (mod n) = y p  p 1 (mod n). But, since p  p 1
� 1 (mod n), this will imply x�y.

 The function "f" also preserves adjacency.
This is because for any edge (x,y) in G, we must
have some jump aj such that y � x  aj (mod n).

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

11

This, in turn, implies f(y) = f(x  aj) = x p + aj p
(mod n),
that is, f(y) = f(x)+ aj p mod n. This implies (f(x),f(y))
is an edge in H.

 The two properties of "f" proven above
establishes the isomorphism between G and H. ⁭

 Given a distributed loop G, we can apply the
above theorem to convert each m-distance subset of
its jumps into a block of consecutive elements as
described in the following lemma. (This is needed
before we can construct a new k-ft solution for G.)

Lemma 4.1: Multiplying the jumps of the distributed
loop G(a1, a2,.., ai : n) by m1 transforms each m-
distance subset of its jumps into a block of
consecutive integers of the form �j, j1, j2, ..�.

Proof: By the definition of an m-distance subset
given earlier, the elements of any such subset can be
written as �b, bm, b 2m, ...�for some integer b,
where additions are mod n. Thus, if we multiply the
jumps by m1, we obtain �b  m1 , b  m1 + m  m1 , b 
m1 + 2m  m1, ..�where the additions and the
multiplications are done mod n. Since m  m1 = 1
(mod n), this subset can be simplified to �b  m1 , b 
m1 + 1, b  m1 + 2, ...�. Moreover, if we substitute j =
b  m1 , we get �j, j1, j2, ..�.

 The above results, together with the formalism
of m-distance partitioning given earlier, generalize
the theorem of Section 2 to construct a k-ft solution
as follows. Instead of finding only one k-ft solution
for G, we can form many k-ft solutions; one for every
integer m relatively prime to n. Thus, based on the
value of m selected, we can form an m-distance
partition of the jumps of G; and then convert its
subsets into blocks (as was shown in the above
lemma), and finally apply Theorem 2.1 to form a new
k-ft solution for G. The complete details are given in
the algorithm below.

 In this algorithm, G denotes a given distributed
loop with n nodes and k denotes the number of node
failures to be tolerated.

Algorithm Fault-tolerance(G,k) �

1. Generate all integers {m1, m2,.., mj� such that for
each mj we have gcd(n,mj)� 1 and 1� mj <
(n�2);

2. For every mj generated above, find an mj-partition
of the jumps of the distributed loop G;

3. For every mj-partition generated above, convert
its subsets into blocks by multiplying its jumps
by mj

1 (mod n); and let Tj denote the distributed
loop whose jumps consists of the union of these
blocks;

4. Use Theorem 2.1 to construct a k-ft solution of
each graph Tj defined in Step(3);

5. Compare all k-ft solutions constructed in Step(4)
to select the one with the least node-degree;
�

 For every mj generated, it is not difficult to
show Steps 2 to 5 of the above algorithm can be
done in O(n log�A�k �A�). Thus, since the
number of mj’s generated is bounded by O(n), the
whole algorithm requires O(n2 log�A�n k
�A�).

Example 4.1: Let G =(1,4,7,9: 11) and k = 1.
Then, we can use Theorem 2.1 to form a 1-ft
solution for G equal to H(1,2,4,5,7,8,9,10: 12).
However, if we apply the above algorithm to G,
many 1-ft solutions will be generated; and out of
them the solution H(3,4,5,6,7: 12) will be selected
as the one with the least node degree. (The table
below provides a list of every solution generated,
and the value of m corresponding to it.)

Table 4.1 This table traces the various 1-ft
solutions of G(1,4,7,9: 11) generated during the
execution of above algorithm. The final solution
selected is given in bold.

m 1-ft solution of G(1,4,7,9:11)
1 H(1,2,4,5,7,8,9,10: 12)
2 H(2,3,6,7,9,10,11: 12)
3 H(3,4,5,6,7: 12) �selected solution
4 H(1,2,3,4,5,6,10,11: 12)
5 H(3,4,5,8,9,10:12)

Lemma 4.2: Algorithm Fault-tolerance(G,k) runs in
O(n2 log�A�n k �A�) time.
Proof: We trace the steps of the algorithm for each
mj generated. Checking if mj and n are relatively
prime in Step(1) can be done in O(log3 n) time as
shown in reference [12], and finding a partition
corresponding to mj in Step(2) requires O(n log�A�)
time as was shown earlier. Converting the jumps into
blocks in Step(3) needs O(�A�) time, and
constructing a k-ft in Step(4) requires at most
O(k�A�) time. Thus, the time for each mj is O(n
log�A�k �A�), and since the number of integers
(mj’s) to be generated is bounded by O(n), therefore,

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

12

the whole algorithm can be done in O(n2 log�A�n k
�A�) time. ⁭

 The following table gives several examples of
graphs, as well as their 1-ft and 2-ft solutions that are
computed by the above algorithm.

Table 4.2 Every row gives a graph G, its 1-ft and 2-
ft.
Graph 1-ft of G 2-ft of G
G(1:5) H(1,2:6) H(1,2,3:7)
G(1,6:7) H(3,4,5:8) H(3,4,5,6:9)
G(1,3:7) H(4,5,6:8) H(4,5,6,7:9)
G(1,3:9) H(5,6,7: 10) H(5,6,7,8:11)
G(1,4,7,9:11) H(3,4,5,6,7:12) H(3,4,5,6,7,8:13)

5. FAULT TOLERANCE OF A DISTRIBUTED
LOOP
 The algorithm given above for designing a k-ft
solution of a distributed loop G is simple to
implement; however, it assumes that the parameters
of G are given numerically, i.e., the size n and the
jumps of G must be constants. If these parameters
are given symbolically (as variables), a k-ft solution
can be developed analytically, by applying our
formulation (of m-distance partitioning) to G. The
method is explained below by developing a solution
for the (daisy-chain) network G(1, n2 : n), which was
introduced originally in [11].

Lemma 5.1: Suppose that n is divisible by 3. Then,
either n/3 -1, or n/3 +1, or both must be coprime to n.

Proof: Since every pair of consecutive integers is
coprime, then each of the two pairs (n/3 -1, n/3)
and (n/3, n/3 +1) must be coprime. This, in turn,
implies that "3" is the only possible common
factor between the pair (n/3 -1, n), and between
the pair (n, n/3 +1). However, since exactly one
out of any 3 consecutive integers (e.g., n/3 -1, n/3,
n/3 +1) is divisible by 3, therefore, at least one of
the two pairs (n/3 -1, n) or (n, n/3 +1) must be
coprime. ⁭

Lemma 5.2: Let n be divisible by 3, and let n/3 -1
be coprime to n. Then, the inverse of n/3 -1 (mod
n) is equal to either (2n/3 -1) or (n/3 -1)
depending on whether or not n is divisible by 9;
respectively.
Proof: Since 3 divides n and n/3 -1 is coprime to
n, then n/3 -1 cannot be divisible by 3.
Consequently, either n/3 or n/3 +1 is divisible by
3.

 Suppose first that n/3 is divisible by 3, i.e., n is
divisible by 9. Then, (n/3 -1)(2n/3 -1) =
2n(n/9)-n+1. Since n/9 is an integer in this case,
therefore 2n(n/9) – n +1 (mod n) = 0 -0 +1 =1.
Thus, (n/3 -1)1 = 2n/3 -1.

 Otherwise, suppose that n/3 +1 is divisible
by 3, then (n/3 -1)(n/3 -1) = (n/3)(n/3 +1) -n
+1= n (n/3 +1)/3 -n +1 = n(0) -0 +1 (mod n) =1.
That is, (n�3 -1)1 = n/3 -1 (mod n). ⁭

Lemma 5.3: Let n be divisible by 3, and let n/3
+1 be a coprime to n. Then, the inverse of n/3 +1
(mod n) is equal to either (2n/3 +1) or (n/3 +1)
depending on whether or not n is divisible by 9;
respectively.
Proof: The proof methodology for this lemma is
similar to that given in Lemma 5.2, and therefore
omitted. ⁭

Theorem 5.1: For any k �1, we can form a k-ft
solution H of the distributed loop G(1, n-2: n) as
follows.

a) If 3 divides (n+1), the solution H will be equal to
H((n-2)/3, (n+1)/3, (n+1)/3 +1,.., (n+1)/3 +k :
n+k).

b) If 3 divides (n-1), the solution H will be equal to
H((2n-2)/3, (2n+1)/3, (2n+1)/3 +1 ,.., (2n+1)/3 + k
: n+k).

c) If 3 divides n and gcd(n, (n/3 +1)(n/3 -1))=1, H will
be equal to H((2n/3)-1, 2n/3,.., (2n/3)+k-1, (2n/3)+2,
(2n/3)+3,.., (2n/3)+2+k : n+k).

d) If 3 divides n and gcd(n, n/3 +1) �1, H will be
H((n/3) -1, (n/3),.., (n/3) -1+k, (n/3) +2, (n/3) +3,..,
(n/3) +2+k : n+k).

e) If 3 divides n and gcd(n, n/3 -1) �1, H will be
H((n/3) -2, (n/3) -1,.., (n/3) -2+k, (n/3)+1, (n/3)+2,..,
(n/3)+1+k : n+k).
(Thus, in all cases, H has either k+2 or k+4 jumps.)

Proof: Suppose first that Case(a) is true, i.e., let
(n+1) be divisible by 3. Then, 31 (mod n) will be
equal to (n+1)/3, i.e., we can group the two jumps of
G into a 3-distance partition, and then form a block
graph Q for G of the form Q(1 31, (n-2) 3 1: n)= Q(1
(n+1)/3, (n-2) (n+1)/3: n)= Q((n-2)/3, (n+1)/3 : n),
(where the multiplication is done mod n). Thus, a k-ft
H of G will be H((n-2)/3, (n+1)/3, (n+1)/3 +1,..,
(n+1)/3 +k : n+k).

 Similarly, suppose that Case(b) is true, i.e., let
(n-1) be divisible by 3, then it is not difficult to
verify that 31 = (2n+1)/3. This is because, 3
(2n+1)/3 = 3 (2n-2+3)/3 = 3 2(n-1)/3 +3 =2n23 =1
mod n). Thus, we can group the jumps of G

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

13

into a 3-distance partition, and then form a block
graph Q for G of the form Q(1 3 1, (n-2) 3 1: n) = Q(1
(2n+1)/3, (n-2)  (2n+1)/3: n) = Q((2n-2)/3, (2n+1)/3:
n), (where the multiplication is done mod n).
Accordingly, a k-ft solution H of G is equal to H((2n-
2)/3, (2n+1)/3, (2n+1)/3 +1,.., (2n+1)/3 +k : n+k).

 Suppose Case(c) is true, i.e., let 3 divides n
and gcd(n, (n/3 +1)(n/3 -1)) =1. Then, we can group
the jumps of G into either an (n/3 +1)-distance
partition or (n/3 -1)-distance partition. Both lead to
solutions of equal cost, and therefore, we chose the
latter, that is, the block graph of G in this case will be
Q(1 (n/3 -1)1, (n-2) (n/3 -1)1: n). Since neither (n/3
+1) or (n/3 -1) is divisible by 3 in this case,
therefore, n must be divisible by 9, i.e., by Lemma
5.2, the inverse of (n/3 -1) will be equal to (2n/3 -1).
Thus, the block graph Q will be Q(1 (2n/3 -1),
(n-2) (2n/3 -1) : n) = Q((2n/3 -1), (2n/3 +2) : n)
(where multiplication is done mod n). Thus, a k-ft
H of G will be H((2n/3)-1, 2n/3,.., (2n/3)+k-1,
(2n/3)+2, (2n/3)+3,.., (2n/3)+2+k : n+k).

 Similarly, suppose that Case(d) is true, i.e., let
3 divides n and gcd(n, n/3 +1) �1. Then, by
Lemma 5.1, n and (n/3)-1 must be coprime, i.e.,
we can group the jump of G into an (n/3 -1)-
distance partition, and then form a block graph Q
for G of the form Q(1(n/3 -1)1, (n-2) (n/3 -1)1 :
n), where the inverse of (n/3 -1) in this case will
be equal to (n/3 -1) as was shown in Lemma 5.2.
Thus, the block graph is equal to Q(1 (n/3 -1),
(n-2) (n/3 -1) : n) = Q((n/3 -1), (n/3 +2) : n)
(where multiplication is done mod n). Thus, a k-ft
H of G will be H((n/3)-1, (n/3),.., (n/3)-1+k,
(n/3)+2, (n/3)+3,.., (n/3)+2+k : n+k).

 Finally, suppose that Case(e) is true, i.e., let
3 divides n and gcd(n, n/3 -1) �1. Then, by
Lemma 5.1, n and (n/3 +1) must be coprime, i.e.,
we can group the jumps of G into an (n/3 +1)-
distance partition, and form a block graph for G
of the form Q(1(n/3 +1)1, (n-2)  (n/3 +1)1 : n),
where the inverse of (n/3 +1) in this case is equal
to (n/3 +1) as was shown in Lemma 5.2. Thus, the
block graph will be equal to Q(1 (n/3 +1), (n-2) 
(n/3 +1) : n) = Q((n/3 +1), (n/3 -2) : n) (mod n).
Therefore, a k-ft H of G will be H((n/3)-2, (n/3)-
1,.., (n/3)-2+k, (n/3)+1, (n/3)+2,.., (n/3)+1+k :
n+k). ⁭

Table 5.1 For each case (a) to (e) proven in the
above theorem, an example of a graph and its k-ft
is given.

Graph G(1,n-2:n) A 6-ft H of G

G(1, 9 : 11) H(3,4,..,10: 17)
G(1, 14 : 16) H(10,11,..,17: 22)
G(1, 16 : 18) H(11,12,..,20: 24)
G(1, 13 : 15) H(4,..,13: 21)
G(1, 10 : 12) H(2,3,..,11: 18)

 Actually, the solutions developed in the
above theorem are either optimal (when n is not
divisible by 3) or nearly-optimal (when 3 divides
n). The proof
follows from the following theorem which
establishes a lower- bound on the node-degree of any
k-ft solution. (Notice that the node degree of a loop H
is twice the number of its jumps.)

Theorem 5.2: Given a distributed loop G with d
jumps, any k-ft H of G must have a degree �2(d+k).
Proof: Suppose to the contrary a k-ft solution H has a
smaller degree than 2(d+k). Then, for any node u,
either its in-degree(u) or out-degree(u) is less than
(d+k). Suppose, for example, in-degree(u) < (d+k)
and select any set of k nodes "adjacent to u" as being
faulty. Excluding or removing these k nodes from H
will make the new value of in-degree(u) less than d,
i.e., the graph obtained by excluding these k nodes
from H cannot contain a subgraph isomorphic to G,
which implies that H cannot be a k-ft of G leading to
a contradiction. ⁭

 As a consequence of the lower-bound proven
above, the k-ft solution constructed by our Theorem
2.1 for a loop G with a single jump (or with a single
block of jumps) is optimal in node-degree. That is,
G(b :n) has an optimal k-ft of the form H(b, b1,.., bk :
nk).

6. CONCLUSIONS

 Distributed loop networks form the underlining
topology of many local area networks and some
parallel computers (such as the ILLIAC machine).
This class of networks satisfies many useful
properties and includes as special cases) important
topologies such as rings and circulant graphs, for
examples.

 Due to the highly regular structure of distributed
loop networks, they tend to be vulnerable to node
failures. Accordingly, we have examined the problem
of extending these networks by adding spare nodes
and links, so as to make the structure fault-tolerant.
Our method can be used to tolerate any desired

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS . All rights reserved.

www.jatit.org

14

number of node failures, and moreover, it can be
applied whether the parameters that define the
distributed loop are stated numerically (as constants)
or symbolically (as variables).

REFERENCES

[1] Anderson, T., and P. Lee, "Fault-Tolerance
Principles and Practice", Prentice-Hall
International, London, 1981.

[2] J. Bermond, F. Comellas and D. Hsu,
"Distributed Loop Computer Networks A
Survey", J. of Parallel and Dist.
Computing, 24, 1995, pp. 2-10.

[3] Bruck, J., R. Cypher and C. Ho, "Fault
Tolerant Meshes and Hypercubes With
Minimal Number of Spares", IEEE Trans on
Comp, 42, no. 9, September 1992, pp.
1089-1103.

[4] Chuang, Y., L. Hsu and C. Chang, "Optimal
1 edge Fault-Tolerant Designs for
Ladders", Info. Proc. Letters, 84, no. 2,
October 2002, pp. 87-92.

[5] Chung, F., F. Leighton, and A. Rosenberg,
"Diogenes: a Methodology for Designing
Fault Tolerant VLSI Processor Arrays", in
Proc. IEEE 13th Conf on Fault Tolerant
Computing Symp, June 1993, Chicago, IL,
pp. 26-32.

[6] Dutt, S., and J. Hayes, "Designing Fault-
Tolerant Systems Using Automorphisms", J.
on Parallel and Dist Computing, 12, no. 3,
July 1991, pp. 249-268.

[7] Farrag, A., "Algorithm for Constructing
Fault-Tolerant Solutions of the Circulant
Graph Configuration", in Proc. of 5th IEEE
Symp. On Frontiers of Massively Parallel
Computations, February 1995, McLean,
Virginia, pp. 514-520.

[8] Farrag, A., and R. Dawson, "The Fault
Tolerant Extension Problem for Complete
Multipartite Networks," in IEEE Trans. on
Parallel and Dist. Sys., 5, no. 2, February
1994, pp. 205-210.

[9] Farrag, A., and S. Lou, "Applying Fault
Tolerant Solutions of Circulant Graphs to

Multi Dimensional Meshes" in Computers &
Mathematics Journal, 50, no. 8-9, November
2005, pp. 1383-1394.

[10] Farrag, A., S. Lou and Y. Qi, "Fault tolerance
and Reconfiguration of Circulant Graphs and
Hypercubes", in Proc. Of High Performance
Computing Symposium (HPCS-2008), Ottawa,
Ontario, Canada, Apr 2008, pp. 475-481.

[11] Grnanov, A., L. Kleinrock, and M. Gerla, "A
highly Reliable Distributed Loop Network
Architecture", in Proc. IEEE Symp. Fault
Tolerant Computing, Kyoto, Japan, October
1980, pp. 319- 324.

[12] Lipson, J., "Elements of Algebra and Algebraic
Computing", Benjamin/Cummings Publisher,
Melno Park, California, 1981.

[13] Liu, M. T.,"distributed Loop Computer
Networks", Advances in Computers, Vol. 17,
Press, New York, 1978, pp. 163-221.

[14] Peha, J., and F. Toubagi, "Analyzing the Fault
Tolerance of Double-Loop Networks",
IEEE/ACM Trans. On Networking, V. 2, N. 4,
August 1994, pp. 363-373.

[15] Raghavendra, C., M. Gerla and A. Avizienis,
"A Reliable Loop topologies for Large Local
Computer Networks", IEEE Trans. Computer,
V. 34, N. 1, Jan 1985, pp. 46-55.

[16] Raghavendra, C., and J. Silvester, "Double Loop
Network Architectures- A Performance Study",
IEEE Trans. Comm., V. 33, N. 2, Feb 1985, pp.
185-187.

[17] Rennels, D., "On Implementing Fault Tolerance
in Binary Hypercubes", Digest of papers of
IEEE Symp on Fault-Tolerant Comp, (July),
Vienna, Austria, 344-349.

[18] Schmitter, E., and P. Baues, "The Basic Fault
Tolerant System", IEEE Micro, 4, no. 1,
February 1984, pp. 66-74.

[19] Snyder, L.,"Introduction to the Configurable,
Highly Parallel Computer," IEEE Computer, 15,
no. 1, January 1992, pp. 47-56.

[20] Sung, T., M. Lin, and T. Ho, "Multiple-Edge
Fault Tolerance with respect to Hypercubes",
IEEE Trans Parallel and Dist Systems, 8, no. 2,
February 1997, pp. 187-192.

