
Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT& LLS . All rights reserved.                                                                      
 

www.jatit.org 

 
7 

 

FAULT TOLERANCE OF DISTRIBUTED LOOPS 
 

ABDEL AZIZ FARRAG 
 

Faculty of Computer Science 
Dalhousie University 
Halifax, NS, Canada 

  
 

ABSTRACT 
       Distributed loops are highly regular structures that have been applied to the design of many locally 

distributed systems. This family of networks includes many  important configurations such as rings and circulant 
graphs, for examples. In this paper, we examine the problem of extending a (unidirectional) distributed loop so as 
to tolerate any given number of node failures. We study this problem when the parameters that define the loop are 
given numerically (as constants) or symbolically (as variables). We demonstrate our formulation by developing 
(fault tolerant) solutions for daisy-chain networks. Our results show that the solutions obtained are efficient (i.e., 
either optimal or nearly optimal). 
 
Keywords: Networks, Graphs, Distributed Loops, Fault-Tolerant Solution. 
 
1. INTRODUCTION 

 
       Distributed loop networks have been widely used 
in the design of local area computer networks and 
also in some parallel processing systems [2,7,15]. 
This class of networks exhibits many useful 
properties, such as simplicity, expandability and 
regularity. Moreover, it includes (as special cases) 
several important topologies such as rings and 
circulant graphs, for examples.  
 
        Distributed loops are highly regular structures, 
and as a result, the failure of even one node or link  
can change or break the network. Therefore, to make 
the network fault-tolerant,   some spare nodes and 
links can be added so that when a failure occurs,  the 
network can be reconfigured to bypass the defective 
components. This is the main approach used to 
achieve fault-tolerance [1]. 
 
          Achieving fault-tolerance by extending a given 
network  has  been examined for a variety of 
architectures such as (undirected)  rings [6,7,9], stars 
[8,18], meshes [3-7,9,19] and hypercubes 
[3,6,10,17,19]. The main optimization criterion used  
 
 
in building a solution is to reduce the node degree of 
the (extended) network. This objective is important in 
practice due to the limitation on the number of links 
allowed per node in VLSI design [2]. This is also the 
same criterion used in this paper.  
 
 

 
 
We examine the fault-tolerant extension problem for 
the distributed loop configuration. Our formulation 
can be used to tolerate any desired number of node 
failures, and moreover, it can be applied whether the 
parameters that define the distributed loop are stated 
numerically (as constants) or symbolically (as 
variables). For the former case, we develop a new 
algorithm which finds a (fault-tolerant) solution for 
the distributed loop G by first generating a family of 
solutions, and then selecting the one with the least 
node-degree. For the latter case, we demonstrate that 
the formulation can be applied analytically, and use 
the method to design a (fault tolerant) solution for the 
distributed daisy-chain network.  
 
Some important criterion affecting the performance 
and the reliability of a distributed loop, (such as its 
diameter, connectivity and routing), have been 
previously examined for several special cases (see 
[2,11,13,14,15,16]). To the best of our knowledge, 
designing a fault-tolerant extension of a distributed 
loop has not been studied, except for the special case 
of a circulant graph (e.g., [7,9,10]). This paper 
extends and generalizes this earlier work to the 
(unidirectional) distributed loop. 

 
          The rest of this paper is organized as follows. 
First, we present the background material, and 
develop a new theorem for designing fault-tolerant 
solutions of any distributed loop (in Section 2). Then, 
we develop a formalism to partition the jumps of a 
distributed loop (in Section 3). This formalism will 
be used (in Section 4) to develop a new algorithm to 
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design a fault-tolerant solution for a distributed loop.  
This algorithm assumes that the parameters that 
define the distributed loop are given numerically (as 
constants). Forming solutions for cases where these 
parameters are stated symbolically (as variables) will 
be discussed in Section 5. Finally, we present 
conclusions (in Section 6).  
 
2. BACKGROUND 
 
     In this section, we present the background 
material used throughout this paper. The (directed) 
graphs defined below represent multicomputer 
networks, where the nodes represent processors and 
the edges represent links. 
 
Definition 2.1: (k-ft solution) 
A graph H is a k-fault-tolerant (or k-ft) solution of a 
graph G, if removing any k nodes from H will leave a 
remainder that contains a subgraph isomorphic to G.  
    
       For example, the graph G in Figure 2.1 has a 1-ft 
solution H shown in Figure 2.2. (The thicker edges 
inside H identify a subgraph isomorphic to G which 
excludes one faulty node.) 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
     

          In designing a k-ft solution of a graph G, we 
use the minimum   number   of   spare   nodes,  i.e.,   
the   solution will have exactly k more nodes than 
G. Throughout the rest of the paper, G will 
represent a distributed loop network as defined 
below. 

 
 

Definition 2.2: (Distributed loop) 
A distributed loop is a directed graph defined by a set 
of nodes numbered �0,1,..,n-1�and a set of integers 
called jumps denoted A = �a1, a2,.., ai�such that for 
every node x and every jump aj, x is adjacent to node 
x aj mod n. 

 
        For example, the graph G in Figure 2.1 is a 5-
node distributed loop with only one jump equal to 1. 
In what follows, we denote an n-node distributed 
loop G with jumps {a1, a2, .., ai} as G(a1, a2,.., ai : n).  
For example, the distributed loop in Figure 2.2 is 
G(1,2: 6). 
 
      It is convenient to arrange the nodes of the loop 
around a circle in a clockwise direction (as shown in 
Figure 2.1). We shall use only positive jumps,  that 
is, if a negative jump ai arises, we shall convert it into 
the equivalent positive jump ai n (mod n).    
 
        Notice that distributed loops generalize rings 
and circulant graphs, e.g., an n-node directed ring 
corresponds to the distributed loop G(1: n), whereas 
an n-node undirected ring is equivalent to the 
distributed loop G(1,n-1: n) in which two directed 
links are used to represent each edge in the 
(undirected) ring as shown in Figures 2.3 and 2.4. 
 

            Checking whether a given node is adjacent 
to another node can be done by finding the 
(circulant) distance between them (along the 
cycle) and checking if it is equal to one of the 
jumps, where the (circulant) distance is defined as 
follows. 
 
Definition 2.3: (Circulant-distance) 

 The circulant-distance from a node x to another 
node y is defined as either y-x or y-x+n depending 
on whether or not y is greater than x; respectively. 
For examples, in Figure 2.1the circulant-distance 
from node 1 to node 3 is 2 whereas the circulant-
distance from node 1 to node 0 is 4. 
 
       The basic method to construct a k-ft of a 
distributed loop is given in the theorem below 
which generalizes that of [6]. 
Theorem 2.1: Given a graph G(a1,a2,.., ai : n), we 
can construct a  distributed  loop H with  n+k  
nodes that is a k-ft of G  where  the jumps of  H 
consist of  the union: �a1, a1+1, a1+2,.., 
a1+k�� �a2, a2+1, a2+2,.., a2+k��... �� ai, ai  
+1, ai  +2,.., ai  +k�. 
Proof:  Assume here that the number of faulty 
nodes is k; (otherwise, if there are fewer than k 
faulty nodes, we can make the difference by 
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Fig. 2.3 Undirected ring. 
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Fig. 2.4 A graph G(1,4:5). 

4 

3  2 

1 

0 

Fig. 2.1 A graph G(1:5).  Fig. 2.2 A 1‐ft of G(1:5). 
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selecting some extra healthy nodes and treat them 
as faulty). The remaining n healthy node of H will 
be renumbered in the same order along the circle 
starting at any   healthy node as 0 and skipping 
every faulty node. That is, after this renumbering, 
the healthy nodes will be labeled 0,1,..,n-1. 
 
       For every healthy node newly numbered as x, 
let g(x) denote the node that corresponds to x 
before this renumbering. To complete the proof, 
we need only to show that for every such node x 
and every jump ai, x must be adjacent to the 
(healthy) node x ai mod n. 
 
     First, assume that none of the nodes along the 
circle over the interval from node x up-to node 
y� x ai (mod n) is faulty. Then, the circulant-
distance from x to y is the same as that from g(x) 
to g(y), i.e., equal to ai. Therefore, by the 
definition of the distributed loop H given in this 
theorem, node g(x) is adjacent to node g(y), which 
means node x must be adjacent to y. 
    Otherwise, let M denote the number of faulty 
nodes (skipped) along the circle over the interval 
from the node x to the node y�x ai (mod n), where x 
and y are healthy nodes. In this case, the circulant-
distance from node g(x) to g(y) is equal to Mai where 
M � k.  Thus, by the definition of the distributed loop 
H, node g(x) is adjacent to node g(y), which in turn 
means node x is adjacent to node y�x  ai (mod n). ⁭ 
 
       For example, by the above theorem, the loop 
G(1,9: 11) has a 1-ft of the form H(1,2,9,10: 12). 
Although the above theorem finds only one k-ft for a 
distributed loop G, a large family of k-ft solutions 
can be generated as will be shown later. To compare 
the costs, we shall count only the number of jumps 
used in every solution as it relates directly to node-
degree. Notice that the degree of a graph H is defined 
as the maximum degree of any node in H. 
 
3. PARTITIONING THE JUMPS OF A 

DISTRIBUTED LOOP 
 

      A subset of the jumps of a distributed loop G is 
called a block if they are physically consecutive, i.e., 
of the form �j, j1, j2, ...�. By the (k-ft) theorem 
proven in the preceding section, the fewer the number 
of blocks in G, the more efficient the cost of its k-ft. 
Thus, the best-case for the k-ft constructed by this 
theorem occurs when the jumps of G are all 
consecutive (i.e., form only one block), whereas the 
worst-case occurs when no pair of jumps are 
consecutive (i.e., each block in G consists of only one 
jump).  

    In this section, we develop a new formalism called 
m-distance subsets which generalizes the notion of 
blocks. These subsets will be obtained by partitioning 
the jumps of the given loop as explained below.  
 
 
     In what follows, the greatest common divisor of 
two integers x and y will be denoted gcd(x,y) and the 
inverse of x (mod n) is denoted x1. Notice that x x1 
(mod n) = 1. Two integers x and y are called coprime 
or relatively prime, if gcd(x,y)= 1. 
 
Definition 3.1: (Partitioning sequences)  
Let n and m be any pair of integers where 
gcd(n,m) �1 and n > m > 0. We define an ordered 
sequence, based on n and m,   denoted   S(n,m)  = 
<s1, s2, .., sn1>,  where  si � i m (mod n), for all 
1�i � n1.  
 
       For instance, when n=7 and m=1, S(7,1)= 
<1,2,3,4,5,6>. Similarly, for n=7 and m=3, we get 
S(7,3) = <3,6,2,5,1,4>. 
 
       It is not difficult to show that S(n,m) contains 
all integers from 1 up-to n-1, that is, it includes 
the whole range of valid jumps (of an n-node 
distributed loop). After generating S(n,m), we 
shall use it to partition the jumps of the distributed 
loop as will be explained below. 
 
Definition 3.2: (m-distance subset)  
A subset S of the jumps of an n-node distributed 
loop G is called an m-distance subset, where m is 
any integer such that gcd(n,m) =1 and n > m > 0, 
if there is a subsequence of consecutive elements 
in S(n,m) that contains every jump in S and has 
the same number of elements as in S. Further, an 
m-distance subset is called maximal if it is not 
contained in any other m-distance subset.  
 
Example 3.1: The two jumps of the distributed 
loop G(1,3: 9) form a 2-distance subset. This is 
because S(9,2)= <2,4,6,8,1,3,5,7>, i.e., S(9,2) has 
a subsequence <1,3> that contains these jumps. 
 
Definition 3.3: (m-distance partition)  
Let P(A,n,m) denote a collection of m-distance 
subsets defined over a set A of jumps of an n-
node distributed loop. Then, P(A,n,m) is called an 
m-distance partition of A, if every m-distance 
subset in P(A,n,m) is maximal and every jump in 
A appears (inside one subset) in P(A,n,m). 
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Example 3.2: Consider the distributed loop 
G(1,2,5:7). Since S(7,1) = <1,2,3,4,5,6>, a 1-
distance partition  of   the jumps of G is equal to  
1,2,5. 
 
Similarly, since S(7,3) =  <3,6,2,5,1,4>,  a 3-
distance 
partition of the jumps of G has only one subset 
1,2,5. 
 
     We present below the algorithm for partitioning 
the jumps of a distributed loop G in which A 
denotes the set of  jumps in G,  n  denotes  the 
number of nodes of G, and m is any integer that is 
coprime to n, where n > m > 0. 
 
Algorithm Partition (A,n,m) { 
 

1.  Construct the sequence S(n,m) = <s1, s2,.., sn1> as 
defined before; 

2. For every element si in S(n,m), if si appears as a jump 
in  A, then keep si in S(n,m); otherwise, replace si in 
S(n,m) by a special separation symbol, say "&"; 

3. For every (maximal) subsequence in S(n,m) that does 
not include the separation symbol "&", form an m-
distance subset which has the same elements as those 
in the subsequence; 

4.  Return a partition P(A,n,m) consisting of all  
m-distance subsets formed above; 
} 
 
Since S(n,m) contains n-1 elements, and each of them 
can be checked in Step 2 in only O(log �A�)  time 
(if A were sorted first), therefore, the time-
complexity of the above algorithm is O(n log �A�). 
 
 
         It is not difficult to show that the sequences S(n, 
m) and S(n, n-m) are the reverse of each other, and 
therefore, if we partition the jumps of an  n-node  
graph using S(n,m) or S(n,n-m), we obtain the same 
results. Accordingly, we shall use only sequences 
S(n,m) that satisfy the condition m < n �2. 
 
      The table below shows all possible ways to 
partition the jumps of the distributed loop G(1,4,7,9: 
11); each of them is based on a different value of m. 
 
 
 
 
 
 
 

Table 3.1 Every row below gives a value of m 
that is coprime to n, (where n= 11), the sequence 
S(11,m), and  a  partition of the jumps 1,4,7,9 
corresponding to m. 
 
M  S(11,m)   Partition 
of�1,4,7,9� 
 
1  <1, 2,3,4,5,6,7,8,9,10> ��1�, �4�, 
�7�, �9�� 
2 <2,4,6,8,10,1,3,5,7,9>  ��1�, �4�, 
�7,9�� 
3  <3,6,9,1,4,7,10,2,5,8>  ��1,4,7,9�� 
4 <4,8,1,5,9,2,6,10,3,7>  ��1�, �4�, 
�7�, �9�� 
5 <5,10,4,9,3,8,2,7,1,6>
 ��1,7�,�4,9�� 
 
 
4. THE ALGORITHM 
 
       Given a distributed loop G, we would like to 
construct a k-ft solution for it. This can be done 
by applying Theorem 2.1 directly as explained 
before. However, if the jumps are not consecutive, 
the solution obtained may be unnecessarily 
expensive. Therefore, to improve over this, we 
develop a new algorithm which works by 
generating a large family of k-ft solutions that can 
be compared to select the one with the least node-
degree. This method assumes that the jumps of G 
are specified numerically as constants. Otherwise, 
if the jumps of G are given symbolically (as 
variables), we can use the method explained in the 
next section. 
 
Theorem 4.1: If n and p are relatively prime 
integers, then the graph G(a1, a2,.., ai : n) must be 
isomorphic to H(a1 p mod n, a2 p mod n,.., ai p 
mod n: n). 
 
Proof: We define a mapping "f" which transforms 
each node x in G into a node f(x) in H such that 
f(x)= x p (mod n). To prove that "f" is one-to-one, 
it suffices to show that "f" cannot map distinct 
nodes to the same value. To see why, let f(x) 
� f(y), then x p (mod n) = y p (mod n), and 
therefore, by multiplying each side by p1 we get x 
p  p 1 (mod n) = y p  p 1 (mod n). But, since p  p 1 
� 1 (mod n), this will imply x�y. 
 
        The function "f" also preserves adjacency. 
This is because for any edge (x,y) in G, we must 
have some jump aj such that y � x  aj (mod n). 
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This, in turn, implies f(y) = f(x  aj) = x p + aj p 
(mod n),  
that is, f(y) = f(x)+ aj p mod n. This implies (f(x),f(y)) 
is an edge in H. 
 
       The two properties of "f" proven above 
establishes the isomorphism between G and H. ⁭ 
 
        Given a distributed loop G, we can apply the 
above theorem to convert each m-distance subset of 
its jumps into a block of consecutive elements as 
described in the following lemma.  (This is needed 
before we can construct a new k-ft solution for G.) 
 
Lemma 4.1: Multiplying the jumps of the distributed 
loop G(a1, a2,.., ai : n) by m1 transforms each m-
distance subset of its jumps into a block of 
consecutive integers of the form �j, j1, j2, ..�. 
 
Proof: By the definition of an m-distance subset 
given earlier, the elements of any such subset can be 
written as �b, bm, b 2m, ...�for some integer b, 
where additions are mod n. Thus, if we multiply the 
jumps by m1, we obtain �b  m1  , b  m1  + m  m1 , b  
m1 + 2m  m1, ..�where the additions and the 
multiplications are done mod n. Since m  m1  = 1 
(mod n), this subset can be simplified to �b  m1 , b  
m1 + 1, b  m1 + 2, ...�. Moreover, if we substitute j = 
b  m1  , we get �j, j1, j2, ..�. 
 
        The above results, together with the formalism 
of m-distance partitioning given earlier, generalize 
the theorem of Section 2 to construct a k-ft solution 
as follows. Instead of finding only one k-ft solution 
for G, we can form many k-ft solutions; one for every 
integer m relatively prime to n. Thus, based on the 
value of m selected, we can form an m-distance 
partition of the jumps of G; and then convert its 
subsets into blocks (as was shown in the above 
lemma), and finally apply Theorem 2.1 to form a new 
k-ft solution for G. The complete details are given in 
the algorithm below.  
 
          In this algorithm, G denotes a given distributed 
loop with n nodes and k denotes the number of node 
failures to be tolerated. 
 
 
Algorithm Fault-tolerance(G,k) � 

1. Generate all integers {m1, m2,.., mj� such that for 
each  mj  we have gcd(n,mj)� 1 and 1� mj < 
(n�2); 

2. For every mj generated above, find an mj-partition 
of  the jumps of the distributed loop G; 

3. For every mj-partition generated above, convert 
its  subsets into blocks by multiplying its jumps 
by mj

1  (mod n); and let Tj denote the distributed 
loop whose jumps consists of the union of these 
blocks;  

4. Use Theorem 2.1 to construct a k-ft solution of 
each  graph Tj  defined in Step(3); 

5. Compare all k-ft solutions constructed in Step(4)   
to select the one with the least node-degree; 
� 
   
       For every mj generated, it is not difficult to 
show Steps 2 to 5 of the above algorithm can be 
done in O(n log�A�k �A�). Thus, since the 
number of mj’s generated is bounded by O(n), the 
whole algorithm requires O(n2 log�A�n k 
�A�). 
 
Example 4.1: Let G =(1,4,7,9: 11) and k = 1. 
Then, we can use  Theorem 2.1 to form a 1-ft 
solution for G equal to H(1,2,4,5,7,8,9,10: 12). 
However, if we apply the above algorithm to G, 
many 1-ft solutions will be generated; and out of 
them the solution H(3,4,5,6,7: 12) will be selected 
as the one with the least node degree. (The table 
below provides a list of every solution generated, 
and the value of m corresponding to it.) 
 
Table 4.1 This table traces the various 1-ft 
solutions of G(1,4,7,9: 11) generated during the 
execution of above algorithm. The final solution 
selected is given in bold. 
 
m 1-ft solution of G(1,4,7,9:11)  
1 H(1,2,4,5,7,8,9,10: 12) 
2 H(2,3,6,7,9,10,11: 12) 
3  H(3,4,5,6,7: 12) �selected solution 
4  H(1,2,3,4,5,6,10,11: 12) 
5 H(3,4,5,8,9,10:12)  
 
 
Lemma 4.2: Algorithm Fault-tolerance(G,k) runs in 
O(n2 log�A�n k �A�) time. 
Proof: We trace the steps of the algorithm for each 
mj generated. Checking if mj and n are relatively 
prime in Step(1) can be done in O(log3 n) time as 
shown in reference [12], and finding a partition 
corresponding to mj in Step(2) requires O(n log�A�) 
time as was shown earlier.  Converting the jumps into 
blocks in Step(3) needs O(�A�) time, and 
constructing a k-ft in Step(4) requires at most 
O(k�A�) time. Thus, the time for each mj is O(n 
log�A�k �A�), and since the number of integers 
(mj’s) to be generated is bounded by O(n), therefore, 
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the whole algorithm can be done in  O(n2 log�A�n k 
�A�) time. ⁭ 
 
       The following table gives several examples of 
graphs, as well as their 1-ft and 2-ft solutions that are 
computed by the above algorithm. 
 
Table 4.2 Every row gives a graph G, its 1-ft and 2-
ft. 
Graph   1-ft of G  2-ft of G 
G(1:5)   H(1,2:6)  H(1,2,3:7) 
G(1,6:7)  H(3,4,5:8)  H(3,4,5,6:9) 
G(1,3:7)  H(4,5,6:8) H(4,5,6,7:9) 
G(1,3:9)  H(5,6,7: 10)  H(5,6,7,8:11) 
G(1,4,7,9:11)       H(3,4,5,6,7:12)     H(3,4,5,6,7,8:13)  
 

5. FAULT TOLERANCE OF A DISTRIBUTED 
LOOP 
      The algorithm given above for designing a k-ft 
solution of a distributed loop G is simple to 
implement; however, it assumes that the parameters 
of G are given numerically, i.e., the size n and the 
jumps of G must be constants.  If these parameters 
are given symbolically (as variables), a k-ft solution 
can be developed analytically, by applying our 
formulation (of m-distance partitioning) to G. The 
method is explained below by developing a solution 
for the (daisy-chain) network G(1, n2 : n), which was 
introduced originally in [11]. 
 
Lemma 5.1: Suppose that n is divisible by 3. Then, 
either n/3 -1, or n/3 +1, or both must be coprime to n. 
 
Proof: Since every pair of consecutive integers is 
coprime,   then each of the two pairs (n/3 -1, n/3) 
and (n/3, n/3 +1) must be coprime. This, in turn, 
implies that "3" is the only possible common 
factor between the pair (n/3 -1, n), and between 
the pair (n, n/3 +1). However, since exactly one 
out of any 3 consecutive integers (e.g., n/3 -1, n/3, 
n/3 +1) is divisible by 3,  therefore, at least one of 
the two pairs (n/3 -1, n) or (n, n/3 +1) must be 
coprime. ⁭ 
 
Lemma 5.2: Let n be divisible by 3, and let n/3 -1 
be coprime to n.   Then, the inverse of n/3 -1 (mod 
n) is equal   to either (2n/3 -1) or (n/3 -1) 
depending on whether or not n is divisible by 9; 
respectively. 
Proof: Since 3 divides n and n/3 -1 is coprime to 
n, then n/3 -1 cannot be divisible by 3. 
Consequently, either n/3 or n/3 +1 is divisible by 
3. 
 

    Suppose first that n/3 is divisible by 3, i.e., n is 
divisible   by  9.  Then,   (n/3 -1)(2n/3 -1)  =  
2n(n/9)-n+1. Since n/9 is an integer in this case, 
therefore 2n(n/9) – n +1 (mod n) = 0 -0 +1 =1. 
Thus, (n/3 -1)1 = 2n/3 -1.      
 
         Otherwise, suppose that n/3 +1 is divisible 
by 3, then   (n/3 -1)(n/3 -1)  = (n/3)(n/3 +1) -n 
+1= n (n/3 +1)/3 -n +1 = n(0) -0 +1 (mod n) =1.   
That is, (n�3 -1)1 = n/3 -1 (mod n). ⁭ 
 
Lemma 5.3: Let n be divisible by 3, and let n/3 
+1 be a coprime to n.  Then, the inverse of n/3 +1 
(mod n) is equal to either (2n/3 +1) or (n/3 +1) 
depending on whether or not n is divisible by 9; 
respectively. 
Proof: The proof methodology for this lemma is 
similar to that given in Lemma 5.2, and therefore 
omitted. ⁭ 
 
Theorem 5.1: For any k �1, we can form a k-ft 
solution H of the distributed loop G(1, n-2: n) as 
follows.  

a) If 3 divides (n+1), the solution H will be equal to 
H((n-2)/3, (n+1)/3, (n+1)/3 +1,.., (n+1)/3 +k : 
n+k).  

b) If 3 divides (n-1), the solution H will be equal to 
H((2n-2)/3, (2n+1)/3, (2n+1)/3 +1 ,.., (2n+1)/3 + k 
:  n+k). 

c) If 3 divides n and gcd(n, (n/3 +1)(n/3 -1))=1, H will 
be equal to H((2n/3)-1, 2n/3,.., (2n/3)+k-1, (2n/3)+2,   
(2n/3)+3,.., (2n/3)+2+k : n+k). 

d) If 3 divides n and gcd(n, n/3 +1) �1, H will be      
H((n/3) -1, (n/3),.., (n/3) -1+k, (n/3) +2, (n/3) +3,..,  
(n/3) +2+k : n+k). 

e) If 3 divides n and gcd(n, n/3 -1) �1, H will be    
H((n/3) -2, (n/3) -1,.., (n/3) -2+k, (n/3)+1, (n/3)+2,..,  
(n/3)+1+k : n+k). 
(Thus, in all cases, H has either k+2 or k+4 jumps.) 
 
Proof:    Suppose first that Case(a) is true, i.e., let 
(n+1) be divisible by 3. Then, 31 (mod n) will be 
equal to (n+1)/3, i.e., we can group the two jumps of 
G into a 3-distance  partition, and then form a block 
graph Q for G of the form   Q(1 31, (n-2) 3 1: n)= Q(1 
(n+1)/3, (n-2) (n+1)/3: n)= Q((n-2)/3, (n+1)/3 : n), 
(where the multiplication is done mod n). Thus, a k-ft 
H of G will be H((n-2)/3, (n+1)/3, (n+1)/3 +1,.., 
(n+1)/3 +k : n+k). 
 
       Similarly, suppose that Case(b) is true, i.e., let 
(n-1) be divisible by 3,  then it is not difficult to 
verify that 31  =  (2n+1)/3.   This   is   because,    3 
(2n+1)/3 =  3 (2n-2+3)/3 = 3 2(n-1)/3 +3 =2n23 =1 
mod n). Thus, we   can     group    the    jumps   of  G  
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into  a   3-distance  partition,  and then form a block 
graph Q for G of the form Q(1 3 1, (n-2) 3 1: n) = Q(1 
(2n+1)/3, (n-2)  (2n+1)/3: n) = Q((2n-2)/3, (2n+1)/3: 
n), (where the multiplication is done mod n). 
Accordingly, a k-ft solution H of G is equal to H((2n-
2)/3, (2n+1)/3, (2n+1)/3 +1,.., (2n+1)/3 +k : n+k). 
 
           Suppose Case(c) is true, i.e., let 3 divides n 
and gcd(n, (n/3 +1)(n/3 -1)) =1.  Then, we can group 
the jumps of G into either an (n/3 +1)-distance 
partition or (n/3 -1)-distance partition.   Both lead to 
solutions of equal cost, and therefore, we chose the 
latter, that is, the block graph of G in this case will be 
Q(1 (n/3 -1)1, (n-2) (n/3 -1)1: n).   Since  neither  (n/3 
+1)   or    (n/3 -1) is divisible by 3 in this case, 
therefore, n must be divisible by 9, i.e., by Lemma 
5.2, the inverse of (n/3 -1) will be equal to (2n/3 -1).   
Thus,  the   block  graph  Q  will   be  Q(1 (2n/3 -1),  
(n-2) (2n/3 -1) : n) = Q((2n/3 -1), (2n/3 +2) : n) 
(where multiplication is done mod n). Thus, a k-ft 
H of G will be H((2n/3)-1, 2n/3,.., (2n/3)+k-1, 
(2n/3)+2, (2n/3)+3,.., (2n/3)+2+k : n+k).  
 
       Similarly, suppose that Case(d) is true, i.e., let 
3 divides n and gcd(n, n/3 +1) �1.    Then, by 
Lemma 5.1, n and (n/3)-1 must be coprime, i.e., 
we can group the jump of G into an (n/3 -1)-
distance partition, and then form a block graph Q 
for G of the form  Q(1(n/3 -1)1, (n-2) (n/3 -1)1 : 
n),    where the inverse of (n/3 -1) in this case will 
be equal to (n/3 -1)  as was shown in Lemma 5.2.    
Thus,    the   block   graph is equal to Q(1 (n/3 -1),  
(n-2)  (n/3 -1) : n) =   Q((n/3 -1), (n/3 +2) : n) 
(where multiplication is done mod n). Thus, a k-ft 
H of G will be H((n/3)-1, (n/3),.., (n/3)-1+k, 
(n/3)+2, (n/3)+3,.., (n/3)+2+k : n+k).  
 
        Finally, suppose that Case(e) is true, i.e., let 
3 divides n and gcd(n, n/3 -1) �1. Then, by 
Lemma 5.1, n and (n/3 +1) must be coprime, i.e., 
we can group the jumps of G into an  (n/3 +1)-
distance  partition, and form a block graph for G 
of the form Q(1(n/3 +1)1, (n-2)  (n/3 +1)1 : n),  
where the inverse of (n/3 +1) in this case is equal 
to (n/3 +1) as was shown in Lemma 5.2. Thus, the 
block graph will be equal to Q(1 (n/3 +1), (n-2)  
(n/3 +1) : n) = Q((n/3 +1), (n/3 -2) : n) (mod n). 
Therefore, a k-ft H of G will be H((n/3)-2, (n/3)-
1,.., (n/3)-2+k, (n/3)+1, (n/3)+2,.., (n/3)+1+k : 
n+k). ⁭ 
 
Table 5.1 For each case (a) to (e) proven in the 
above theorem, an example of a graph and its k-ft 
is given. 
 

Graph  G(1,n-2:n) A 6-ft H of G  
 
G(1, 9 : 11)   H(3,4,..,10: 17) 
G(1, 14 : 16)  H(10,11,..,17: 22) 
G(1, 16 : 18)   H(11,12,..,20: 24) 
G(1, 13 : 15)   H(4,..,13: 21) 
G(1, 10 : 12)   H(2,3,..,11: 18)  
 
    
           Actually, the solutions developed in the 
above theorem are either optimal (when n is not 
divisible by 3) or  nearly-optimal  (when 3 divides 
n).  The   proof 
follows from the following theorem which 
establishes a lower- bound on the node-degree of any 
k-ft solution. (Notice that the node degree of a loop H 
is twice the number of its jumps.) 
 
Theorem 5.2: Given a distributed loop G with d 
jumps, any k-ft H of G must have a degree �2(d+k). 
Proof: Suppose to the contrary a k-ft solution H has a 
smaller degree than 2(d+k). Then, for any node u, 
either its in-degree(u) or out-degree(u) is less than 
(d+k). Suppose,  for example, in-degree(u) < (d+k) 
and select any set of k nodes "adjacent to u" as being 
faulty. Excluding or removing these k nodes from H 
will make the new value of in-degree(u) less than d, 
i.e., the graph obtained by excluding these k nodes 
from H cannot contain a subgraph  isomorphic to G, 
which implies that H cannot be a k-ft of G leading to 
a contradiction. ⁭ 
 
        As a consequence of the lower-bound proven 
above, the k-ft solution constructed by our Theorem 
2.1 for a loop G with a single jump (or with a single 
block of jumps) is optimal in node-degree. That is, 
G(b :n) has an optimal k-ft of the form H(b, b1,.., bk : 
nk). 
 
6. CONCLUSIONS 
 
      Distributed loop networks form the underlining 
topology of many local area networks and some 
parallel computers (such as the ILLIAC machine). 
This class of networks satisfies many useful 
properties and includes as special cases) important 
topologies such as rings and circulant graphs, for 
examples. 
 
        Due to the highly regular structure of distributed 
loop networks,  they tend to be vulnerable to node 
failures. Accordingly, we have examined the problem 
of  extending these networks by adding spare nodes 
and   links, so as to make the structure fault-tolerant. 
Our method can be used to tolerate any desired 
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number of node failures, and moreover, it can be 
applied whether the parameters that define the 
distributed loop are stated numerically (as constants) 
or symbolically (as variables). 
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