
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

134

CONSTRUCTION AND EVALUATION OF MESHES BASED
ON SHORTEST PATH TREE VS. STEINER TREE FOR

MULTICAST ROUTING IN MOBILE AD HOC NETWORKS

1JAMES SIMS, 2NATARAJAN MEGHANATHAN
1Undergrad Student, Department of Computer Science, Jackson State University, Jackson, MS 39217, USA
2Assistant Professor, Department of Computer Science, Jackson State University, Jackson, MS 39217, USA

ABSTRACT

A mobile ad hoc network (MANET) is a network of mobile devices that continuously restructure their
topology due to mobility. Proposals on tree-based routing versus mesh-based routing protocols have shown
that mesh-based multicast routing gives improved results for MANETs. The main reason for this is because
trees are highly susceptible to failure due to frequent mobility. This paper will look at the developing a
mesh from two different structures: a shortest path tree and a minimum Steiner tree. In each of the two
cases, we extend a tree to a mesh by incorporating edges, which exist in the network graph, between any
two constituent nodes of the tree. The goal is to look and determine how the implementation of these two
structures can affect the overall performance of the multicast mesh and derive theoretical

Keywords: Mobile Ad hoc Networks, Shortest Path Trees, Minimum Steiner Trees, Stability, Multicast,
Mesh

1. INTRODUCTION

The study of mobile ad hoc networks
(MANETs) continues to grow mainly because of
the variety of applications that these networks can
be applied to: disaster recovery, rescue missions,
military operations in a battlefield, conferences,
crowd control, etc [1]. MANETs are of top priority
in these areas where a few seconds or loss of
communication, could be the difference between
losing and saving lives. It has been well
documented in many papers that in the case of
MANETs, mesh-based routing protocols perform
better than tree-based routing protocols for
multicasting [2]. This fact leads us into our research
to look into how different implementations of the
mesh can either help or hurt the performance of the
mesh in its initial phase. In this paper, we will focus
on the structure of the mesh and its formation, and
not focus on the transmission of data between
nodes, overhead, and data packet delivery ratio. We
will take a different approach to form a mesh – we
will extend a tree (shortest path tree and a minimum
Steiner tree) to a mesh by adding edges that may
exist, in the original network graph, between any
two constituent nodes of the tree. The goal is to
observe if the mesh becomes more efficient,
specifically, in terms of its stability, measured as

the lifetime of the mesh. In addition, we will also
measure the hop count per source-destination pair
in a mesh as well as the number of edges that
constitutes the mesh.

The main areas that are being researched on
MANETs are targeting performance with respect to
stability, energy consumption and control message
overhead. By using a mesh structure instead of a
tree, the disadvantages of multicast trees in mobile
wireless networks are avoided [4]. In this study, the
networks will be constructed as a unit-disk graph
where all of the edges of the graph are bi-
directional. These properties will allow us develop
a minimum Steiner tree using Kou et al’s Heuristic
[5] to find and approximate minimum Steiner tree,
and also find the minimal weight per source-
receiver path for a shortest path tree. The mesh can
then be developed after the trees have been
constructed by using the criteria of links that may
exist between the nodes of the tree. We believe that
the two different implementations (shortest path
tree based mesh vs. Steiner tree based mesh) can
have a major effect on the performance of the
multicast group mesh with respect to stability,
delay, energy consumption and other critical
metrics.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

135

The rest of the paper is organized as follows.
Section 2 describes the construction of a mesh from
a shortest path tree; Section 3 describes the
construction of a mesh based on a minimum Steiner
tree. Section 4 describes the simulation conditions,
presents and interprets the performance results.
Section 5 concludes the paper and also lists ideas
for future work. Throughout the paper, the terms
‘edge’ and ‘link’, ‘node’ and ‘vertex’, ‘path’ and
‘route’ are used interchangeably. They mean the
same.

2. SHORTEST PATH TREE-BASED MESH

In order to find a shortest path tree from the
source node(s) to the receiver node(s) constituting
the multicast group, the underlying network graph
must first be connected. This means there should be
a path between any two nodes in the network graph.
We will use the well-known Breadth First Search
(BFS) algorithm [6] to test the connectivity of the
network graph. If the network is connected at the
specific time instant we want to find the tree, we
proceed to find the shortest path tree rooted at each
of the source nodes to the set of receiver nodes. We
will use the well-known Dijkstra’s shortest path
algorithm [6] to determine the shortest path trees
from a source node to the receiver nodes in a given
graph. The pseudo code for Dijkstra’s algorithm is
shown here in Figure 1 [6]. We will extend this tree
to a mesh by checking if there are edge(s) between
any two constituent nodes (the source node,
intermediate nodes and receiver nodes) of the
shortest path tree. The end result is a shortest path
tree overlapped with mesh edges, resulting in a
multicast mesh that has more robustness for node
mobility, compared to a tree.

Begin Algorithm Dijkstra (G, s)
1 For each vertex v Є V
2 d [v] ← ∞ // an estimate of the minimum
 -weight path from s to v
3 End For
4 d [s] ← 0
5 S ← Φ // set of nodes for which we know the
 minimum-weight path from s
6 Q ← V // set of nodes for which we know
 estimate of minimum-weight path from s
7 While Q ≠ Φ
8 u ← EXTRACT-MIN (Q)
9 S ← S U {u}
10 For each vertex v such that (u, v) Є E
11 If d [v] > d [u] + w (u, v) then
12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u
13 End If
14 End For
15 End While
16 End Dijkstra

Figure 1: Pseudo Code for Dijkstra’s Algorithm

We illustrate the extension of a shortest path tree

to a shortest path mesh through the examples in
Figures 2 and 3. In Figure 2, we have one source
(node F) and three receiver nodes (nodes L, C and
N). The shortest path tree determined through
Dijkstra algorithm will have 7 links. In addition, we
notice that there exist links between nodes M-W,
W-K, L-E, W-N and E-N wherein M, W, K, L, E
and N are constituent nodes of the tree. As these
nodes are part of the shortest path tree, it is prudent
to extend the fragile tree (that can break anytime
with the failure of a single link) to a more robust
mesh (that can withstand link failures) by adding
the links that exist between the constituent nodes of
the tree. In our case, the above listed five links
along with the seven links of the shortest path tree
form a robust mesh involving 12 links (bold lines),
comprising the same set of nodes that formed the
shortest path tree. Note that we could not include
any link connected to nodes A and S to the
extended mesh as these two nodes are not part of
the original shortest path tree.

Figure 2: Extension of a Single Source Shortest Path

Tree to a Mesh

We will also apply the above idea for multi-
source scenarios, as illustrated through the example
in Figure 3. In this case, we run the Dijkstra
algorithm to find the shortest path tree rooted at
each source node (nodes A and C) connecting the
set of receiver nodes (nodes F, M and O). We then
form an aggregate of all the shortest path trees
rooted at each source node. Such an aggregate of
shortest path trees has 13 links. We could extend
the shortest path tree aggregate to a 19-link mesh
by incorporating additional links between the

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

136

constituent nodes of the original shortest path trees.
Note that, we could not add links connected to
nodes D, H, L and P as these four nodes are not the
constituent nodes of the original aggregate of
shortest path trees.

Figure 3: Extension of a Two Source Shortest Path Tree

Aggregate to a Mesh

3. MINIMUM STEINER TREE-BASED
MESH

Given a static graph, G = (V, E), where V is the
set of vertices, E is the set of edges and a subset of
vertices (called the multicast group or Steiner
points) MG ⊆ V, the multicast Steiner tree is the
tree with the least number of edges required to
connect all the vertices in MG. Unfortunately, the
problem of determining a minimum edge Steiner
tree in an undirected graph like that of the static
graph is NP-complete. Efficient heuristics (e.g., [5])
have been proposed in the literature to approximate
a minimum Steiner tree. In this paper, we use the
Kou et al’s [5] well-known O(|V||MG|2) heuristic
(|V| is the number of nodes in the network graph
and |MG| is the size of the multicast group
comprising of the source nodes and the receiver
nodes) to approximate the minimum edge Steiner
tree in graphs representing snapshots of the network
topology. An MG-Steiner-tree is referred to as the
minimum edge Steiner tree connecting the set of
nodes in the multicast group MG ⊆V. In unit disk
graphs such as the static graphs used in our
research, Step 5 of the heuristic is not needed and
the minimal spanning tree TMG obtained at the end
of Step 4 could be considered as the minimum edge
Steiner tree. We use the Kruskal’s algorithm [6] to
determine the minimum spanning trees.

Input: A Static Graph G = (V, E)
 Multicast Group MG ⊆ V
Output: A MG-Steiner-tree for the set MG ⊆ V

Begin Kou et al Heuristic (G, MG)

Step 1: Construct a complete undirected
weighted graph GC = (MG, EC) from G and MG

where ∀ (vi, vj) ∈ EC, vi and vj are in MG, and
the weight of edge (vi, vj) is the length of the
shortest path from vi to vj in G.
Step 2: Find the minimum weight spanning tree
TC in GC (If more than one minimal spanning
tree exists, pick an arbitrary one).
Step 3: Construct the sub graph GMG of G, by
replacing each edge in TC with the corresponding
shortest path from G (If there is more than one
shortest path between two given vertices, pick an
arbitrary one).
Step 4: Find the minimal spanning tree TMG in
GMG (If more than one minimal spanning tree
exists, pick an arbitrary one). Note that each
edge in GMG has weight 1.

 return TMG as the MG-Steiner-tree

End Kou et al Heuristic

Figure 4: Kou et al’s Heuristic [5] to find an
Approximate Minimum Edge Steiner Tree

We give a brief outline of the heuristic in Figure

4 and illustrate the working of the heuristic through
an example in Figure 5. The vertices {D, G, E, M,
N, P} form the multicast group in the vertex set {A,
B … P}. As observed in the example, the subgraph
GMG obtained in Step 3 is nothing but the minimal
spanning tree TMG, which is the output of Step 4. In
general, for unit disk graphs, like the static graphs
we are working with, the outputs of both Steps 3
and 4 are the same and it is enough that we stop at
Step 3 and output the MG-Steiner-tree.

The multicast mesh based on the minimum
Steiner tree is constructed the same as the shortest
path tree-based mesh. We check for the existence of
edge(s) between any two constituent nodes of the
minimum Steiner tree for its extension to a mesh.
Figure 5 also illustrates the extension of the
minimum Steiner tree to a mesh. As we notice in
this example, the number of edges in the Steiner
tree-based mesh is just one more than the number
of edges in the original minimum Steiner tree. In
general, as we notice in the simulation results too,
the number of edges that could be added to a
Steiner-tree based mesh from its corresponding
Steiner tree is relatively lower than the number of
edges that could be added to a shortest path tree
based mesh from its corresponding tree (i.e., the
shortest path tree). As the shortest path trees have
more edges than the Steiner trees, the possibility of
adding relatively more edges lends more robustness
to the shortest path tree based meshes compared to
the Steiner-tree based meshes. This crucial

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

137

observation, confirmed through the simulation
results, is one of the major contributions of this
paper.

Figure 5: Construction of a Minimum Steiner Tree and

its Extension to a Mesh

4. SIMULATIONS AND RESULTS

The simulations have been conducted in a
discrete-event simulator implemented by the
authors in Java. The two multicast mesh algorithms
(shortest path based mesh, denoted as SPT mesh in
the figures and Steiner-tree based mesh) have been
implemented in a centralized fashion. The network
size is 1000 m x 1000 m. The density of the
network is varied by conducting the simulations
with two different values for the number of nodes:
50 nodes (low density) and 150 nodes (high
density). The transmission range per node is 250m.
The simulation time is 1000 seconds. The network
is periodically sampled for every 0.25 seconds and
on such a snapshot network graph, we validate the
existence of the most recently used multicast mesh
or determine new multicast mesh, if no such mesh
exists. A multicast mesh is used as long as it exists.
We used three different values for the number of
source nodes: 1, 5 and 10 sources; the number of
receivers per source (same set of receiver nodes for
all sources) is varied with five different values: 3,
10, 18, 27 and 36.

The node mobility model used is the Random
Waypoint model [7]. Each node starts moving from
an arbitrary location (i.e., waypoint) at a speed
uniformly distributed in the range [vmin, …, vmax].
Once the destination is reached, the node may stop
there for a certain time called the pause time and
then continue to move to a new waypoint by
choosing a different target location and a different
velocity. A mobility trace file generated for a
particular vmax value over the duration of the
simulation time is the congregate of the location,
velocity and time information of all the waypoints

for every node in the network. In this paper, we set
vmin = 0. The vmax values used are 5 m/s (low
mobility) and 50 m/s (high mobility). The pause
time is 0 seconds.

4.1 Performance Metrics

The performance metrics measured are as follows.
Each performance metric illustrated in Figures 6 to
17 is an average of the values measured using 5
different lists of receiver nodes of a particular size,
for a given number of source nodes and the
multicast mesh algorithm is run on five different
mobility trace files generated for a fixed vmax.

(i) Lifetime per Mesh: Whenever a path does not
exist from any source to all receivers, the mesh is
considered to have failed. A new mesh is
determined after the network graph is found to be
connected for the time instant. The lifetime of the
mesh is the average amount of time these meshes
exist the duration of the simulation.

(ii) Edges per Mesh: The number of edges per mesh
is the time-averaged value of the number of edges
in the sequence of meshes used for each of the time
instants of the multicast session. For each time
instant, each edge in a mesh is validated for its
existence before the validity check for mesh
connectivity. The concept of time-average is
explained as follows using an example: If we have
been using two meshes – the first mesh with 20
edges for 9 seconds and the second mesh with 15
edges for the subsequent 6 seconds – over a time
period of 15 seconds, the time-averaged value for
the number of edges per mesh is (20*9 + 15*6)/15
= 18.0 and not simply the average of the two values
for the number of edges: (20 + 18) / 2 = 17.5.

(iii) Hop Count per Source-Receiver Path: This
metric is a time-averaged value of the number of
hops in the paths from each source to each receiver
of the multicast group for the duration of the
multicast session.

4.2 Lifetime per Mesh

The average lifetime per mesh is a measure of
the stability of the mesh. The lifetime of both the
shortest path tree-based mesh and minimum Steiner
tree-based mesh increased as network density
increased. The lifetime of the shortest path tree-
based mesh was significantly better than that of the
minimum Steiner tree-based mesh. Only in cases of
low mobility, low network density, and smaller
multicast group size was the minimum Steiner tree
mesh lifetime in the range of the shortest path tree

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

138

mesh. In over 90% of the cases the average lifetime
for the shortest path tree mesh was at least twice the

amount of time greater than that of the minimum
Steiner mesh lifetime.

 Figure 6.1: 1 source Figure 6.2: 5 sources Figure 6.3: 10 sources

Figure 6: Lifetime per Mesh (Low Node Mobility and Low Network Density)

 Figure 7.1: 1 source Figure 7.2: 5 sources Figure 7.3: 10 sources

Figure 7: Lifetime per Mesh (High Node Mobility and Low Network Density)

 Figure 8.1: 1 source Figure 8.2: 5 sources Figure 8.3: 10 sources

Figure 8: Lifetime per Mesh (Low Node Mobility and High Network Density)

 Figure 9.1: 1 source Figure 9.2: 5 sources Figure 9.3: 10 sources

Figure 9: Lifetime per Mesh (High Node Mobility and High Network Density)

When the multicast group size (sum of the
number of sources plus the number of receivers)
exceeded 10, the average lifetime per shortest path
mesh was more than 200 seconds (i.e., more than
20% of the 1000s simulation time). When node

mobility was 5 m/s and network density was 150
nodes, the average lifetime per shortest path mesh
was almost 60% of the simulation time. As the
node velocity increased, the mesh lifetime
decreased as expected.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

139

4.3 Number of Edges per Mesh

The shortest path mesh had a significantly larger
number of edges and this could be attributed to the

presence of a relatively larger number of nodes per
mesh as well as to the principle of the underlying

 Figure 10.1: 1 source Figure 10.2: 5 sources Figure 10.3: 10 sources

Figure 10: Number of Edges per Mesh (Low Node Mobility and Low Network Density)

 Figure 11.1: 1 source Figure 11.2: 5 sources Figure 11.3: 10 sources

Figure 11: Number of Edges per Mesh (High Node Mobility and Low Network Density)

 Figure 12.1: 1 source Figure 12.2: 5 sources Figure 12.3: 10 sources

Figure 12: Number of Edges per Mesh (Low Node Mobility and High Network Density)

 Figure 13.1: 1 source Figure 13.2: 5 sources Figure 13.3: 10 sources

Figure 13: Number of Edges per Mesh (High Node Mobility and High Network Density)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

140

shortest path tree algorithm in determining shortest
minimum hop paths without any consideration on
the number of edges being introduced to the tree.
Only, in conditions of low node mobility and low
network density, both the meshes had similar

values for the number of nodes. The number of
nodes per shortest path mesh grew to 1.5-2.0 times
larger than the number of nodes per Steiner tree
mesh as the network density increased. As a result,
for at least 70% of the scenarios, the shortest path

 Figure 14.1: 1 source Figure 14.2: 5 sources Figure 14.3: 10 sources

Figure 14: Hop Count per Source-Receiver Pair Path (Low Node Mobility and Low Network Density)

 Figure 15.1: 1 source Figure 14.2: 5 sources Figure 14.3: 10 sources

Figure 15: Hop Count per Source-Receiver Pair Path (High Node Mobility and Low Network Density)

 Figure 16.1: 1 source Figure 16.2: 5 sources Figure 16.3: 10 sources

Figure 16: Hop Count per Source-Receiver Pair Path (Low Node Mobility and High Network Density)

 Figure 16.1: 1 source Figure 16.2: 5 sources Figure 16.3: 10 sources

Figure 17: Hop Count per Source-Receiver Pair Path (High Node Mobility and High Network Density)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

141

mesh had at least twice the number of edges
compared to the Steiner tree-based mesh.

The mesh lifetime is directly related to the
number of nodes and edges per mesh. Having more
intermediate nodes and edges in the mesh lends
robustness to the mesh. The tradeoff is a relatively
larger routing overhead. There would be several
paths for every source-receiver pair and packets
from the source nodes go through all these paths to
the receiver nodes. Hence, there would be lot of
redundant packets received along a shortest path
mesh vis-à-vis a Steiner-tree based mesh.

4.4 Hop Count per Source-Receiver Path

The average hop count per source-receiver path
for both the shortest path tree and minimum Steiner
tree-based meshes was in the range from 2-3.5
hops; the shortest path mesh had a lower hop count
compared to the Steiner-tree mesh for more than
85% of the scenarios. This could be attributed to
the operating principle of the underlying shortest
path tree algorithm as well as to the presence of a
larger number of edges per mesh. The Steiner-tree
based meshes are based on the objective of
minimizing the number of edges per tree to reduce
the route redundancy. The tradeoff is that when the
mesh nodes are connected with less number of
edges, the paths between the source nodes to the
receiver nodes are more likely to be longer. With a
shortest path tree based mesh, every source-receiver
pair (even in multi-source scenarios) is more likely
to be connected on a relatively shorter path
compared to the Steiner-tree based mesh. We also
noted that the average hop count per path was not
much affected either by the network density, node
mobility, or the number of source nodes and
receiver nodes of the multicast session.

5. CONCLUSIONS AND FUTURE WORK

The stability of any communication structure

depends heavily on the design and operating
principle of its base, and this is the approach we
took to design and observe tree-based meshes
(shortest path mesh vis-à-vis a Steiner-tree based
mesh) for a MANET. We observe that the shortest
path meshes had a longer lifetime and lower hop
count per source-receiver path and this could be
attributed to the presence of a relatively larger
number of nodes and edges per shortest path mesh.
In a related work [1], we observed that the shortest
path (minimum hop) trees are less stable the Steiner

(minimum edge) trees. However, as we noted in
this research, the stability of the meshes that are
extended from the shortest path trees could be
considerably high compared to the stability of the
meshes that are extended from the Steiner trees. In
other words, the shortest path trees may be more
fragile than Steiner trees; but, the shortest path tree
based meshes are more robust than the Steiner-tree
based meshes. The tradeoff for a larger mesh
stability would be the redundancy in the number of
similar data packets that get transferred through the
mesh. The algorithm to construct Steiner-tree based
meshes also has a larger run-time compared to that
of the shortest path tree-based meshes.

We currently plan to develop distributed
versions of the two (centralized) mesh algorithms
that we have worked on this paper so that they
could be evaluated with respect to more practical
performance metrics such as energy consumption,
delay per data packet and packet delivery ratio. We
will also investigate techniques that will reduce the
redundancy in the data packets received at the
multicast receivers through the mesh, without any
compromise on the robustness of the mesh.

6. ACKNOWLEDGMENTS

This research is funded by the U.S. National
Science Foundation through grant (CNS-0851646)
entitled: “REU Site: Undergraduate Research
Program in Wireless Ad hoc Networks and Sensor
Networks,” hosted by the Department of Computer
Science at Jackson State University (JSU), MS,
USA. The authors also acknowledge Dr. M. Watts,
Dr. L. Moore, Mrs. B. Johnson and Ms. I. Dasari
for their services during the Summer 2010 program.

REFERENCES:

[1] N. Meghanathan, “Determining a Sequence of

Stable Multicast Steiner Trees in Mobile Ad
hoc Networks,” Proceedings of the 44th ACM
Southeast Conference, pp. 102-106,
Melbourne, FL, USA, March 2006.

[2] K. Viswanath, K. Obraczka and G. Tsudik,
“Exploring Mesh and Tree-based Multicast
Routing Protocols for MANETs,” IEEE
Transactions on Mobile Computing, vol. 5, no.
1, pp. 28-42, January 2006.

[3] M. Lee and Y. Kim, “PatchODMRP: an ad hoc
multicast routing protocol,” Proceedings of the
15th International Conference on Information
Networking, pp. 537-543, February 2001.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

142

[4] S-J. Lee, M. Gerla and C-C. Chiang, “On-
Demand Multicast Routing Protocol,”
Proceedings of the IEEE Wireless
Communications and Networking Conference,
vol. 3, pp. 1298-1302, September 1999.

[5] L. Kou, G. Markowsky and L. Berman, “A Fast
Algorithm for Steiner Trees,” Acta
Informatica, vol. 15, no. 2, pp. 141-145, 1981.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest
and C. Stein, “Introduction to Algorithms,”
2nd Edition, pp. 561-579, MIT Press, 2001.

[7] Bettstetter, C., Hartenstein, H., and Perez-Costa,
X. “Stochastic Properties of the Random-Way
Point Mobility Model,” Wireless Networks,
vol. 10, no. 5, pp. 555-567, September 2004.

