
Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT & LLS. All rights reserved.                                                                      
 

www.jatit.org 
 

 
134 

 

CONSTRUCTION AND EVALUATION OF MESHES BASED 
ON SHORTEST PATH TREE VS. STEINER TREE FOR 

MULTICAST ROUTING IN MOBILE AD HOC NETWORKS 
 

1JAMES SIMS,   2NATARAJAN MEGHANATHAN 
1Undergrad Student, Department of Computer Science, Jackson State University, Jackson, MS 39217, USA 
2Assistant Professor, Department of Computer Science, Jackson State University, Jackson, MS 39217, USA 

  
 
 

ABSTRACT 
 

A mobile ad hoc network (MANET) is a network of mobile devices that continuously restructure their 
topology due to mobility. Proposals on tree-based routing versus mesh-based routing protocols have shown 
that mesh-based multicast routing gives improved results for MANETs. The main reason for this is because 
trees are highly susceptible to failure due to frequent mobility. This paper will look at the developing a 
mesh from two different structures: a shortest path tree and a minimum Steiner tree. In each of the two 
cases, we extend a tree to a mesh by incorporating edges, which exist in the network graph, between any 
two constituent nodes of the tree. The goal is to look and determine how the implementation of these two 
structures can affect the overall performance of the multicast mesh and derive theoretical 

Keywords: Mobile Ad hoc Networks, Shortest Path Trees, Minimum Steiner Trees, Stability, Multicast, 
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1. INTRODUCTION  
 

The study of mobile ad hoc networks 
(MANETs) continues to grow mainly because of 
the variety of applications that these networks can 
be applied to: disaster recovery, rescue missions, 
military operations in a battlefield, conferences, 
crowd control, etc [1]. MANETs are of top priority 
in these areas where a few seconds or loss of 
communication, could be the difference between 
losing and saving lives.  It has been well 
documented in many papers that in the case of 
MANETs, mesh-based routing protocols perform 
better than tree-based routing protocols for 
multicasting [2]. This fact leads us into our research 
to look into how different implementations of the 
mesh can either help or hurt the performance of the 
mesh in its initial phase. In this paper, we will focus 
on the structure of the mesh and its formation, and 
not focus on the transmission of data between 
nodes, overhead, and data packet delivery ratio. We 
will take a different approach to form a mesh – we 
will extend a tree (shortest path tree and a minimum 
Steiner tree) to a mesh by adding edges that may 
exist, in the original network graph, between any 
two constituent nodes of the tree. The goal is to 
observe if the mesh becomes more efficient, 
specifically, in terms of its stability, measured as 

the lifetime of the mesh. In addition, we will also 
measure the hop count per source-destination pair 
in a mesh as well as the number of edges that 
constitutes the mesh.  

The main areas that are being researched on 
MANETs are targeting performance with respect to 
stability, energy consumption and control message 
overhead. By using a mesh structure instead of a 
tree, the disadvantages of multicast trees in mobile 
wireless networks are avoided [4]. In this study, the 
networks will be constructed as a unit-disk graph 
where all of the edges of the graph are bi-
directional. These properties will allow us develop 
a minimum Steiner tree using Kou et al’s Heuristic 
[5] to find and approximate minimum Steiner tree, 
and also find the minimal weight  per source-
receiver path for a shortest path tree. The mesh can 
then be developed after the trees have been 
constructed by using the criteria of links that may 
exist between the nodes of the tree. We believe that 
the two different implementations (shortest path 
tree based mesh vs. Steiner tree based mesh) can 
have a major effect on the performance of the 
multicast group mesh with respect to stability, 
delay, energy consumption and other critical 
metrics.   
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The rest of the paper is organized as follows.  
Section 2 describes the construction of a mesh from 
a shortest path tree; Section 3 describes the 
construction of a mesh based on a minimum Steiner 
tree. Section 4 describes the simulation conditions, 
presents and interprets the performance results. 
Section 5 concludes the paper and also lists ideas 
for future work. Throughout the paper, the terms 
‘edge’ and ‘link’, ‘node’ and ‘vertex’, ‘path’ and 
‘route’ are used interchangeably. They mean the 
same. 

 
2. SHORTEST PATH TREE-BASED MESH 
 

In order to find a shortest path tree from the 
source node(s) to the receiver node(s) constituting 
the multicast group, the underlying network graph 
must first be connected. This means there should be 
a path between any two nodes in the network graph. 
We will use the well-known Breadth First Search 
(BFS) algorithm [6] to test the connectivity of the 
network graph. If the network is connected at the 
specific time instant we want to find the tree, we 
proceed to find the shortest path tree rooted at each 
of the source nodes to the set of receiver nodes. We 
will use the well-known Dijkstra’s shortest path 
algorithm [6] to determine the shortest path trees 
from a source node to the receiver nodes in a given 
graph.  The pseudo code for Dijkstra’s algorithm is 
shown here in Figure 1 [6]. We will extend this tree 
to a mesh by checking if there are edge(s) between 
any two constituent nodes (the source node, 
intermediate nodes and receiver nodes) of the 
shortest path tree. The end result is a shortest path 
tree overlapped with mesh edges, resulting in a 
multicast mesh that has more robustness for node 
mobility, compared to a tree. 
 
 
Begin Algorithm Dijkstra (G, s) 
1     For each vertex v Є V 
2           d [v] ← ∞ // an estimate of the minimum 
                                  -weight path from s to v 
3     End For 
4     d [s] ← 0 
5     S ← Φ  // set of nodes for which we know the 
                       minimum-weight path from s 
6     Q ←  V // set of nodes for which we know  
                 estimate of minimum-weight path from s 
7     While Q ≠ Φ 
8          u ← EXTRACT-MIN (Q)  
9          S ← S U {u} 
10         For each vertex v such that (u, v) Є E 
11             If d [v] > d [u] + w (u, v) then 
12            d [v] ← d [u] + w (u, v) 

13            Predecessor (v) = u 
13             End If 
14         End For 
15     End While 
16  End Dijkstra 
 

 
Figure 1: Pseudo Code for Dijkstra’s Algorithm 

 
We illustrate the extension of a shortest path tree 

to a shortest path mesh through the examples in 
Figures 2 and 3. In Figure 2, we have one source 
(node F) and three receiver nodes (nodes L, C and 
N). The shortest path tree determined through 
Dijkstra algorithm will have 7 links. In addition, we 
notice that there exist links between nodes M-W, 
W-K, L-E, W-N and E-N wherein M, W, K, L, E 
and N are constituent nodes of the tree. As these 
nodes are part of the shortest path tree, it is prudent 
to extend the fragile tree (that can break anytime 
with the failure of a single link) to a more robust 
mesh (that can withstand link failures) by adding 
the links that exist between the constituent nodes of 
the tree. In our case, the above listed five links 
along with the seven links of the shortest path tree 
form a robust mesh involving 12 links (bold lines), 
comprising the same set of nodes that formed the 
shortest path tree. Note that we could not include 
any link connected to nodes A and S to the 
extended mesh as these two nodes are not part of 
the original shortest path tree. 
 

 
Figure 2: Extension of a Single Source Shortest Path 

Tree to a Mesh 
 

We will also apply the above idea for multi-
source scenarios, as illustrated through the example 
in Figure 3. In this case, we run the Dijkstra 
algorithm to find the shortest path tree rooted at 
each source node (nodes A and C) connecting the 
set of receiver nodes (nodes F, M and O). We then 
form an aggregate of all the shortest path trees 
rooted at each source node. Such an aggregate of 
shortest path trees has 13 links. We could extend 
the shortest path tree aggregate to a 19-link mesh 
by incorporating additional links between the 
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constituent nodes of the original shortest path trees. 
Note that, we could not add links connected to 
nodes D, H, L and P as these four nodes are not the 
constituent nodes of the original aggregate of 
shortest path trees. 

 

 
Figure 3: Extension of a Two Source Shortest Path Tree 

Aggregate to a Mesh 
 
3. MINIMUM STEINER TREE-BASED 
MESH 
 

Given a static graph, G = (V, E), where V is the 
set of vertices, E is the set of edges and a subset of 
vertices (called the multicast group or Steiner 
points) MG ⊆ V, the multicast Steiner tree is the 
tree with the least number of edges required to 
connect all the vertices in MG. Unfortunately, the 
problem of determining a minimum edge Steiner 
tree in an undirected graph like that of the static 
graph is NP-complete. Efficient heuristics (e.g., [5]) 
have been proposed in the literature to approximate 
a minimum Steiner tree. In this paper, we use the 
Kou et al’s [5] well-known O(|V||MG|2) heuristic 
(|V| is the number of nodes in the network graph 
and |MG| is the size of the multicast group 
comprising of the source nodes and the receiver 
nodes) to approximate the minimum edge Steiner 
tree in graphs representing snapshots of the network 
topology. An MG-Steiner-tree is referred to as the 
minimum edge Steiner tree connecting the set of 
nodes in the multicast group MG ⊆V. In unit disk 
graphs such as the static graphs used in our 
research, Step 5 of the heuristic is not needed and 
the minimal spanning tree TMG obtained at the end 
of Step 4 could be considered as the minimum edge 
Steiner tree. We use the Kruskal’s algorithm [6] to 
determine the minimum spanning trees. 
 
Input:   A Static Graph G = (V, E) 
              Multicast Group MG ⊆ V 
Output: A MG-Steiner-tree for the set MG ⊆ V 
 
Begin Kou et al Heuristic (G, MG) 

Step 1: Construct a complete undirected 
weighted graph GC = (MG, EC) from G and MG 

where ∀ (vi, vj) ∈ EC, vi and vj are in MG, and 
the weight of edge (vi, vj) is the length of the 
shortest path from vi  to vj in G.  
Step 2: Find the minimum weight spanning tree 
TC in GC (If more than one minimal spanning 
tree exists, pick an arbitrary one). 
Step 3: Construct the sub graph GMG of G, by 
replacing each edge in TC with the corresponding 
shortest path from G (If there is more than one 
shortest path between two given vertices, pick an 
arbitrary one).  
Step 4: Find the minimal spanning tree TMG in 
GMG (If more than one minimal spanning tree 
exists, pick an arbitrary one). Note that each 
edge in GMG has weight 1.  

 
    return TMG as the MG-Steiner-tree 
 
End Kou et al Heuristic 
 

Figure 4: Kou et al’s Heuristic [5] to find an 
Approximate Minimum Edge Steiner Tree 

 
We give a brief outline of the heuristic in Figure 

4 and illustrate the working of the heuristic through 
an example in Figure 5. The vertices {D, G, E, M, 
N, P} form the multicast group in the vertex set {A, 
B … P}. As observed in the example, the subgraph 
GMG obtained in Step 3 is nothing but the minimal 
spanning tree TMG, which is the output of Step 4. In 
general, for unit disk graphs, like the static graphs 
we are working with, the outputs of both Steps 3 
and 4 are the same and it is enough that we stop at 
Step 3 and output the MG-Steiner-tree. 

The multicast mesh based on the minimum 
Steiner tree is constructed the same as the shortest 
path tree-based mesh. We check for the existence of 
edge(s) between any two constituent nodes of the 
minimum Steiner tree for its extension to a mesh. 
Figure 5 also illustrates the extension of the 
minimum Steiner tree to a mesh. As we notice in 
this example, the number of edges in the Steiner 
tree-based mesh is just one more than the number 
of edges in the original minimum Steiner tree. In 
general, as we notice in the simulation results too, 
the number of edges that could be added to a 
Steiner-tree based mesh from its corresponding 
Steiner tree is relatively lower than the number of 
edges that could be added to a shortest path tree 
based mesh from its corresponding tree (i.e., the 
shortest path tree). As the shortest path trees have 
more edges than the Steiner trees, the possibility of 
adding relatively more edges lends more robustness 
to the shortest path tree based meshes compared to 
the Steiner-tree based meshes. This crucial 
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observation, confirmed through the simulation 
results, is one of the major contributions of this 
paper. 

 

 
Figure 5: Construction of a Minimum Steiner Tree and 

its Extension to a Mesh 
 
4. SIMULATIONS AND RESULTS 
 

The simulations have been conducted in a 
discrete-event simulator implemented by the 
authors in Java. The two multicast mesh algorithms 
(shortest path based mesh, denoted as SPT mesh in 
the figures and Steiner-tree based mesh) have been 
implemented in a centralized fashion. The network 
size is 1000 m x 1000 m. The density of the 
network is varied by conducting the simulations 
with two different values for the number of nodes: 
50 nodes (low density) and 150 nodes (high 
density). The transmission range per node is 250m. 
The simulation time is 1000 seconds. The network 
is periodically sampled for every 0.25 seconds and 
on such a snapshot network graph, we validate the 
existence of the most recently used multicast mesh 
or determine new multicast mesh, if no such mesh 
exists. A multicast mesh is used as long as it exists. 
We used three different values for the number of 
source nodes: 1, 5 and 10 sources; the number of 
receivers per source (same set of receiver nodes for 
all sources) is varied with five different values: 3, 
10, 18, 27 and 36.  

The node mobility model used is the Random 
Waypoint model [7]. Each node starts moving from 
an arbitrary location (i.e., waypoint) at a speed 
uniformly distributed in the range [vmin, …, vmax]. 
Once the destination is reached, the node may stop 
there for a certain time called the pause time and 
then continue to move to a new waypoint by 
choosing a different target location and a different 
velocity. A mobility trace file generated for a 
particular vmax value over the duration of the 
simulation time is the congregate of the location, 
velocity and time information of all the waypoints 

for every node in the network. In this paper, we set 
vmin = 0. The vmax values used are 5 m/s (low 
mobility) and 50 m/s (high mobility). The pause 
time is 0 seconds. 

4.1 Performance Metrics 
 
The performance metrics measured are as follows. 
Each performance metric illustrated in Figures 6 to 
17 is an average of the values measured using 5 
different lists of receiver nodes of a particular size, 
for a given number of source nodes and the 
multicast mesh algorithm is run on five different 
mobility trace files generated for a fixed vmax.  

(i) Lifetime per Mesh: Whenever a path does not 
exist from any source to all receivers, the mesh is 
considered to have failed. A new mesh is 
determined after the network graph is found to be 
connected for the time instant. The lifetime of the 
mesh is the average amount of time these meshes 
exist the duration of the simulation. 

(ii) Edges per Mesh: The number of edges per mesh 
is the time-averaged value of the number of edges 
in the sequence of meshes used for each of the time 
instants of the multicast session. For each time 
instant, each edge in a mesh is validated for its 
existence before the validity check for mesh 
connectivity. The concept of time-average is 
explained as follows using an example: If we have 
been using two meshes – the first mesh with 20 
edges for 9 seconds and the second mesh with 15 
edges for the subsequent 6 seconds – over a time 
period of 15 seconds, the time-averaged value for 
the number of edges per mesh is (20*9 + 15*6)/15 
= 18.0 and not simply the average of the two values 
for the number of edges: (20 + 18) / 2 = 17.5. 

(iii) Hop Count per Source-Receiver Path: This 
metric is a time-averaged value of the number of 
hops in the paths from each source to each receiver 
of the multicast group for the duration of the 
multicast session. 
 
4.2 Lifetime per Mesh 
 

The average lifetime per mesh is a measure of 
the stability of the mesh. The lifetime of both the 
shortest path tree-based mesh and minimum Steiner 
tree-based mesh increased as network density 
increased. The lifetime of the shortest path tree-
based mesh was significantly better than that of the 
minimum Steiner tree-based mesh. Only in cases of 
low mobility, low network density, and smaller 
multicast group size was the minimum Steiner tree 
mesh lifetime in the range of the shortest path tree 
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mesh. In over 90% of the cases the average lifetime 
for the shortest path tree mesh was at least twice the 

amount of time greater than that of the minimum 
Steiner mesh lifetime.  

 

 
                  Figure 6.1: 1 source                            Figure 6.2: 5 sources                         Figure 6.3: 10 sources 

Figure 6: Lifetime per Mesh (Low Node Mobility and Low Network Density) 
 

 
                  Figure 7.1: 1 source                              Figure 7.2: 5 sources                          Figure 7.3: 10 sources 

Figure 7: Lifetime per Mesh (High Node Mobility and Low Network Density) 
 

 
                  Figure 8.1: 1 source                              Figure 8.2: 5 sources                          Figure 8.3: 10 sources 

Figure 8: Lifetime per Mesh (Low Node Mobility and High Network Density) 
 

 
                  Figure 9.1: 1 source                              Figure 9.2: 5 sources                          Figure 9.3: 10 sources 

Figure 9: Lifetime per Mesh (High Node Mobility and High Network Density) 
 

When the multicast group size (sum of the 
number of sources plus the number of receivers) 
exceeded 10, the average lifetime per shortest path 
mesh was more than 200 seconds (i.e., more than 
20% of the 1000s simulation time). When node 

mobility was 5 m/s and network density was 150 
nodes, the average lifetime per shortest path mesh 
was almost 60% of the simulation time. As the 
node velocity increased, the mesh lifetime 
decreased as expected.  
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4.3 Number of Edges per Mesh 
 
The shortest path mesh had a significantly larger 
number of edges and this could be attributed to the 

presence of a relatively larger number of nodes per 
mesh as well as to  the  principle  of  the underlying 

 
                  Figure 10.1: 1 source                              Figure 10.2: 5 sources                         Figure 10.3: 10 sources 

Figure 10: Number of Edges per Mesh (Low Node Mobility and Low Network Density) 
 

 
                  Figure 11.1: 1 source                              Figure 11.2: 5 sources                         Figure 11.3: 10 sources 

Figure 11: Number of Edges per Mesh (High Node Mobility and Low Network Density) 
 

 
                  Figure 12.1: 1 source                              Figure 12.2: 5 sources                         Figure 12.3: 10 sources 

Figure 12: Number of Edges per Mesh (Low Node Mobility and High Network Density) 
 

 
                  Figure 13.1: 1 source                              Figure 13.2: 5 sources                         Figure 13.3: 10 sources 

Figure 13: Number of Edges per Mesh (High Node Mobility and High Network Density) 
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shortest path tree algorithm in determining shortest 
minimum hop paths without any consideration on 
the number of edges being introduced to the tree. 
Only, in conditions of low node mobility and low 
network density, both the meshes had similar 

values for the number of nodes. The number of 
nodes per shortest path mesh grew to 1.5-2.0 times 
larger than the number of nodes per Steiner tree 
mesh as the network density increased. As a result, 
for at least  70%  of  the scenarios, the shortest path  

 
                  Figure 14.1: 1 source                        Figure 14.2: 5 sources                           Figure 14.3: 10 sources 

Figure 14: Hop Count per Source-Receiver Pair Path (Low Node Mobility and Low Network Density) 
 

 
               Figure 15.1: 1 source                              Figure 14.2: 5 sources                         Figure 14.3: 10 sources 

Figure 15: Hop Count per Source-Receiver Pair Path (High Node Mobility and Low Network Density) 
 

 
                 Figure 16.1: 1 source                              Figure 16.2: 5 sources                         Figure 16.3: 10 sources 

Figure 16: Hop Count per Source-Receiver Pair Path (Low Node Mobility and High Network Density) 
 

 
                 Figure 16.1: 1 source                              Figure 16.2: 5 sources                         Figure 16.3: 10 sources 

Figure 17: Hop Count per Source-Receiver Pair Path (High Node Mobility and High Network Density) 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT & LLS. All rights reserved.                                                                      
 

www.jatit.org 
 

 
141 

 

 
mesh had at least twice the number of edges 
compared to the Steiner tree-based mesh. 

The mesh lifetime is directly related to the 
number of nodes and edges per mesh. Having more 
intermediate nodes and edges in the mesh lends 
robustness to the mesh. The tradeoff is a relatively 
larger routing overhead. There would be several 
paths for every source-receiver pair and packets 
from the source nodes go through all these paths to 
the receiver nodes. Hence, there would be lot of 
redundant packets received along a shortest path 
mesh vis-à-vis a Steiner-tree based mesh. 
 
4.4 Hop Count per Source-Receiver Path 
 

The average hop count per source-receiver path 
for both the shortest path tree and minimum Steiner 
tree-based meshes was in the range from 2-3.5 
hops; the shortest path mesh had a lower hop count 
compared to the Steiner-tree mesh for more than 
85% of the scenarios. This could be attributed to 
the operating principle of the underlying shortest 
path tree algorithm as well as to the presence of a 
larger number of edges per mesh. The Steiner-tree 
based meshes are based on the objective of 
minimizing the number of edges per tree to reduce 
the route redundancy. The tradeoff is that when the 
mesh nodes are connected with less number of 
edges, the paths between the source nodes to the 
receiver nodes are more likely to be longer. With a 
shortest path tree based mesh, every source-receiver 
pair (even in multi-source scenarios) is more likely 
to be connected on a relatively shorter path 
compared to the Steiner-tree based mesh. We also 
noted that the average hop count per path was not 
much affected either by the network density, node 
mobility, or the number of source nodes and 
receiver nodes of the multicast session. 

 
5. CONCLUSIONS AND FUTURE WORK 

 
The stability of any communication structure 

depends heavily on the design and operating 
principle of its base, and this is the approach we 
took to design and observe tree-based meshes 
(shortest path mesh vis-à-vis a Steiner-tree based 
mesh) for a MANET. We observe that the shortest 
path meshes had a longer lifetime and lower hop 
count per source-receiver path and this could be 
attributed to the presence of a relatively larger 
number of nodes and edges per shortest path mesh. 
In a related work [1], we observed that the shortest 
path (minimum hop) trees are less stable the Steiner 

(minimum edge) trees. However, as we noted in 
this research, the stability of the meshes that are 
extended from the shortest path trees could be 
considerably high compared to the stability of the 
meshes that are extended from the Steiner trees. In 
other words, the shortest path trees may be more 
fragile than Steiner trees; but, the shortest path tree 
based meshes are more robust than the Steiner-tree 
based meshes. The tradeoff for a larger mesh 
stability would be the redundancy in the number of 
similar data packets that get transferred through the 
mesh. The algorithm to construct Steiner-tree based 
meshes also has a larger run-time compared to that 
of the shortest path tree-based meshes. 

We currently plan to develop distributed 
versions of the two (centralized) mesh algorithms 
that we have worked on this paper so that they 
could be evaluated with respect to more practical 
performance metrics such as energy consumption, 
delay per data packet and packet delivery ratio. We 
will also investigate techniques that will reduce the 
redundancy in the data packets received at the 
multicast receivers through the mesh, without any 
compromise on the robustness of the mesh.   
 
6. ACKNOWLEDGMENTS 
 

This research is funded by the U.S. National 
Science Foundation through grant (CNS-0851646) 
entitled: “REU Site: Undergraduate Research 
Program in Wireless Ad hoc Networks and Sensor 
Networks,” hosted by the Department of Computer 
Science at Jackson State University (JSU), MS, 
USA. The authors also acknowledge Dr. M. Watts, 
Dr. L. Moore, Mrs. B. Johnson and Ms. I. Dasari 
for their services during the Summer 2010 program.   
 
REFERENCES: 
 
[1]  N. Meghanathan, “Determining a Sequence of 

Stable Multicast Steiner Trees in Mobile Ad 
hoc Networks,” Proceedings of the 44th ACM 
Southeast Conference, pp. 102-106, 
Melbourne, FL, USA, March 2006. 

[2] K. Viswanath, K. Obraczka and G. Tsudik, 
“Exploring Mesh and Tree-based Multicast 
Routing Protocols for MANETs,” IEEE 
Transactions on Mobile Computing, vol. 5, no. 
1, pp. 28-42, January 2006. 

[3]  M. Lee and Y. Kim, “PatchODMRP: an ad hoc 
multicast routing protocol,” Proceedings of the 
15th International Conference on Information 
Networking, pp. 537-543, February 2001. 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT & LLS. All rights reserved.                                                                      
 

www.jatit.org 
 

 
142 

 

[4] S-J. Lee, M. Gerla and C-C. Chiang, “On-
Demand Multicast Routing Protocol,” 
Proceedings of the IEEE Wireless 
Communications and Networking Conference, 
vol. 3, pp. 1298-1302, September 1999. 

[5]  L. Kou, G. Markowsky and L. Berman, “A Fast 
Algorithm for Steiner Trees,” Acta 
Informatica, vol. 15, no. 2, pp. 141-145, 1981. 

[6]  T. H. Cormen, C. E. Leiserson, R. L. Rivest 
and C. Stein, “Introduction to Algorithms,” 
2nd Edition, pp. 561-579, MIT Press, 2001. 

[7] Bettstetter, C., Hartenstein, H., and Perez-Costa, 
X. “Stochastic Properties of the Random-Way 
Point Mobility Model,” Wireless Networks, 
vol. 10, no. 5, pp. 555-567, September 2004. 


