
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

143

RULE BASED EXPERT SYSTEM FOR SELECTING
SOFTWARE DEVELOPMENT METHODOLOGY

M. AYMAN AL AHMAR
Asstt. Prof. and Deputy Dean, College of Engineering and Information Technology, Fujairah Campus,

Ajman University of Science and Technology, UAE

ABSTRACT

Software development methodology is a formalized approach that is used to plan and manage the process of
developing a software system. Since there are many software development methodologies, one of the
challenges faced by software developers is to decide which methodology to apply in a software project.
This paper presents the modeling and development of a prototype expert system that helps software project
managers and software engineers in selecting the appropriate software development methodology. The
developed system is successfully designed as rule based expert system supported with object oriented
modeling. The user interaction with the system is based on a user-friendly graphical interface.

Keywords: Software Development Methodology, Expert System, Rule Based Expert System, Object
Oriented Modeling

1. INTRODUCTION

In this research a prototype rule based expert
system for selecting software development
methodology is modeled and developed. The
system is named 'SDM-ES'.

Literature survey reveals that many expert
systems were reported in various branches of the
field of software engineering [1]-[7]. This paper
extends prior work by considering the application
of expert systems technology in the domain of
software development methodologies.

Expert systems: Expert system (ES) can be
defined as: A program that attempts to mimic
human expertise by applying inference methods to
a specific body of knowledge [8]. This body of
knowledge is called the domain of ES. The three
major components of ES are: Knowledge base
(KB), inference engine (IE), and user interface (UI).
For better interaction with users an ES should
preferably contain an explanation subsystem
component or justifier [9] [10].

The knowledge base contains the relevant
knowledge necessary for understanding and
formulating the ES domain. In rule-based expert
systems that are supported with a database, the
knowledge base is modeled to include two
components: (1) rule base of heuristic rules that are
used to solve specific problems in a particular
domain, and (2) database of domain's data and

facts. The inference engine is the component that
provides a methodology for reasoning and
formulating conclusions. The inference engine
provides directions about how to use the system’s
knowledge to solve problems. The user interface
consists of all screens of interaction between the
user and the ES. Explanation subsystem helps in
justification of ES conclusions by tracing
conclusions to their sources and showing how was
a certain conclusion reached.

Since the inference engine is common to
different systems, expert systems are practically
developed using specialized ES software packages
known as ES Shells. ES shells support all major ES
components including an 'empty' knowledge base
that can be filled with domain's knowledge and
constructed according to the model adopted by the
ES developer.

Software development methodologies: A
software development methodology (SDM) -also
called systems development methodology- is a
formalized approach for the development of
software. Although there are many different SDMs,
there are fundamental systems development life
cycle (SDLC) activities which are common to all
methodologies. These activities or ‘phases’ are
briefly described below [11]:

1. Planning: It is the fundamental process of
understanding why a software system should

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

144

be developed and determining how the project
team will go about building it.

2. Analysis: The analysis phase answers the
questions of what the system will do
(requirements gathering), who will use the
system, and where and when it will be used.

3. Design: The design phase determines how the
system will operate (in terms of software,
hardware, and network infrastructure), the user
interface, and the specific programs, databases,
and files that will be required.

4. Implementation: During this phase the system
is actually built. It includes system
construction, testing, installation, and post-
implementation support and improvement.

Literature survey revealed many SDMs used in
software industry. The major SDMs include:
Waterfall, parallel, v-model, iterative, system
prototyping, throwaway prototyping, reuse-
oriented, extreme programming (XP), and Scrum
development methodologies [11]-[13].

The rest of this paper is organized as following:
Section 2 presents the summary of a sample SDM.
Section 3 discusses the selection criteria of an
appropriate SDM. The major components of the
proposed expert system and a sample system
consultation are addressed in Section 4. Finally,
Section 5 concludes with the conclusion and future
work.

2. SUMMARY OF A SAMPLE SDM

In order to understand and have more insight of
the domain and the knowledge base of the
developed expert system (SDM-ES) a summary of
a sample SDM is presented here. This summary is
related to iterative development. For detailed
coverage of various SDMs and their classifications
the reader is referred to software engineering and
systems analysis reference books [11]-[13].

Iterative SDM: This methodology divides the
intended system into a series of versions. The
planning and analysis phases identify the overall
system concept, and the requirements are
categorized into versions that are developed
sequentially. The first version of the system
contains the most fundamental and important
requirements. The analysis phase then leads into the
design and implementation, but only with the set of
requirements identified for version 1 (Figure 1).
After implementing version 1, work starts on
version 2. Additional analysis is performed on the
basis of the previously identified requirements and

new ideas and comments that arose from the users'
experience with version 1. Version 2 then is
designed and implemented, and work immediately
begins on the next version. This process continues
until completing the development of the overall
system [11].

Figure 1. Iterative SDM [11]

Iterative development methodology has the

advantage of quickly getting a useful initial system
into the hands of the users. In addition, because
users begin to work with the system sooner, it is
more likely to identify important additional
requirements. The major drawback to iterative
development is that users begin to work with
systems that are intentionally incomplete. It is
crucial to identify the most important and useful
features and include them in the first version, while
managing users' expectations with subsequent
versions [11].

3. SELECTING THE APPROPRIATE SDM

Since there are many methodologies, one of the
challenges faced by software engineers is to decide
which methodology to apply in a software project.
Selecting a methodology depends on many factors
and project features and no one methodology is
ideal or always the best [11]-[13]. Therefore, it is
useful and practical to apply expert systems
technology in this domain and this is the core
objective of this research.

Important methodology selection criteria include:
Project time, clarity of user requirements,
familiarity with technology, system complexity,
system reliability, and schedule visibility.
Following is a brief description of these six
important SDM selection criteria [11].

Project time: Projects that have short time
schedules are well suited for methodologies that are

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

145

designed to increase the speed of development.
Prototyping, iterative development, and XP are
excellent choices when project time is short
because they best enable the project team to adjust
the system functionality on the basis of a specific
delivery date, and if the project schedule starts to
slip, it can be readjusted by removing functionality
from the version or prototype under development.
The waterfall methodology is the worst choice
when time is critical because it does not allow for
easy schedule changes.

Clarity of user requirements: When the user
requirements are unclear or subject to change, it is
difficult to understand them by talking about them
and explaining them with written reports. Users
normally need to interact with the software to really
understand what the new system can do. System
prototyping, throwaway prototyping, and XP are
usually more appropriate when user requirements
are unclear or unstable because they provide
prototypes for users to interact with early in the
SDLC.

Familiarity with technology: When the system
will use new technology with which the system
analysts and programmers are not familiar, early
application of the new technology in the SDLC will
improve the chance of success. If the system is
designed without some familiarity with the
technology, risks increase because the tools may
not be capable of doing what is required.
Throwaway prototyping is particularly appropriate
for a lack of familiarity with technology because it
explicitly encourages the developers to develop
design prototypes for areas with high risks. Iterative
development is good as well because it creates
opportunities to investigate the technology in some
depth before the design is complete. Although one
might think system prototyping would also be
appropriate, it is much less so, because the early
prototypes that are built do not investigate the new
technology deeply. Usually, it is only after several
prototypes and several months that the developers
discover problems in the new technology.

System complexity: Complex systems require
careful and detailed analysis and design.
Throwaway prototyping is particularly well suited
to such detailed analysis and design, but system
prototyping is not. The traditional structured
methodologies can handle complex systems, but
without the ability to get the system or prototypes
into users’ hands early on, therefore, some key
issues may be overlooked.

System reliability: For some applications
reliability is critical (e.g., medical equipment),

whereas for other applications it is merely
important (e.g., games). Throwaway prototyping is
the most appropriate when system reliability is a
high priority, because it combines detailed analysis
and design phases with the ability for the project
team to test many different approaches through
design prototypes before completing the design.
System prototyping is generally a poor choice when
reliability is critical, because it lacks the careful
analysis and design phases that are essential for
dependable systems.

Schedule visibility: Determining whether a
project is on schedule is one of the challenges in
software systems development. Methodologies in
which design and implementation occur at the end
of the project are ‘poor’ regarding this criterion
(e.g. waterfall development) whereas
methodologies that move many of the critical
design decisions to an earlier point in the project
can help project managers recognize and address
risk factors and determine whether a project is on
schedule.

For detailed criteria description, and comparison
between SDMs the reader is referred to Ref. [11]
which also presents a tabulated comparison as
shown in Table 1 below.

Table 1. Criteria for selecting a methodology (comparing
iterative and XP development methodologies) [11]

Usefulness in developing
systems Iterative Extreme

Programming

with short time schedule Excellent Excellent

with unclear user
requirements Good Excellent

with unfamiliar technology Good Poor

that are complex Good Poor

that are reliable Good Good

with schedule visibility Excellent Good

4. THE DEVELOPED ES (SDM-ES)

4.1. The Knowledge Base and Inference
Engine: System’s knowledge is compiled from
domain experts and the knowledge available in the
literature [11]-[13]. The knowledge of the
developed prototype system consists of facts
(database) and rules (rule base). SDM-ES is
developed using Kappa-PC Expert System Shell
[14]. Kappa-PC is suitable for the system’s domain
because it enables the application developer to
build rule-based expert systems with inference
capabilities (inference engine), object oriented

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

146

modeling & programming, list processing, and
graphical user interface. The database of the system
is modeled as an object oriented database in which
SDMs are represented as objects descendent from a
root (parent) class called Software Development
Methodology (Figure 2).

Figure 2. The object hierarchy

The object oriented modeling of the database is
very suitable and promising for system’s domain
because each methodology is conveniently modeled
as a distinct object that contains all data related to
that particular methodology. This feature is also of
crucial importance for updating and extending the
system because: (1) updating a methodology
requires changes to that specific object only, and (2)
adding new methodologies to the database is simply
done by adding new objects without affecting the
integrity of the whole system.

Regarding the rule base ‘production rules’
knowledge representation model is adopted in the
proposed ES for a number of reasons, including
easy understandability of rules, their syntax is
simple, rule chaining is easy to trace and evaluate,
enhanced explanation facilities, and additional rules
can easily be tested and added into the rule base.

The prototype ES in its present state contains
nine SDMs and six selection criteria. The SDMs
currently represented in the knowledge base are:
Waterfall, parallel, v-model, iterative, system
prototyping, throwaway prototyping, reuse-
oriented, extreme programming, and Scrum
development methodologies. The present selection
criteria are: Project time, clarity of user
requirements, familiarity with technology, system
complexity, system reliability, and schedule
visibility. Each SDM is assigned an appropriate
rating value against each selection criterion.
Currently the rating values are: Excellent, Good,
and Poor as illustrated in Table 1 [11].

The core reasoning method (inference) of the
system has two stages as will be clarified below.

Stage 1: In the first stage If-Then rules are
applied in a forward-chaining manner to assign

‘points’ to each SDM under each selection criterion
selected by the user. As an illustrating example
consider the following If-Then rule category
written in English-like syntax:

If: User requirements clarity is Low (i.e., unclear
user requirements)

Then: Check SDMs for this property and assign
them 0, 0.5, or 1.0 point for poor, good, or excellent
values respectively.

Thus, according to this logic and with reference
to Table 1, iterative development methodology is
assigned 0.5 point and extreme programming is
assigned 1.0 point under clarity of user
requirements criterion.

Stage 2: The objective of this stage is
determining and ranking the suggested SDMs. The
list of suggested SDMs includes all SDMs that have
0.5 or 1.0 as their assigned points under all
selection criteria chosen by the user. It should be
clear that whenever a methodology is assigned 0
under any selection criterion (for being a ‘poor’
choice), then it can never be listed as a suggested
solution. This implies that ‘winning’ SDMs that are
suggested by the expert system have all their rating
values as either Excellent or Good under all
selection criteria selected by the user. After
determining the list of candidate methodologies,
each methodology is given a final score or grade by
adding all its points. Consequently suggested
methodologies are ranked and displayed to the user
in descending order according to their final grades.
Scoring detail is displayed to the user as a part of
the explanation subsystem (justifier) of the system.

4.2. User Interface and Sample System
Consultation: Interactions between the users and
the system are supported through a friendly
graphical user interface running under Windows
environment. Figure 3 shows the main screen of the
system where various options are displayed. The
button titled View Available SDMs allows the user
to browse and read all present data on the currently
available SDMs. The user can start a consultation
session by clicking on the button titled
Consultation. The user can also enter the user
manual and get more help by selecting the HELP
button, or exit the system by clicking Exit. Other
major screens and features of the user interface will
be described by the following sample consultation:
Consider a software project that is mainly
characterized by the following key challenges: It is
a complex software system, with unclear user
requirements, and limited project time (i.e., short
time schedule). Figure 4 shows the ‘multiple

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

147

selection’ menu from which the user can choose
essential selection criteria. In this case the selected
criteria are: Clarity of requirements, system
complexity, and project time (as shown in Figure
4). Subsequent screens ask the user to specify the
values of the selected properties (Figure 5). Based
on the selected criteria and user inputs, the system
presents the suggested SDMs in a ranked order as
shown in Figure 6. From the screen of Figure 6 the
user can click on the button titled Explanation in
order to obtain the explanation or justification
screen shown in Figure 7.

Figure 3. Main screen of the system

Figure 4. Choosing essential selection criteria
(multiple-selection menu)

Figure 5. Sample user input screen

Figure 6. Sample consultation result screen

Figure 7. Sample explanation screen

5. CONCLUSION AND FUTURE WORK

This paper presented the modeling and
development of a rule based expert system for
selecting a suitable software development
methodology according to software project
features. By combining rule based knowledge
representation with object oriented database
modeling, a flexible and extensible prototype expert
system could be developed. The system can be
improved in several ways. Some areas of system
improvement and future work are: Adding more
software development methodologies, adding more
selection criteria, prioritizing selection criteria, and
interfacing the system to existing computer aided
software engineering (CASE) tools.

REFRENCES:

 [1] LIU Yu-xi and LU Zhong-ning, “The

Construction of a Web Based Expert System in
Software Engineering Measurement”, Journal
of Henan Normal University (Natural Science),
Vol. 36, No. 4, 2008.

[2] He Qing, “A Software Engineering Measurement
Expert System”, M.Sc. Thesis, University of
Calgary, 2003.

 [3] M. Georgiopoulos, I. Dagher, G. L. Heileman,
G. Bebis, I. Vlahavas, I. Stamelos, I.
Refanidis, and A. Tsoukias, “ESSE: An Expert

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

148

System for Software Evaluation”, Knowledge-
Based Systems, Vol. 12, No. 4, August 1999,
pp. 183-197.

[4] J. S. Mertoguno, R. Paul, N. G. Bourbakis, and
C. V. Ramamoorthy, “A Neuro-Expert System
for the Prediction of Software Metrics”,
Engineering Applications of Artificial
Intelligence, Vol. 9, No. 2, April 1996, pp. 153-
161.

[5] N. S. Bukovsky, “Building an Expert System for
Software Quality Evaluation”, Microprocessing
and Microprogramming, Vol. 28, No. 1-5,
March 1990, pp. 179-182.

[6] C. L. Ramsey and V. R. Basili, “An Evaluation
of Expert Systems for Software Engineering
Management”, IEEE Transaction on Software
Engineering, Vol. 15, No. 6, 1989, pp. 747-759.

 [7] B. I. Blum and R. F. Wachter, “Expert System
Applications in Software Engineering”,
Telematics and Informatics, Vol. 3, No. 4,
January 1986, pp. 237-262.

 [8] Keith Darlington, “The Essence of Expert
Systems”, Prentice Hall, 2000.

[9] E. Turban, J. E. Aronson, and T. P. Liang,
“Decision Support Systems and Intelligent
Systems”, 7th Edition, Prentice Hall, 2005.

[10] S. Russel and P. Norvig, “Artificial
Intelligence: A Modern Approach”, 3rd Edition,
Prentice hall, 2010.

 [11] A. Dennis, B. H. Wixom, and R. Roth,
“Systems Analysis and Design”, 4th Edition,
John Wiley & Sons, Inc., 2009.

[12] I. Sommerville, “Software Engineering”, 9th
Edition, Addison Wesley, 2010.

 [13] R. S. Pressman, “Software Engineering: A
Practitioner’s Approach”, 7th Edition, McGraw-
Hill, 2010.

[14] KAPPA-PC 2.4 Reference Manual,
IntelliCorp, Inc., USA, 1997.

AUTHOR PROFILE:
Dr. M. Ayman Al Ahmar is
Assistant Professor and the Deputy
Dean of the College of Engineering
and Information Technology,
Fujairah Campus, Ajman University
of Science and Technology, UAE.
He received his B.Sc. (1994), M.Sc.
(1997), and Ph.D. (2001) degrees

from Middle East Technical University (METU),
Ankara, Turkey. His current research interests
include Artificial Intelligence, Software
Engineering, and Engineering Information Systems.
He is a member of IEEE and IEEE Computer
Society.

