
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

22

ON THE CORRECTNESS OF FIREWALL POLICY
DEPLOYMENT

M. EL MARRAKI, A. KARTIT

Department of Computer Sciences, Faculty of Sciences, University of Mohamed V
Rabat, Morocco

ABSTRACT

Firewall policies can contain several thousand rules due to the large size and complex structure of modern
networks. The size and complexity of these policies require automated tools providing a user-friendly
environment to specify, configure and safely deploy a target policy. In this paper, we show that naïve
deployment approaches can easily create a temporary security hole by permitting illegal traffic or interrupt
service by rejecting legal traffic during the deployment. We make some contributions to the correctness of
firewall policy deployments and we show that the category of type I policy editing is wrong and could lead
to security vulnerabilities. We then provide a correct algorithm for publishing political class type I. Our
algorithm can be used even for the deployment of policies whose size is very important.

Keywords: Policy Deployment (PD), Firewall Policy Management (FPM), Network Security (NS).

1. INTRODUCTION

A firewall is a system that protects a computer or
computers network intrusions from another network
(such as internet). The firewall system contains
rules that essentially permit [1]: (i) to authorize the
connection (enable), (ii) to block the connection
(deny). All of these rules are the policy that
underlies the functioning of the firewall. Due to the
large size and complexity of networks today, the
politics become large (about 600000 rules) and
complicated [2]. Also, the design of a policy is a
very complex task for an administrator. Indeed, we
should take into consideration a large number of
cases to avoid cases of access.

In addition, an administrator may want to configure
in real time an active policy to replace it with a new
policy. This configuration is still problematic
because it must reconcile the continued service and
avoid security breaches. The ordered list of
operations to be applied to achieve a new
configuration is particularly sensitive. As a result,
these policies require automatic tools for providing
a right environment to specify, configure and
deploy security policy target. Much research has
dealt with the specification {[3], [4], [5]} policies,
conflict detection {[6], [7], [8]} and the
optimization problem {[9], [10]}, but very few
studies have interested in the deployment of
policies. That is why we have tried to focus on
problems associated with the deployment of

policies to make it easier for network
administrators.

The deployment of a firewall policy should have
the following characteristics [2]: Correctness,
confidentiality, security and speed. Only recently,
some researchers have proposed deployment
strategies for two important categories of
publishing policies [2]. Our work is focused on
language editing policy type I. We will demonstrate
that the algorithm ”Scanning Deployment” already
proposed is wrong and we propose another version
of the algorithm which is correct and will allow us
to replace a source policy with a target policy.

2. POLICY DEPLOYMENT

A firewall policy deployment should have
following characteristics [2]: correctness,
confidentiality, safety, and speed.

Correctness: A deployment is correct if it
successfully implements the target policy on the
firewall. After a correct deployment the target
policy becomes the running policy. Correctness is
an essential requirement for any deployment.

Confidentiality: Confidentiality refers to securing
the communication between a management tool and
a firewall. Due to the sensitive nature of
information transmitted during a deployment, the
communication between management tool and
firewall should be confidential.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

23

Safety: A deployment is safe if no legal packet is
rejected and no illegal packet is accepted during the
deployment.

Speed: A deployment should be done in the shortest
time, so that the desired state of affairs is achieved
as quickly as possible. A deployment algorithm
should have a good running time, so that it is
applicable even for large policies.

Different firewalls support different policy editing
commands. The set of policy editing commands
that a firewall supports is called its policy editing
language.

In [2], the authors classify policy editing languages
into two representative classes, Type I and Type II,
and provide deployment algorithms for both types
of languages. Type I editing supports only two
commands, append and delete. Command (app r)
appends a rule r at the end of the running policy R,
unless r is already in R, in which case the command
fails. Command (del r) deletes r from R, if it is
present. As Type I editing can transform any
running policy into any target policy [2], therefore
it is complete. Most older firewalls and some recent
firewalls, such as FWSM 2.x and JUNOSe 7.x,
only support Type I editing.

Indeed, the deployment algorithm type I used is
called "Scanning Deployment".

2.1. The Algorithm “Scanning Deployment”

Algorithm 1: Scanning Deployment (already
existed) [2]
Scanning_Deployment (I, T) {
 /* An algorithm using only app
and del to transform policy I into
policy T */

 S ← empty stack
 H← empty hash table
 /* Phase 1: add rules */
 i ← 1
 for t ← 1 to SizeOf(T) do
 while i ≤ SizeOf(I) and I[i]<>
T[t] do
 /* I[i] needs to be deleted */
 S. PUSH (I[i])
 H.ADD (I[i])
 i ← i + 1
 if i > SizeOf(I) then
 if H.Contains(T[t]) then
 H.Remove(T[t])
 IssueCommand(del T[t])
 IssueCommand(app T[t])

 /* Phase 2: clean up */
 for j ← SizeOf(I) down to i do
 IssueCommand(del I[j])
 while not S.IsEmpty() do
 r ← S.POP()
 if H.Contains(r) then
 IssueCommand(del r)
 }
I[i]: is the ith rule of the original policy. In the real
case can be replaced for example by “permit TCP
200.168.1.1 12.3.4.0/24 23”.

Shortcoming: Phase 2 of the algorithm does not
give good results.
We will show this through a sample run.
 See Figure1 and Figure2.
We completed the first phase with i = 9 and t = 13,
Sizeof(I) = 8, so we will never run the loop:
for j ← SizeOf(I) down to i do
IssueCommand (del I[j])
After running phase 2, the algorithm gives the
following result: See Figure2
It is therefore clear that H is different from T.
Therefore, the algorithm is not correct.

2.2 Our Contribution

We start by giving a simple deployment algorithm
for an initial policy I and target policy T that will
allow us to correct the algorithm "scanning
deployement". I and T are coded as arrays of
characters, so that I[i] refers to the ith rule of I.
Initially, the running policy H equals I. In phase1,
the algorithm appends to the end of H every rule r
in T, starting from r = T [1]. If r is already in I, then
it removes r from H before appending it back. In
phase 2, it removes from H every rule r that is in I
but not T. the new algorithm is called:
“Enhanced_Scanning_Deployment”
Algorithm 1: Scanning Deployment (new release)
Enhanced_Scanning_Deployment (I,T)
{
/* an algorithm using only app and
del to transform policy I into
policy T */
H← empty hash table
/* Phase 1: add rules */
 i←1
 for t←1 to SizeOf(T) do
 while ((i<=SizeOf(I)) AND
(I[i]<>T[t])) do
 /* I[i] needs to be deleted */
 H. ADD(I[i])
 i ← i + 1

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

24

end while
 if (i>SizeOf(I)) then
 if (H.Contains(T[t])) then
 H.Remove(T[t])
 IssueCommand(del T[t])
 end if
 IssueCommand(app T[t])
end if
end for

/* Phase 2: clean up */
K sizeof(I)+sizeof(T)-sizeof(I∩T);
j 1
While (k>sizeof(T)) do
 t 1, trouve false
While ((t<=sizeof(T)) AND
(trouve=false)) do
If (H(j)=T(t)) then
j j+1
trouve true
else
t t+1
end if
end while
If (trouve=false) then
 Issuecommand(del(H(j))
 K k-1
end if
end while
}
This algorithm gives good results whatever the size
of the original and target policy.
We will show this through the previous example.
See Figure3, Figure4, Figure5, Figure6, Figure7
and Figure8.
Having finished the execution of the algorithm
”Enhanced_Scanning_Deployment”, policy being
implemented is identical to the policy target.
Therefore, we can say that this new version of the
Algorithm is correct.

3. CONCLUSION

In this paper, we showed how unsophisticated
approaches to the deployment of policies may
temporarily accept unwanted traffic and prohibit
trafficking desirable. Up to now, approaches to
unsafe deployment is still practiced by management
tools firewall. We showed, through examples, that
the policy language edition type I is not accurate
but we could make it correct through the changes
we have made on the algorithm “Scanning
Deployment”. We will be soon working on
language editing Type II policies to make
deployment very effective, safe and fast.

REFRENCES:

[1] S. Karen and H. Paul, “Guidelines on Firewalls

and Firewall Policy”, NIST Recommendations,
SP 800-41, July, 2008.

[2] C. C. Zhang, M. Winslett, and C. A. Gunter,
“On the Safety and Efficiency of Firewall
Policy Deployment”, In SP ’07: Proceedings of
the 2007 IEEE Symposium on Security and
Privacy, pages 33-50,Washington, DC, USA,
2007.

[3] E. Al-Shaer and H. Hamed, ”Modeling and
Management of Firewall Policies”, Network and
Service Management, IEEE Transactions on,
1(1):2-10, April 2004.

[4] Y. Bartal, A. J. Mayer, K. Nissim, and A.Wool.
Firmato, “A Novel Firewall Management
Toolkit”, In IEEE Symposium on Security and
Privacy, pages 17-31, 1999.

[5] M. G. Gouda and A. X. Liu, “Firewall Design:
Consistency, Completeness, and Compactness”,
In ICDCS, pages 320-327, 2004.

[6] F. Baboescu and G. Varghese, “Fast and
Scalable Conflict Detection for Packet
Classifiers”, In ICNP, pages 270-279, 2002.

[7] Z. Fu, S. F.Wu, H. Huang, K. Loh, F. Gong, I.
Baldine, and C. Xu, “IPSec/VPN Security
Policy: Correctness, Conflict Detection, and
Resolution”, In POLICY, pages 39-56, 2001.

[8] A. X. Liu, “Change-impact analysis of firewall
policies”, In ESORICS, pages 155-170, 2007.

[9] H. Hamed and E. Al-Shaer, “Dynamic rule-
ordering optimization for highspeed firewall
filtering”, In ASIACCS, pages 332-342, 2006.

[10] J. Qian, “ACLA: A framework for Access
Control List (ACL) Analysis and Optimization”,
booktitle = Proceedings of the IFIP TC6/TC11
International Conference on Communications
and Multimedia Security Issues of the New
Century. page 4, Deventer, The Netherlands,
The Netherlands,2001.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

25

FIGURE 1: SCANNING_DEPLOYMENT PHASE 1 RUNNING EXAMPLE

FIGURE 2: SCANNING_DEPLOYMENT PHASE 2 RUNNING EXAMPLE

FIGURE 3: ENHANCED_SCANNING_DEPLOYMENT PHASE 1 RUNNING EXAMPLE (1)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

26

FIGURE 4: ENHANCED_SCANNING_DEPLOYMENT PHASE 1 RUNNING EXAMPLE (2)

FIGURE 5: ENHANCED_SCANNING_DEPLOYMENT PHASE 1 RUNNING EXAMPLE (3)

FIGURE 6: ENHANCED_SCANNING_DEPLOYMENT PHASE 1 RUNNING EXAMPLE (4)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

27

FIGURE 7: ENHANCED_SCANNING_DEPLOYMENT PHASE 2 RUNNING EXAMPLE (1)

FIGURE 8: ENHANCED_SCANNING_DEPLOYMENT PHASE 2 RUNNING EXAMPLE (2)

