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ABSTRACT 
 

In the present paper, we are interested in Universal Mobile Telecommunications System (UMTS) Access 
Network security. A special interest is given to the protection of the data integrity and the provisioning of 
data encryption. Indeed, the appropriate procedures and cryptographic algorithms are discussed. In previous 
work, we were interested in the study of the operation and complexity of the algorithms, but actually we 
will focus on other aspects. A closer look is taken at the two sets of UMTS cryptographic algorithms: 
UEA1/UIA1 (UEA indicates UMTS Encryption Algorithm and UIA UMTS Integrity Algorithm) based on 
the KASUMI algorithm and UEA2/UIA2 based on the SNOW 3G algorithm. Furthermore, this paper 
includes the results of the verification and the implementation of the two sets of the UMTS cryptographic 
algorithms.  The necessary corrections and/or adaptation of the 3GPP algorithms codes having carried out 
to meet the 3GPP algorithms specifications. Furthermore, we propose an adaptation of the second set of 
algorithms to the little-endian machines since the 3GPP proposed codes are only limited to the big-endian 
machines. These corrections and adaptations are presented in the present paper and some implementation 
examples are presented as well. 

Keywords: UMTS, Confidentiality, Integrity, SNOW 3G, Verification, Implementation  
 
1. SECURITY MECHANISMS IN THE 

UMTS ACCESS NETWORK  
 

The Access Network security is carried out     
through a set of security features which offer to the     
UMTS user a safe and secure access to 3G services 
over the air interface [1, 2, 3]. The following 
features are provided:  

 User identity confidentiality; 

 Mutual authentication of the network and the 
user;  

 Confidentiality; 

 Data integrity. 

These functionalities protect against attacks     
which threaten data on the network access link [3, 
4]. 

In the present paper, we will focus on the two last     
security features. 

1.1.   Confidentiality And Data Integrity In The 
UMTS 

1.1.1.  Confidentiality 
User data and some signaling data are             

considered sensitive and their confidentiality             
should be protected over the radio access link.             
To ensure this data confidentiality on the air             
interface, the following features are provided [1, 2]: 

 Cipher algorithm (f8) agreement: nowadays, 
there exist two variants of the cipher                 
algorithm: UEA1 based on KASUMI algorithm 
[1, 5, 6] and UEA2 based on SNOW 3G 
algorithm [1, 7, 8, 15]. The MS (Mobile 
Station) and the SN (Serving Network) can 
securely negotiate the algorithm to use in their 
mutual communication. 

 Cipher key (CK) agreement: the agreement                 
is done between the MS and SN during the                 
Authentication and Key Agreement procedure; 

 Confidentiality of user and signaling data; 
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1.1.2. Integrity 
Data integrity in the UMTS network ensures the 

protection of the signaling data integrity and allows 
the authentication of the signaling messages 
transmitted between the user and the serving 
network [1, 2, 9]. 

The following security features are provided to 
ensure the signaling data integrity on the network             
access link: 

 Integrity algorithm (f9) agreement: as for the 
data confidentiality, there is actually two                
variants of the integrity algorithm: UIA1 based 
on KASUMI algorithm and UIA2 based on 
SNOW 3G algorithm. 

 Integrity key (IK) agreement; 

 Data integrity and origin authentication of 
signaling data: the receiving entity (MS or SN) 
must be able to check that the signaling data 
wasn't modified during its transition over the 
network access link and to check the expected 
origin of the message (SN or MS). 

In the following subsections, we will introduce 
the UMTS confidentiality and integrity 
mechanisms. 

1.2.  UMTS Encryption Function f8 

The need for a confidentiality protected mode of 
transmission is fulfilled by an UMTS 
confidentiality cryptographic function f8 [1, 2, 3] 
which is a symmetric synchronous stream cipher. 
This type of ciphering has the advantage to generate 
the mask of data before even receiving the data to 
encrypt, which help to save time. Furthermore, it is             
based on bitwise operations which are carried out 
quickly. 

“Figure 1” bellow illustrates the Encryption/ 
Decryption operations using the f8 function. 

 
Figure 1. Encryption/Decryption mechanism 

The input parameters of f8 are the following: 

 CK : Cipher Key; 

 COUNT-C: Frame dependent input used to 
synchronize the sender and the receiver;  

 BEARER: Service bearer identity; 

 DIRECTION: Direction of the transmission; 

 LENGTH: Number of bits to be 
encrypted/decrypted; 

As mentioned above, there exist nowadays two 
encryption algorithms UEA1 et UEA2. 

UEA1, which was used since the genesis of the 
UMTS network in 1999, is a stream cipher based            
on KASUMI [10, 11]. This last algorithm is a block 
cipher used under its OFB operation mode [12]. 

The second one, UEA2, is also a stream cipher 
but based on another stream cipher named SNOW 
3G. It was introduced as 3GPP standard on 2006. 

1.3. UMTS Integrity Function f9 

To ensure signaling data protection, a message 
authentication function f9 shall be applied to these 
information elements transmitted between the ME 
(Mobile Equipment) and the RNC (Radio Network 
Controller). It's a one-way function which generates 
a 32-bit output MAC-I under the control of 128-bit 
Integrity Key IK [2, 3, 11]. 

“Figure 2” bellow illustrates the calculation 
mechanism of the message authentication code 
MAC-I using the f9 function. 

 
Figure 2. Derivation of MAC-I (or XMAC-I) [1, 2] 

The algorithm input parameters are the 
following: 

 IK: Integrity Key;  

 COUNT-I: Frame dependent input;  

 FRESH: Random number generated by the 
network;  

 DIRECTION: Direction of the transmission;  

 MESSAGE: Input bit stream; 

Based on these input parameters, the message 
authentication code MAC-I is calculated. 
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2. KASUMI BASED ALGORITHMS - 
UEA1/UIA1 

In the present section, we will study first the 
algorithms UEA1 and UIA1 and their operation 
modes. Then, we will focus on the verification of 
the UEA1 and UIA1 codes given by the 3GPP 
specification documents [1, 5]. After that, we will 
expose the results of the implementation of both 
algorithms after having carried out the necessary 
corrections to the 3GPP algorithms codes to meet 
the 3GPP algorithms specifications and 
requirements. These corrections will be exposed as 
well. 

2.1. Encryption Algorithm UEA1 

UEA1 uses, as keystream generator, the cipher 
block KASUMI under its OFB (Output-FeedBack 
mode) operation mode to produce an output 
KEYSTREAM [10, 12]. This keystream, which the 
length is multiple of 64 bits will be used to 
encrypt/decrypt the user or signaling data. 

Concerning KASUMI algorithm, in the present 
paper, we will just say that it is a block cipher 
algorithm which take a 64-bit input to produce         
a 64-bit output under a 128-bit control [1, 6, 11]. 

We can distinguish three principal steps during 
the UEA1 operation: initialization of the keystream 
generator, keystream generation and finally data 
encryption/decryption. These steps are presented 
bellow. 

2.1.1. Initialization 
Before generating the keystream, the keystream             

generator is initialized with the input parameters [1, 
5].  

 The 64-bit register A0 is set to:  

    COUNT || BEARER || DIRECTION || 0 … 0 

    i.e. A0 = COUNT[0]  … COUNT[31] 
BEARER[0] … BEARER[4] DIRECTION[0] 
0 … 0 

 The counter BLKCNT is set to zero and the                     
key modifier KM is set to the 128-bit value: 

 KM = 0x55555555555555555555555555555555 

 KSB0 is also set to zero. 

Then, we apply one operation of the cipher block 
KASUMI to the register A0 under the control of the 
modified confidentiality key CK ⊕ KM. 

A = KASUMI[ A ] CK ⊕ KM 

“Figure 3” bellow illustrates this step. 

 
Figure 3. Keystream generator initialization 

2.1.2. Keystream generation 
Once the keystream generator is initialized, it                     

becomes ready for the keystream bits generation. 
“Figure 4” illustrates keystream generation 
principal for the UEA1 algorithm. 

 
Figure 4. UEA1 Keystream generation  

It is important to mention that the PLAINTEXT 
/CIPHERTEXT number of bits is determinated by                     
the input parameter LENGTH (which isn't 
necessary a multiple of 64). So since the generated                     
keystream bits number is multiple of 64, some bits, 
between 0 and 63 bits, in the last produced 
keystream block will be discarded to meet the exact 
length of the message to encrypt/decrypt. 

“Figure 5” bellow shows the nth UEA1 execution 
state, with 1 ≤ n ≤ BLOCKS = [LENGTH/64] + 1. 
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Figure 5. nth block keystream generation 

 
2.1.3. Data encryption / decryption 

Encyption/decryption operations are identical and 
are performed by the exclusive-OR operation 
(XOR) of the input data IBS (Input Bit Stream) 
(which is the message to encrypt/decrypt)                    
with the generated keystream (KS) to generate the 
output OBS (Output Bit Stream). 

For each integer i with 0 ≤ i ≤ LENGTH-1 we 
define: 

OBS[i] = IBS[i] ⊕ KS[i]. 

2.2. Integrity Algorithm UIA1 

The integrity algorithm UIA1 is a message 
authentication function which produces a 32-bit 
Message Authentication Code (MAC) as an output, 
under the control of the 128-bit integrity key IK. It's 
based on the cipher block KASUMI used under its 
CBC-MAC operation mode [10, 11, 12]. A 64-bit 
digest is generated and only its left half (the most 
significant 32 bits) constitutes the output value 
MAC-I. 

To do this, UIA1 performs two important steps 
presented bellow [1, 5]. 

2.2.1. Initialization 
First, the keystream generator is initialized with             

the input parameters before generating the 
keystream bits.  

 The registers A and B are set to 0: A = 0             
and B = 0 

 The UIA1 key modifier is set to: 

KM = 0xAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAA 

 After concatenating the input data, we append 
a single '1' bit followed by between 0 and 63 '0' 
bits so that the total length of the resulting 
string PS (Padded String) is multiple of 64 bits: 

PS = COUNT[0] … COUNT[31] FRESH[0] 
… FRESH[31] MESSAGE[0] … MESSAGE[ 
LENGTH-1] DIRECTION[0] 1 0* (0* indicate 
`0' bits between 0 and 63.) 

2.2.2. MAC-I calculation 
After the initialization step, the cipher block 

KASUMI will be used in its CBC-MAC operation 
mode to generate the MAC-I. 

The padded string PS, introduced in the 
initialization step, is splitted into 64-bit blocks PSi 
where: 

PS  = PS0||PS1||PS2||…||PSBLOCKS-1 

Then, the following operations are performed for 
each integer n with 0 ≤ n ≤ BLOCKS-1: 

A=KASUMI[A ⊕ PSn]IK 

B=B ⊕ A 

Finally, the algorithm KASUMI, using the 
modified integrity key, is applied to the result as 
shown bellow. 

B = KASUMI[B]IK ⊕ KM 

MAC-I is the 32-bit left half of the result: 

MAC-I=lefthalf[B] 

“Figure 6” bellow shows the steps followed to 
calculate the MAC-I. 

 
Figure 6. MAC-I (or XMAC-I) calculation 
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2.3. Verification and Implementation 

After the close study of the algorithms UEA1 and         
UIA1, we will expose now the result of our 
verification, rectification of the both algorithms 
whose codes are given by 3GPP specifications. 
Then, we will present the practical implementation 
of the correct version of the codes. We note that the 
algorithms UEA1 and UIA1 are coded in the C 
language. 

2.3.1. UEA1 verification and rectification 
In our UEA1 algorithm verification task, we have 

used the TestSets given by the 3GPP 
Implementation document [1, 13, 14]. These 
TestSets are given by the 3GPP for the algorithms 
implementors to test the correctness of their 
implementations in respect to 3GPP requirements.  

Based on this, we have found that for a given 
input data and for a given key and plaintext (Data 
taken from the TestSets), the ciphertext generated 
by the algorithm UEA1 in its 3GPP code version 
was incorrect. Thus, our objective was to check 
these codes, and give a correct version of these 
security algorithms which are supposed to be 
implemented in both MEs (Mobile Equipments) and 
RNCs (Radio Network Controller) in a UMTS 
Access Network in order to ensure data 
confidentiality and integrity over the air interface. 
In the following paragraphs, we will expose the 
corrections made. 

Indeed, after studying deeply the UEA1 C-
language code, we have found two main problems: 

1. The first one was that the instruction used to 
generate the ciphertext from the exclusive-OR 
operation between the plaintext and the 
keystream was coded incorrectly.                      
So, to remedy to this problem, we have 
replaced the 3GPP instruction bellow:                              
*data++   ^= temp.b8[i];   

        by the following instruction block: 

    *data  ^= temp.b8[i];              

    d[i] = *data;              

   *data = *data++; 

2. and then, we have added the following 
instructions to control the length of the 
ciphertext produced in accordance with the 
LENGTH parameter value. This issue is very 
important since the ciphertext and the plaintext 
must have the same number of bits but it was 
omitted in 3GPP code version. You find bellow 
the instruction block added: 

    j = 8 - j; 

   if (length < 64)               

   { 

d[n-1] = d[n-1] >> j; 

d[n-1] = d[n-1] << j; 

    } 

d[n-1] represents de nth block of the generated 
ciphertext, which represents the last block 
where the length control has to be performed. 

It is important to mention here that the                     
corrections brought to the algorithm have no                     
impact on its security and its robustness since                     
it doesn't modify any thing in the algorithm internal                     
processing. 

2.3.2. UEA1 implementation example [1] 
The implementation data parameters are given by 

the 3GPP tests and implementation documents [1, 
14]. 

These tests were chosen by the standardization 
group to give the implementors a way to check the 
correctness of their implementations. You find 
bellow one Testset example for the UEA1 
algorithm. 

Input Data: 

Key       = 2BD6459F 82C440E0 952C4910 
4805FF48 

Count     = C675A64B  

Bearer    = 0C 

Direction = 1  

Length    = 798 bits 

Plaintext: 
7EC61272743BF1614726446A6C38CED1 

66F6CA76EB5430044286346CEF130F92 

922B03450D3A9975E5BD2EA0EB55AD8E 

1B199E3EC4316020E9A1B285E7627953 

59B7BDFD39BEF4B2484583D5AFE082AE 

E638BF5FD5A606193901A08F4AB41AAB 

9B134880 

Expected Ciphertext [14]: 

1061793DAAACBE40C9431E292B7FF494 

96DB0D31CE24710C01ACFF1B2C441FA9 

3BB3BD65DE18027A14CCA571A42E8B12 
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74AE30AC411AB6AFD88F924E65F9812D 

FA80EF8E9A7EA753391D09F480D9147C 

B39C23A1ACB9AC9B2A6B4709F7E6DD84 

D8FA59A4 

With the UEA1 3GPP version after correction of 
the first problem presented in subsection 2.3.1, we 
have obtained the result presented in the following 
“Figure 7”. 

 
Figure 7. Encryption with UEA1 3GPP version 

We notice that the CIPHERTEXT length is 800 
bits and not 798 bits as it should be, regarding to the                     
parameters LENGTH parameter value. 

This means that the UEA1 algorithm didn't take                     
into account the LENGTH parameter value                     
given as input value, to be able to control                     
the length of ciphertext resulting from the 
exclusive-OR operation between the plaintext and 
keystream. 

We have carried out the necessary corrections to 
3GPP algorithm code, as presented in the 
subsection 2.3.1 to make it able to discard the 
unnecessary bits from the last 64-bit keystream 
block. We find then the expected result shown in 
“Figure 8” bellow. 

 
Figure 8. Encryption with UEA1 rectified version 

2.3.3. UIA1 implementation example [1, 14] 
As far as the UIA1 algorithm is concerned, the 

result of our verification shows that the algorithm is 
coded in respect of all 3GPP requirements, and the 
result of the implementation tests were as expected 
by the 3GPP implementation documents. 

Bellow is presented an example of one of the 
testsets implemented. 

Input Data: 

Key       = D42F6824 28201CAF CD9F9794 
5E6DE7B7 

Count     = 3EDC87E2  

Fresh     = A4F2D8E2 

Direction = 1  

Length    = 254 bits 

Message: 

B5924384328A4AE00B737109F8B6C8DD 

2B4DB63DD533981CEB19AAD52A5B2BC0 

 
Figure 9. UIA1 MAC-I calculation 

 
3. SNOW 3G BASED ALGORITHMS - 
UEA2/UIA2  

After studying and implementing the first set of         
3GPP cryptographic algorithms, we will focus now 
on the second algorithms set. These two new 
algorithms, based on the stream cipher SNOW 3G, 
has been introduced in the UMTS Access Network 
security since 2006 [7, 8]. 

Since we have already studied the different 
operation steps of both UEA2 and UIA2 algorithms 
in our previous work [15], we will be interested, in 
the present section, in the results of their 
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implementations after having carried out the 
necessary corrections to the 3GPP algorithms codes 
to meet the 3GPP algorithms specifications. The 
verification and the implementation tasks for these 
two algorithms are more difficult then for the first 
set because the codes given by the 3GPP 
specification document are compatible only with 
big-endian machines, so they are not compatible 
with all UMTS equipments present in the market. 
Our task was then to propose an adaptation of the 
algorithm codes to little-endian machines and give 
the necessary corrections. More details about these 
issues are given in the following subsections. 

3.1. UEA2 Verification And Implementation 

In addition to the adaptation of the algorithm to 
little-endian machines, we have added, as for 
UEA1, the instructions to control the length of the 
generated ciphertext in accordance with the 
LENGTH parameter value. This issue was omitted 
in the 3GPP algorithm code version. 

Bellow is the corrections we have done in the 
code to meet the 3GPP requirements and to adapt it 
to little endian machines. 

1. First, there was a problem in loading the 
confidentiality key for SNOW 3G 
initialization. The memory unit is the byte. 
Reading a byte in little or big endian machines 
doesn't differ but the problem was found 
because the algorithm need to read a 32 bit-
word (4 Bytes) from the memory. The 
instructions which were used in 3GPP 
documents are the following: 

    memcpy(K+3,key+0,4); 

    memcpy(K+2,key+4,4);  

    memcpy(K+1,key+8,4);  

    memcpy(K+0,key+12,4);  

"key" is the cipher key given as an argument. 
And we assume that K[3]=key[0] || key[1] || … 
|| key[31] and so on for K[2], K[1] and K[0] 
(K[0]=key[96] || key[97] || … || key[127]). 

 We have replaced these instructions by the 
following instruction block: 

    for (i=0;i<16;i++) 

memcpy(Kk+(15-i),key+i,1); 

    K[0] |= (u32) (Kk[3]<<24); 

    K[0] |= (u32) (Kk[2]<<16); 

    K[0] |= (u32) (Kk[1]<<8); 

    K[0] |= (u32) (Kk[0]); 

 K[1] |= (u32) (Kk[7]<<24); 

     K[1] |= (u32) (Kk[6]<<16); 

     K[1] |= (u32) (Kk[5]<<8); 

     K[1] |= (u32) (Kk[4]); 

     K[2] |= (u32) (Kk[11]<<24); 

     K[2] |= (u32) (Kk[10]<<16); 

     K[2] |= (u32) (Kk[9]<<8); 

     K[2] |= (u32) (Kk[8]); 

     K[3] |= (u32) (Kk[15]<<24); 

     K[3] |= (u32) (Kk[14]<<16); 

     K[3] |= (u32) (Kk[13]<<8); 

     K[3] |= (u32) (Kk[12]); 

After this correction, the cipher key is read 
correctly by the algorithm codes. 

2. The same problem was found with the 
following instructions: 

for (i=0;i<n*4;i++) 

data[i] ^= *(((u8*)KS)+i); 

These instructions are used to generate the 
ciphertext blocks from the plaintext and the 
keystream blocks. 

We have replaced them by the following block 
of instructions. The control of the generated 
ciphertext length is done also in this step. 

r = (length / 8);            

s = 8 - (length - r * 8); 

lengthtemp = length; 

for (j=0;j<n;j++) 

{ 

   i=0; 

while ((length>0) && (i<4)) 

{ 

KStemp.b32[0] = (u32) (*(KS+j)); 

KStemp.b8[i] = (u8) (KStemp.b32[0] 
>> ((3-i)*8)); 

if ((length < 32) \&\& ((length - i*8) < 
8)) 

{    
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                   KStemp.b8[i] = KStemp.b8[i] >> s; 

                   KStemp.b8[i] = KStemp.b8[i] << s; 

} 

  data[(j*4)+i] ^= KStemp.b8[i]; 

i++; 

        } 

 length -=32; 

} 

3.2. UIA2 verification and rectification 

During the verification of the UIA2 algorithm, 
we were faced to the same endianness issues seen 
before with UEA2. 

1. The first problem faced was with the MUL64 
function. MUL64 works with 64-bit words and 
makes bit-shifting operations. These shifting 
instructions are understood differently in a big 
or little endian machines. So an adaptation was 
necessary. 

We then replace the following 3GPP function: 

u64 MUL64(u64 V, u64 P, u64 c) 

{             

u64 result = 0; 

int i = 0; 

for ( i=0; i<64; i++) 

{ 

if( ( P>>i ) & 0x1 ) 

            result ^= MUL64xPOW(V,i,c); 

} 

return result; 

}             

by the following function: 

u64 MUL64(u64 V, u64 P, u64 c) 

{               

u32 z[5],t[5]; 

u64 result = 0; 

 int i = 0; 

 z[0] = (u32)P; 

 z[1] = (u32)P >> 32; 

for ( i=0; i<64; i++) 

 { 

  if( ( (u64)P>>i ) & ((u64)0x1 << 32) ) 

result ^= MUL64xPOW(V,i,c); 

} 

return result; 

} 

2. Then, to solve the message reading problem 
and to operate a 32-bit words internally, it was 
necessary to replace the following 3GPP 
instruction: 

message = (u32*)data; 

by the instructions block bellow: 

 l = length / 32; 

 if (length % 8 ==0) 

 

for (i=0;i<(length / 8);i++) 

memcpy(m+i,data+i,1); 

else 

for (i=0;i<(length / 8)+1;i++) 

 memcpy(m+i,data+i,1); 

for (j=0;j<l+1;j++) 

{ 

 message[j] = (u32) m[j*4] << 24; 

 for (i=1;i<4;i++) 

 message[j] |= (u32) m[i + j*4] << 
(8*(4-i-1)); 

} 

3.3. UEA2 implementation example  

After adapting UEA2 algorithm code to read 
correctly from memory, and after making the 
necessary corrections, we were able to get the             
right ciphertexts for the textsets given by the 
implementation document [16]. We present here an 
example of the UEA2 implementation. 

Input Data: 

Count-C = E28BCF7B                 Bearer = 18 

Direction = 0                                 Length = 510 bits 

CK = EFA8B2229E720C2A7C36EA55E9605695 

Plaintext: 

10111231E060253A43FD3F57E37607AB 
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2827B599B6B1BBDA37A8ABCC5A8C550D 

1BFB2F494624FB50367FA36CE3BC68F1 

1CF93B1510376B02130F812A9FA169D8 

 
Figure 10. Encryption with UEA2 rectified version 

3.4. UIA2 implementation example  

After carrying out the necessary corrections and 
adaptations for the UIA2 algorithms, we present 
bellow an example of one of the testsets 
implemented. 

Input Data: 

COUNT-I = 14793E41      FRESH = 0397E8FD 

DIRECTION = 1                LENGTH = 384 bits 

IK = C736C6AAB22BFFF91E2698D2E22AD57E 

MESSAGE: 

D0A7D463DF9FB2B278833FA02E235AA1 

72BD970C1473E12907FB648B6599AAA0 

B24A038665422B20A499276A50427009 

 
Figure 11. UIA2 MAC-I calculation 

4. CONCLUSION 
In this paper, a detailed study of the UMTS     

cryptographic functions f8 and f9 has been carried 
out. The first objective was to make it easy to     
understand each UMTS confidentiality or integrity 
algorithms operation. On the other hand, we were 
interested in the verification of the 3GPP algorithms 
codes given by 3GPP specification. Our verification 
leads to the result that the algorithm codes were 
incorrect (except for UIA1) and didn't respond 
totally to the 3GPP requirements. So some 
rectifications and adaptations were necessary before 
proceeding to the algorithms implementation. 

As far as the confidentiality algorithm UEA1 and 
UEA2 are concerned, the ciphertext length control 
have been omitted. So we have carried out the 
necessary correction. Concerning the UEA2 and 
UIA2 algorithms implementation, we were faced to 
the code compatibility problem with little endian-
machines in both algorithms. So, we have corrected 
the 3GPP algorithms codes version and recoded 
them with respect to endian issues. Thus, the 
practical aspect of our present work was the 
verification, the rectification and finally the 
implementation of the UTRAN cryptographic 
algorithms in C language. Some results of the 
implementation tests were exposed. Through this 
paper, we are proposing a correct codes version of 
the UMTS confidentiality and integrity algorithms 
to contribute and facilitate their use and integration 
by the interested entities. 
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