
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

67

UTRAN CRYPTOGRAPHIC ALGORITHMS
VERIFICATION AND IMPLEMENTATION

1GHIZLANE ORHANOU, 2SAÏD EL HAJJI, 3JALAL LAASSIRI, 4YOUSSEF BENTALEB

1, 3, 4 Doctor, Département Math. et Informatique, Université Med V Agdal, Faculté des Sciences, Maroc
2 Professor, Département Math. et Informatique, Université Med V Agdal, Faculté des Sciences, Rabat,

Maroc

ABSTRACT

In the present paper, we are interested in Universal Mobile Telecommunications System (UMTS) Access
Network security. A special interest is given to the protection of the data integrity and the provisioning of
data encryption. Indeed, the appropriate procedures and cryptographic algorithms are discussed. In previous
work, we were interested in the study of the operation and complexity of the algorithms, but actually we
will focus on other aspects. A closer look is taken at the two sets of UMTS cryptographic algorithms:
UEA1/UIA1 (UEA indicates UMTS Encryption Algorithm and UIA UMTS Integrity Algorithm) based on
the KASUMI algorithm and UEA2/UIA2 based on the SNOW 3G algorithm. Furthermore, this paper
includes the results of the verification and the implementation of the two sets of the UMTS cryptographic
algorithms. The necessary corrections and/or adaptation of the 3GPP algorithms codes having carried out
to meet the 3GPP algorithms specifications. Furthermore, we propose an adaptation of the second set of
algorithms to the little-endian machines since the 3GPP proposed codes are only limited to the big-endian
machines. These corrections and adaptations are presented in the present paper and some implementation
examples are presented as well.

Keywords: UMTS, Confidentiality, Integrity, SNOW 3G, Verification, Implementation

1. SECURITY MECHANISMS IN THE

UMTS ACCESS NETWORK

The Access Network security is carried out
through a set of security features which offer to the
UMTS user a safe and secure access to 3G services
over the air interface [1, 2, 3]. The following
features are provided:

 User identity confidentiality;

 Mutual authentication of the network and the
user;

 Confidentiality;

 Data integrity.

These functionalities protect against attacks
which threaten data on the network access link [3,
4].

In the present paper, we will focus on the two last
security features.

1.1. Confidentiality And Data Integrity In The
UMTS

1.1.1. Confidentiality
User data and some signaling data are

considered sensitive and their confidentiality
should be protected over the radio access link.
To ensure this data confidentiality on the air
interface, the following features are provided [1, 2]:

 Cipher algorithm (f8) agreement: nowadays,
there exist two variants of the cipher
algorithm: UEA1 based on KASUMI algorithm
[1, 5, 6] and UEA2 based on SNOW 3G
algorithm [1, 7, 8, 15]. The MS (Mobile
Station) and the SN (Serving Network) can
securely negotiate the algorithm to use in their
mutual communication.

 Cipher key (CK) agreement: the agreement
is done between the MS and SN during the
Authentication and Key Agreement procedure;

 Confidentiality of user and signaling data;

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

68

1.1.2. Integrity
Data integrity in the UMTS network ensures the

protection of the signaling data integrity and allows
the authentication of the signaling messages
transmitted between the user and the serving
network [1, 2, 9].

The following security features are provided to
ensure the signaling data integrity on the network
access link:

 Integrity algorithm (f9) agreement: as for the
data confidentiality, there is actually two
variants of the integrity algorithm: UIA1 based
on KASUMI algorithm and UIA2 based on
SNOW 3G algorithm.

 Integrity key (IK) agreement;

 Data integrity and origin authentication of
signaling data: the receiving entity (MS or SN)
must be able to check that the signaling data
wasn't modified during its transition over the
network access link and to check the expected
origin of the message (SN or MS).

In the following subsections, we will introduce
the UMTS confidentiality and integrity
mechanisms.

1.2. UMTS Encryption Function f8

The need for a confidentiality protected mode of
transmission is fulfilled by an UMTS
confidentiality cryptographic function f8 [1, 2, 3]
which is a symmetric synchronous stream cipher.
This type of ciphering has the advantage to generate
the mask of data before even receiving the data to
encrypt, which help to save time. Furthermore, it is
based on bitwise operations which are carried out
quickly.

“Figure 1” bellow illustrates the Encryption/
Decryption operations using the f8 function.

Figure 1. Encryption/Decryption mechanism

The input parameters of f8 are the following:

 CK : Cipher Key;

 COUNT-C: Frame dependent input used to
synchronize the sender and the receiver;

 BEARER: Service bearer identity;

 DIRECTION: Direction of the transmission;

 LENGTH: Number of bits to be
encrypted/decrypted;

As mentioned above, there exist nowadays two
encryption algorithms UEA1 et UEA2.

UEA1, which was used since the genesis of the
UMTS network in 1999, is a stream cipher based
on KASUMI [10, 11]. This last algorithm is a block
cipher used under its OFB operation mode [12].

The second one, UEA2, is also a stream cipher
but based on another stream cipher named SNOW
3G. It was introduced as 3GPP standard on 2006.

1.3. UMTS Integrity Function f9

To ensure signaling data protection, a message
authentication function f9 shall be applied to these
information elements transmitted between the ME
(Mobile Equipment) and the RNC (Radio Network
Controller). It's a one-way function which generates
a 32-bit output MAC-I under the control of 128-bit
Integrity Key IK [2, 3, 11].

“Figure 2” bellow illustrates the calculation
mechanism of the message authentication code
MAC-I using the f9 function.

Figure 2. Derivation of MAC-I (or XMAC-I) [1, 2]

The algorithm input parameters are the
following:

 IK: Integrity Key;

 COUNT-I: Frame dependent input;

 FRESH: Random number generated by the
network;

 DIRECTION: Direction of the transmission;

 MESSAGE: Input bit stream;

Based on these input parameters, the message
authentication code MAC-I is calculated.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

69

2. KASUMI BASED ALGORITHMS -
UEA1/UIA1

In the present section, we will study first the
algorithms UEA1 and UIA1 and their operation
modes. Then, we will focus on the verification of
the UEA1 and UIA1 codes given by the 3GPP
specification documents [1, 5]. After that, we will
expose the results of the implementation of both
algorithms after having carried out the necessary
corrections to the 3GPP algorithms codes to meet
the 3GPP algorithms specifications and
requirements. These corrections will be exposed as
well.

2.1. Encryption Algorithm UEA1

UEA1 uses, as keystream generator, the cipher
block KASUMI under its OFB (Output-FeedBack
mode) operation mode to produce an output
KEYSTREAM [10, 12]. This keystream, which the
length is multiple of 64 bits will be used to
encrypt/decrypt the user or signaling data.

Concerning KASUMI algorithm, in the present
paper, we will just say that it is a block cipher
algorithm which take a 64-bit input to produce
a 64-bit output under a 128-bit control [1, 6, 11].

We can distinguish three principal steps during
the UEA1 operation: initialization of the keystream
generator, keystream generation and finally data
encryption/decryption. These steps are presented
bellow.

2.1.1. Initialization
Before generating the keystream, the keystream

generator is initialized with the input parameters [1,
5].

 The 64-bit register A0 is set to:

 COUNT || BEARER || DIRECTION || 0 … 0

 i.e. A0 = COUNT[0] … COUNT[31]
BEARER[0] … BEARER[4] DIRECTION[0]
0 … 0

 The counter BLKCNT is set to zero and the
key modifier KM is set to the 128-bit value:

 KM = 0x55555555555555555555555555555555

 KSB0 is also set to zero.

Then, we apply one operation of the cipher block
KASUMI to the register A0 under the control of the
modified confidentiality key CK ⊕ KM.

A = KASUMI[A] CK ⊕ KM

“Figure 3” bellow illustrates this step.

Figure 3. Keystream generator initialization

2.1.2. Keystream generation
Once the keystream generator is initialized, it

becomes ready for the keystream bits generation.
“Figure 4” illustrates keystream generation
principal for the UEA1 algorithm.

Figure 4. UEA1 Keystream generation

It is important to mention that the PLAINTEXT
/CIPHERTEXT number of bits is determinated by
the input parameter LENGTH (which isn't
necessary a multiple of 64). So since the generated
keystream bits number is multiple of 64, some bits,
between 0 and 63 bits, in the last produced
keystream block will be discarded to meet the exact
length of the message to encrypt/decrypt.

“Figure 5” bellow shows the nth UEA1 execution
state, with 1 ≤ n ≤ BLOCKS = [LENGTH/64] + 1.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

70

Figure 5. nth block keystream generation

2.1.3. Data encryption / decryption

Encyption/decryption operations are identical and
are performed by the exclusive-OR operation
(XOR) of the input data IBS (Input Bit Stream)
(which is the message to encrypt/decrypt)
with the generated keystream (KS) to generate the
output OBS (Output Bit Stream).

For each integer i with 0 ≤ i ≤ LENGTH-1 we
define:

OBS[i] = IBS[i] ⊕ KS[i].

2.2. Integrity Algorithm UIA1

The integrity algorithm UIA1 is a message
authentication function which produces a 32-bit
Message Authentication Code (MAC) as an output,
under the control of the 128-bit integrity key IK. It's
based on the cipher block KASUMI used under its
CBC-MAC operation mode [10, 11, 12]. A 64-bit
digest is generated and only its left half (the most
significant 32 bits) constitutes the output value
MAC-I.

To do this, UIA1 performs two important steps
presented bellow [1, 5].

2.2.1. Initialization
First, the keystream generator is initialized with

the input parameters before generating the
keystream bits.

 The registers A and B are set to 0: A = 0
and B = 0

 The UIA1 key modifier is set to:

KM = 0xAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

 After concatenating the input data, we append
a single '1' bit followed by between 0 and 63 '0'
bits so that the total length of the resulting
string PS (Padded String) is multiple of 64 bits:

PS = COUNT[0] … COUNT[31] FRESH[0]
… FRESH[31] MESSAGE[0] … MESSAGE[
LENGTH-1] DIRECTION[0] 1 0* (0* indicate
`0' bits between 0 and 63.)

2.2.2. MAC-I calculation
After the initialization step, the cipher block

KASUMI will be used in its CBC-MAC operation
mode to generate the MAC-I.

The padded string PS, introduced in the
initialization step, is splitted into 64-bit blocks PSi
where:

PS = PS0||PS1||PS2||…||PSBLOCKS-1

Then, the following operations are performed for
each integer n with 0 ≤ n ≤ BLOCKS-1:

A=KASUMI[A ⊕ PSn]IK

B=B ⊕ A

Finally, the algorithm KASUMI, using the
modified integrity key, is applied to the result as
shown bellow.

B = KASUMI[B]IK ⊕ KM

MAC-I is the 32-bit left half of the result:

MAC-I=lefthalf[B]

“Figure 6” bellow shows the steps followed to
calculate the MAC-I.

Figure 6. MAC-I (or XMAC-I) calculation

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

71

2.3. Verification and Implementation

After the close study of the algorithms UEA1 and
UIA1, we will expose now the result of our
verification, rectification of the both algorithms
whose codes are given by 3GPP specifications.
Then, we will present the practical implementation
of the correct version of the codes. We note that the
algorithms UEA1 and UIA1 are coded in the C
language.

2.3.1. UEA1 verification and rectification
In our UEA1 algorithm verification task, we have

used the TestSets given by the 3GPP
Implementation document [1, 13, 14]. These
TestSets are given by the 3GPP for the algorithms
implementors to test the correctness of their
implementations in respect to 3GPP requirements.

Based on this, we have found that for a given
input data and for a given key and plaintext (Data
taken from the TestSets), the ciphertext generated
by the algorithm UEA1 in its 3GPP code version
was incorrect. Thus, our objective was to check
these codes, and give a correct version of these
security algorithms which are supposed to be
implemented in both MEs (Mobile Equipments) and
RNCs (Radio Network Controller) in a UMTS
Access Network in order to ensure data
confidentiality and integrity over the air interface.
In the following paragraphs, we will expose the
corrections made.

Indeed, after studying deeply the UEA1 C-
language code, we have found two main problems:

1. The first one was that the instruction used to
generate the ciphertext from the exclusive-OR
operation between the plaintext and the
keystream was coded incorrectly.
So, to remedy to this problem, we have
replaced the 3GPP instruction bellow:
*data++ ^= temp.b8[i];

 by the following instruction block:

 *data ^= temp.b8[i];

 d[i] = *data;

 *data = *data++;

2. and then, we have added the following
instructions to control the length of the
ciphertext produced in accordance with the
LENGTH parameter value. This issue is very
important since the ciphertext and the plaintext
must have the same number of bits but it was
omitted in 3GPP code version. You find bellow
the instruction block added:

 j = 8 - j;

 if (length < 64)

 {

d[n-1] = d[n-1] >> j;

d[n-1] = d[n-1] << j;

 }

d[n-1] represents de nth block of the generated
ciphertext, which represents the last block
where the length control has to be performed.

It is important to mention here that the
corrections brought to the algorithm have no
impact on its security and its robustness since
it doesn't modify any thing in the algorithm internal
processing.

2.3.2. UEA1 implementation example [1]
The implementation data parameters are given by

the 3GPP tests and implementation documents [1,
14].

These tests were chosen by the standardization
group to give the implementors a way to check the
correctness of their implementations. You find
bellow one Testset example for the UEA1
algorithm.

Input Data:

Key = 2BD6459F 82C440E0 952C4910
4805FF48

Count = C675A64B

Bearer = 0C

Direction = 1

Length = 798 bits

Plaintext:
7EC61272743BF1614726446A6C38CED1

66F6CA76EB5430044286346CEF130F92

922B03450D3A9975E5BD2EA0EB55AD8E

1B199E3EC4316020E9A1B285E7627953

59B7BDFD39BEF4B2484583D5AFE082AE

E638BF5FD5A606193901A08F4AB41AAB

9B134880

Expected Ciphertext [14]:

1061793DAAACBE40C9431E292B7FF494

96DB0D31CE24710C01ACFF1B2C441FA9

3BB3BD65DE18027A14CCA571A42E8B12

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

72

74AE30AC411AB6AFD88F924E65F9812D

FA80EF8E9A7EA753391D09F480D9147C

B39C23A1ACB9AC9B2A6B4709F7E6DD84

D8FA59A4

With the UEA1 3GPP version after correction of
the first problem presented in subsection 2.3.1, we
have obtained the result presented in the following
“Figure 7”.

Figure 7. Encryption with UEA1 3GPP version

We notice that the CIPHERTEXT length is 800
bits and not 798 bits as it should be, regarding to the
parameters LENGTH parameter value.

This means that the UEA1 algorithm didn't take
into account the LENGTH parameter value
given as input value, to be able to control
the length of ciphertext resulting from the
exclusive-OR operation between the plaintext and
keystream.

We have carried out the necessary corrections to
3GPP algorithm code, as presented in the
subsection 2.3.1 to make it able to discard the
unnecessary bits from the last 64-bit keystream
block. We find then the expected result shown in
“Figure 8” bellow.

Figure 8. Encryption with UEA1 rectified version

2.3.3. UIA1 implementation example [1, 14]
As far as the UIA1 algorithm is concerned, the

result of our verification shows that the algorithm is
coded in respect of all 3GPP requirements, and the
result of the implementation tests were as expected
by the 3GPP implementation documents.

Bellow is presented an example of one of the
testsets implemented.

Input Data:

Key = D42F6824 28201CAF CD9F9794
5E6DE7B7

Count = 3EDC87E2

Fresh = A4F2D8E2

Direction = 1

Length = 254 bits

Message:

B5924384328A4AE00B737109F8B6C8DD

2B4DB63DD533981CEB19AAD52A5B2BC0

Figure 9. UIA1 MAC-I calculation

3. SNOW 3G BASED ALGORITHMS -
UEA2/UIA2

After studying and implementing the first set of
3GPP cryptographic algorithms, we will focus now
on the second algorithms set. These two new
algorithms, based on the stream cipher SNOW 3G,
has been introduced in the UMTS Access Network
security since 2006 [7, 8].

Since we have already studied the different
operation steps of both UEA2 and UIA2 algorithms
in our previous work [15], we will be interested, in
the present section, in the results of their

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

73

implementations after having carried out the
necessary corrections to the 3GPP algorithms codes
to meet the 3GPP algorithms specifications. The
verification and the implementation tasks for these
two algorithms are more difficult then for the first
set because the codes given by the 3GPP
specification document are compatible only with
big-endian machines, so they are not compatible
with all UMTS equipments present in the market.
Our task was then to propose an adaptation of the
algorithm codes to little-endian machines and give
the necessary corrections. More details about these
issues are given in the following subsections.

3.1. UEA2 Verification And Implementation

In addition to the adaptation of the algorithm to
little-endian machines, we have added, as for
UEA1, the instructions to control the length of the
generated ciphertext in accordance with the
LENGTH parameter value. This issue was omitted
in the 3GPP algorithm code version.

Bellow is the corrections we have done in the
code to meet the 3GPP requirements and to adapt it
to little endian machines.

1. First, there was a problem in loading the
confidentiality key for SNOW 3G
initialization. The memory unit is the byte.
Reading a byte in little or big endian machines
doesn't differ but the problem was found
because the algorithm need to read a 32 bit-
word (4 Bytes) from the memory. The
instructions which were used in 3GPP
documents are the following:

 memcpy(K+3,key+0,4);

 memcpy(K+2,key+4,4);

 memcpy(K+1,key+8,4);

 memcpy(K+0,key+12,4);

"key" is the cipher key given as an argument.
And we assume that K[3]=key[0] || key[1] || …
|| key[31] and so on for K[2], K[1] and K[0]
(K[0]=key[96] || key[97] || … || key[127]).

 We have replaced these instructions by the
following instruction block:

 for (i=0;i<16;i++)

memcpy(Kk+(15-i),key+i,1);

 K[0] |= (u32) (Kk[3]<<24);

 K[0] |= (u32) (Kk[2]<<16);

 K[0] |= (u32) (Kk[1]<<8);

 K[0] |= (u32) (Kk[0]);

 K[1] |= (u32) (Kk[7]<<24);

 K[1] |= (u32) (Kk[6]<<16);

 K[1] |= (u32) (Kk[5]<<8);

 K[1] |= (u32) (Kk[4]);

 K[2] |= (u32) (Kk[11]<<24);

 K[2] |= (u32) (Kk[10]<<16);

 K[2] |= (u32) (Kk[9]<<8);

 K[2] |= (u32) (Kk[8]);

 K[3] |= (u32) (Kk[15]<<24);

 K[3] |= (u32) (Kk[14]<<16);

 K[3] |= (u32) (Kk[13]<<8);

 K[3] |= (u32) (Kk[12]);

After this correction, the cipher key is read
correctly by the algorithm codes.

2. The same problem was found with the
following instructions:

for (i=0;i<n*4;i++)

data[i] ^= *(((u8*)KS)+i);

These instructions are used to generate the
ciphertext blocks from the plaintext and the
keystream blocks.

We have replaced them by the following block
of instructions. The control of the generated
ciphertext length is done also in this step.

r = (length / 8);

s = 8 - (length - r * 8);

lengthtemp = length;

for (j=0;j<n;j++)

{

 i=0;

while ((length>0) && (i<4))

{

KStemp.b32[0] = (u32) (*(KS+j));

KStemp.b8[i] = (u8) (KStemp.b32[0]
>> ((3-i)*8));

if ((length < 32) \&\& ((length - i*8) <
8))

{

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

74

 KStemp.b8[i] = KStemp.b8[i] >> s;

 KStemp.b8[i] = KStemp.b8[i] << s;

}

 data[(j*4)+i] ^= KStemp.b8[i];

i++;

 }

 length -=32;

}

3.2. UIA2 verification and rectification

During the verification of the UIA2 algorithm,
we were faced to the same endianness issues seen
before with UEA2.

1. The first problem faced was with the MUL64
function. MUL64 works with 64-bit words and
makes bit-shifting operations. These shifting
instructions are understood differently in a big
or little endian machines. So an adaptation was
necessary.

We then replace the following 3GPP function:

u64 MUL64(u64 V, u64 P, u64 c)

{

u64 result = 0;

int i = 0;

for (i=0; i<64; i++)

{

if((P>>i) & 0x1)

 result ^= MUL64xPOW(V,i,c);

}

return result;

}

by the following function:

u64 MUL64(u64 V, u64 P, u64 c)

{

u32 z[5],t[5];

u64 result = 0;

 int i = 0;

 z[0] = (u32)P;

 z[1] = (u32)P >> 32;

for (i=0; i<64; i++)

 {

 if(((u64)P>>i) & ((u64)0x1 << 32))

result ^= MUL64xPOW(V,i,c);

}

return result;

}

2. Then, to solve the message reading problem
and to operate a 32-bit words internally, it was
necessary to replace the following 3GPP
instruction:

message = (u32*)data;

by the instructions block bellow:

 l = length / 32;

 if (length % 8 ==0)

for (i=0;i<(length / 8);i++)

memcpy(m+i,data+i,1);

else

for (i=0;i<(length / 8)+1;i++)

 memcpy(m+i,data+i,1);

for (j=0;j<l+1;j++)

{

 message[j] = (u32) m[j*4] << 24;

 for (i=1;i<4;i++)

 message[j] |= (u32) m[i + j*4] <<
(8*(4-i-1));

}

3.3. UEA2 implementation example

After adapting UEA2 algorithm code to read
correctly from memory, and after making the
necessary corrections, we were able to get the
right ciphertexts for the textsets given by the
implementation document [16]. We present here an
example of the UEA2 implementation.

Input Data:

Count-C = E28BCF7B Bearer = 18

Direction = 0 Length = 510 bits

CK = EFA8B2229E720C2A7C36EA55E9605695

Plaintext:

10111231E060253A43FD3F57E37607AB

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

75

2827B599B6B1BBDA37A8ABCC5A8C550D

1BFB2F494624FB50367FA36CE3BC68F1

1CF93B1510376B02130F812A9FA169D8

Figure 10. Encryption with UEA2 rectified version

3.4. UIA2 implementation example

After carrying out the necessary corrections and
adaptations for the UIA2 algorithms, we present
bellow an example of one of the testsets
implemented.

Input Data:

COUNT-I = 14793E41 FRESH = 0397E8FD

DIRECTION = 1 LENGTH = 384 bits

IK = C736C6AAB22BFFF91E2698D2E22AD57E

MESSAGE:

D0A7D463DF9FB2B278833FA02E235AA1

72BD970C1473E12907FB648B6599AAA0

B24A038665422B20A499276A50427009

Figure 11. UIA2 MAC-I calculation

4. CONCLUSION
In this paper, a detailed study of the UMTS

cryptographic functions f8 and f9 has been carried
out. The first objective was to make it easy to
understand each UMTS confidentiality or integrity
algorithms operation. On the other hand, we were
interested in the verification of the 3GPP algorithms
codes given by 3GPP specification. Our verification
leads to the result that the algorithm codes were
incorrect (except for UIA1) and didn't respond
totally to the 3GPP requirements. So some
rectifications and adaptations were necessary before
proceeding to the algorithms implementation.

As far as the confidentiality algorithm UEA1 and
UEA2 are concerned, the ciphertext length control
have been omitted. So we have carried out the
necessary correction. Concerning the UEA2 and
UIA2 algorithms implementation, we were faced to
the code compatibility problem with little endian-
machines in both algorithms. So, we have corrected
the 3GPP algorithms codes version and recoded
them with respect to endian issues. Thus, the
practical aspect of our present work was the
verification, the rectification and finally the
implementation of the UTRAN cryptographic
algorithms in C language. Some results of the
implementation tests were exposed. Through this
paper, we are proposing a correct codes version of
the UMTS confidentiality and integrity algorithms
to contribute and facilitate their use and integration
by the interested entities.

REFRENCES:

 [1] 3GPP Specifications: http://www.3gpp.org

 [2] 3GPP TS 33.102: “3rd Generation Partnership

Project; Technical Specification Group Services
and System Aspects; 3G Security; Security
Architecture”. December 2006.

[3] Abdul Bais, Walter T. Penzhorn, Peter Palensky.

“Evaluation of UMTS security architecture and
services”. IEEE International Conference on
Industrial Informatics, 2006.

[4] 3GPP TS 21.133: “3rd Generation Partnership

Project; Technical Specification Group Services
and System Aspects; 3G Security; Security
Threats and Requirements (Release 4)”.
December 2001.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

76

[5] 3GPP TS35.201: “3rd Generation Partnership
Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification
of the 3GPP Confidentiality and Integrity
Algorithms; Document 1: f8 and f9
Specification”. June 2007.

[6] 3GPP TS35.202: “3rd Generation Partnership

Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification
of the 3GPP Confidentiality and Integrity
Algorithms; Document 2: KASUMI
Specification”. june 2007.

[7] ETSI/SAGE Specification: “Specification of the

3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 1: UEA2 and UIA2
Specification”. Version: 1.1, September 2006.

[8] ETSI/SAGE Specification: “Specification of the

3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW 3G
Specification”. Version: 1.1, September 2006.

[9] Ivo Pooters, University of Twente, Faculty of

EEMCS: “An Approach to full User Data
Integrity Protection in UMTS Access
Networks”. 04-2006.

[10] Kaisa Nyberg: “Cryptographic Algorithms for

UMTS”. Nokia Research Center, 2004.

[11] Valtteri Niemi and Kaisa Nyberg: “UMTS

Security”. John Wiley & Sons, 2003.

[12] Morris Dworkin: NIST Special Publication

800-38A, “Recommendation for Block Cipher
Modes of Operation - Methods and
Techniques”. 2001 Edition.

[13] 3GPP TS35.203: “3rd Generation Partnership

Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification
of the 3GPP Confidentiality and Integrity
Algorithms; Document 3: Implementors' Test
Data (Release 7)”. June 2007.

[14] 3GPP TS35.204: “3rd Generation Partnership

Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification
of the 3GPP Confidentiality and Integrity

Algorithms; Document 4: Design Conformance
Test Data (Release 7)”. June 2007.

[15] G. Orhanou, S. El Hajji, Université Mohammed
V – Agdal, Faculté des sciences – Rabat,
Laboratoire Mathématiques Informatique et
Applications : “UTRAN Cryptrographic
Algorithms – Operation and complexity study”.
Journal of Theoretical and Applied Information
Technology, ISSN: 1817-3195, Volume 14,
n°2, 97 – 106, 2010.

[16] ETSI/SAGE Specification: “Specification of

the 3GPP Confidentiality and Integrity
Algorithms UEA2 & UIA2 Document 3:
Implementors Test Data”. Version: 1.0, January
2006.

