
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

45

TEST CASE PRIORITIZATION TECHNIQUES

1 SIRIPONG ROONGRUANGSUWAN, 2JIRAPUN DAENGDEJ

1 Autonomous System Research Laboratory, Science and Technology, Assumption University, Thailand
2 Autonomous System Research Laboratory, Science and Technology, Assumption University, Thailand

ABSTRACT

Software testing has been proven that testing, analysis, and debugging costs usually consume over 50% of
the costs associated with the development of large software systems. Many researchers have found several
approaches to schedule an order of test execution. Unfortunately, existing test prioritization techniques are
failed to prioritize multiple test suites and test cases with same priority values. Consequently, those
techniques are inefficient to prioritize tests in the large commercial systems. They incorrectly schedule tests
and the cost is overrun during the prioritization process. Thus, this paper proposes two new efficient
prioritization methods to address the above issues. The first method aims to resolve the problem of many
test cases assigned the same weight values. The second method is developed to effectively prioritize
multiple suites. As a result, this paper discusses an ability to reserve high prioritize tests in multiple suites
while minimizing a prioritization time.

Keywords: Test Case Prioritization, Test Prioritization Methods, Test Prioritization Comparison, Multiple
Test Prioritization And Test Suite Prioritization

1. INTRODUCTION

Software testing is a comprehensive set of
activities conducted with the intent of finding errors
in software. It is one activity in the software
development process aimed at evaluating a software
item, such as system, subsystem and features (e.g.
functionality, performance and security) against a
given set of system requirements. Also, software
testing is the process of validating and verifying
that a program functions properly. Many
researchers have proven that software testing is one
of the most critically important phases of the
software development life cycle, and consumes
significant resources in terms of effort, time and
cost.

Arden [33] said that “The impact of software
errors is enormous because virtually every business
in the United States now depends on software for
the development, production, distribution, and after-
sales support of products and services. Innovations
in fields ranging from robotic manufacturing to
nanotechnology and human genetics research have
been enabled by low-cost computational and control
capabilities supplied by computers and software.”
Also, a study conducted by NIST in 2002 reports
that software bugs cost the U.S. economy $59.5

billion annually. More than a third of this cost could
be avoided if better software testing was performed
[33].

Boris [5] claimed that software testing should
take around 40-70% of the time and cost of the
software development process. Many approaches
have been proposed to reduce time and cost during
software testing process, including test case
prioritization techniques and test case reduction
techniques. For example, [20], [13], [14], [15], [17],
[34], [37] and [38]. Also, many empirical studies
for prioritizing test cases have been conducted, like
[46], [25], [43], [48], [14] and [15].

Furthermore, Gregg Rothermel [15] has proven
that prioritizing and scheduling test cases are one of
the most critical tasks during the software testing
process. He referred to the industrial collaborators
reports, which shows that there are approximately
20,000 lines of code, running the entire test cases
requires seven weeks. In this situation, test
engineers may want to prioritize and schedule those
test cases in order that those test cases with higher
priority are executed first. Additionally, he [13],
[16] stated that test case prioritization methods and
process are required, because: (a) the regression
testing phase consumes a lot of time and cost to run,
and (b) there is not enough time or resources to run

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

46

the entire test suite (c) there is a need to decide
which test cases to run first.

Test case prioritization techniques prioritize and
schedule test cases in an order that attempts to
maximize some objective function. For example,
software test engineers might wish to schedule test
cases in an order that achieves code coverage at the
fastest rate possible, exercises features in order of
expected frequency of use, or exercises subsystems
in an order that reflects their historical propensity to
fail. When the time required to execute all test cases
in a test suite is short, test case prioritization may
not be cost effective - it may be most expedient
simply to schedule test cases in any order [13], [16].
When the time required to run all test cases in the
test suite is sufficiently long, the benefits offered by
test case prioritization methods become more
significant.

Although test case prioritization methods have
great benefits for software test engineers, there are
still outstanding major research issues that should
be addressed. The examples of major research
issues are: (a) existing test case prioritization
methods ignore the practical weight factors in their
ranking algorithm (b) existing techniques have an
inefficient weight algorithm and (c) those
techniques are lack of the automation during the
prioritization process.

Section 2 discusses a comprehensive set of
existing test case prioritization techniques and
prioritization processes, and proposes to divide
them into four major groups. Section 3 proposes
outstanding research challenges and offers a guide
for researchers in the test case prioritization field.
Section 3 also determines which research problems
have been resolved by which techniques. Section 4
provides the conclusion and research directions for
test case prioritization area. The last section
represents all source references used in this paper.

2. LITERATURE REVIEW

This section discusses an overview of a software
development life cycle (or SDLC) and a general
software testing process. It describes a
comprehensive set of existing test case
prioritization methods researched from 1998 to
2008. In addition, it introduces a new “4C”
classification of existing test case prioritization
techniques. In general, the SDLC process contains
the following phases, which are: requirement
gathering, design & analysis, development, testing
and maintenance [36]. Those phases can be
represented as follows:

Figure 1. A General SDLC Process

From the above, the testing phases [29] contain
the following processes: test planning, test
development, test execution and evaluation of
results. Those processes can be represented as
follows:

Figure 2. A General Software Testing Process

Software testing has been widely used as a way
to help engineers develop high-quality systems. It is
an important process that is performed to support
quality assurance by gathering information about
the nature of the software being studied M. J.
Harrold [62]. These activities consist of designing
test cases, executing the software with those test
cases, and examining the results produced by those
executions. Boris [5] indicates that more than fifty
percent of the cost of software development is
devoted to testing with the percentage for testing
critical software being even higher. As software
becomes more pervasive and is used more often to
perform critical tasks, the importance of its quality
will remain high. Unless engineers can find
efficient ways to perform effective testing, the
percentage of development costs devoted to testing
may increase significantly. Software testing is an
empirical investigation conducted to provide
stakeholders with information about the quality of
the product or service under test [8], with respect to
the context in which it is intended to operate. It also
provides an objective, independent view of the
software to allow the business to appreciate and
understand the risks of implementation of the
software. Test techniques include the process of
executing a program or application with the intent
of finding software bugs. It can also be stated as the
process of validating and verifying that software
meets the business and technical requirements that
guided its design and development, so that it works
as expected. Software testing can be implemented at
any time in the development process; however, the
most test effort is employed after the requirements
have been defined and coding process has been
completed. Software engineers generally save test
suites that they develop so that they can easily reuse
those suites later as the software evolves. Reusing

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

47

test cases in regression testing process is pervasive
in the software industry [28] and can save as much
as one-half of the cost of software maintenance [5]
However, executing a set of test cases in an existing
test suite consume a significant amount of time.

Rothermel [13], [14] gave an interesting example
as follows: “one of the industrial collaborators
reports that for one of its products that contains
approximately 20,000 lines of code, running the
entire test suite requires seven weeks. In such cases,
testers may want to order their test cases so that
those test cases with the highest priority, according
to some criterion, are run first”. This has proven
that prioritizing and scheduling test cases are one of
the most important tasks during regression testing
process.

Additionally, Rothermel [13], [16] mentioned
that the test case prioritization process is required
for software testing because: (a) the regression
testing phase consumes a lot of time and cost to run,
and (b) there is not enough time or resources to run
the entire test suite, therefore (c) there is a need to
decide which test cases to run first.

Test case prioritization techniques prioritize and
schedule test cases in an order that attempts to
maximize some objective function. For example,
software test engineers might wish to schedule test
cases in an order that achieves code coverage at the
fastest rate possible, exercises features in order of
expected frequency of use, or exercises subsystems
in an order that reflects their historical propensity to
fail. When the time required to execute all test cases
in a test suite is short, test case prioritization may
not be cost effective - it may be most expedient
simply to schedule test cases in any order [13], [16].
When the time required to run all test cases in the
test suite is sufficiently long, the benefits offered by
test case prioritization methods become more
significant.

Test case prioritization techniques provide a way
to schedule and run test cases, which have the
highest priority in order to provide earlier detect
faults. This study presents numerous techniques
developed, between 2002 and 2008, that can
improve a test suite’s rate of fault detection.

With existing test case prioritization techniques
researched in 1998-2008, this paper introduces and
organizes a new “4C” classification of those
existing techniques, based on their prioritization
algorithm’s characteristics, as follows:

1. Customer Requirement-based techniques.
Customer requirement-based techniques are

methods to prioritize test cases based on
requirement documents. Many researchers have
researched this area, such as Srikanth [20], Zhang
[47] and Nilawar [30]. Also, many weight factors
have been used in these techniques, including
custom-priority, requirement complexity and
requirement volatility.

2. Coverage-based techniques. Coverage-based
techniques are methods to prioritize test cases based
on coverage criteria, such as requirement coverage,
total requirement coverage, additional requirement
coverage and statement coverage. Many researchers
have researched this area, such as Leon [9],
Rothermel [13], [14] and Bryce [35].

3. Cost Effective-based techniques. Cost
effective-based techniques are methods to prioritize
test cases based on costs, such as cost of analysis
and cost of prioritization. Many researchers have
researched this area, for instance, Malishevsky [1],
Alexey [2], and Elbaum [40].

4. Chronographic history-based techniques.
Chronographic history-based techniques are
methods to prioritize test cases based on test
execution history. A few researchers have
researched this area, for example, Kim [26] and Qu
[3].

The following sections describe the above
techniques in details.

2.1 Customer Requirement-Based Prioritization
Techniques

Hema [20] presented the requirements-based test
case prioritization approach to prioritize a set of test
cases. They built upon current test case
prioritization techniques [41] and proposed to use
several factors to weight (or rank) the test cases.
Those factors are the customer-assigned priority
(CP), requirements complexity (RC) and
requirements volatility (RV). Additionally, they
assigned value (1 to 10) for each factor for the
measurement. They stated that higher factor values
indicate a need for prioritization of test case related
to that requirement.

Weight prioritization (WP) measures the
important of testing a requirement earlier.

WP = Σ (PFvalue* PFweight); PF=1 to n (1)

Where:

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

48

• WP denotes weight prioritization that
measures the importance of testing a
requirement.

• PFvalue is the value of each factor, like CP,
RC and RV.

• PFweight is the weight of each factor, like CP,
RC and RV.

Test cases are then ordered such that the test
cases for requirements with high WP are executed
before others. Recent research demonstrated that
using different test case prioritization techniques
can significantly affect the rate of fault detection of
the test suite [13]. Y.T. Yu [49], [50] proposed that
the methodology be enhanced to allow the software
test engineer to specify criteria for prioritization so
that the ordering of test cases for execution can be
automated. CTM was first introduced by
Grochtmann [31], and has been successfully applied
in many industrial development projects such as in
aviation technology, car electronics and commercial
data processing applications [12]. However, while
the CTM technique aims to provide the tester with a
structured framework and methodical guidelines, it
still leaves many manual routine tasks that may
demand great effort. Yu, Ng and Chan proposed to
solve the CTM’s limitations by assigning weights to
each classification in the classification tree. Their
idea is that a test case with classifications or classes
of higher weights should have a higher priority. The
weight priority value is calculated as the following
formula:

p = (Σi wiWi) / (Σi Wi) (2)

Where:

• p denotes weight prioritization that measures
the importance of test case.

• wiWi is a combination of higher weights,
which are associated with the classification
tree, called CTM.

• Wi is a classification weight value that is
included in the classification tree.

The tester may then choose to arrange the test
cases in descending order of their priority values
(with arbitrary ordering in case of ties).

Hema [21] were interested in two particular goals
of test case prioritization approaches: (a) to improve
user perceived software quality in a cost effective
way by considering potential defect severity and (b)
to improve the rate of detection of severe faults
during system level testing of new code and
regression testing of existing code. He presented a

value-driven approach to system-level test case
prioritization called the Prioritization of
Requirements for Test (PORT). PORT prioritizes
system test cases based upon four factors:
requirements volatility (RV), customer priority
(CP), implementation complexity (IC) and fault
proneness of the requirements (FP).

They proposed the following formula to prioritize
test cases:

PFVi = ∑4j=1(FactorValueij *
FactorWeightj)

(3)

Where:

• PFVi is the prioritization factor value for
requirement i.

• FactorValueij is the value for factor j for
requirement i.

• FactorWeightj is the factor weight for the jth
factor for a particular product.

A value-matrix representation of PFV for
requirements is shown below where PFV (P) is the
product of value (V) and weight (w).

P = Vw (PFV1…PFVn)(n*1) =
(RCP1…RCPn RIC1…RICn RRV1…RRVn
RFP1…RFPn)(n*4) (WCP WRC WFP
WRV)(4*1)

(4)

Where:

• PFVi is prioritization factor value for
requirement i, which is the summation of the
product of factor value and the assigned
factor weight for each of the factors.

• R1..n is requirements coverage of each test
case.

• WCP is a weight measurement for CP factor.

• WRC is a weight measurement for RC factor.

• WFP is a weight measurement for FP factor.

• WRV is a weight measurement for RV factor.

The computation of PFVi for a requirement is
used in computing the Weighted Priority (WP) of its
associated test cases. WP of the test case is the
product of two elements: (a) the average PFV of the
requirement(s) the test case maps to and (b) the
requirements-coverage a test case provides.
Requirements coverage is the fraction of the total
project requirements exercised by a test case. Let
there be n total requirements for a product/release,
and test case j maps to i requirements. WPj is an

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

49

indication of the priority of running a particular test
case. WPj is represented as below:

WPj = (∑ix=1 PFVx/∑nj=1PFVy)*(1/n) (5)

Where:

• WPj is an indication of the priority of
running a particular test case.

• PFVi is prioritization factor value for
requirement i, which is the summation of the
product of factor value and the assigned
factor weight for each of the factors.

The test cases are ordered for execution by
descending value of WP such that the test case with
the highest WP value is run first.

All the above techniques rely on the assumption
that testing requirement priorities and test case costs
are uniform, however in practice these can vary
widely. For the former, testing requirement
priorities can change frequently during software
development, and the uniformly categorized testing
requirements specification often fail to address
stakeholder values [6], [19]. For the latter, test cases
usually require different execution time and
resources. Obviously, testing requirement priorities
and test case costs should have a great impact on
the prioritization of those test cases, and so the
existing prioritization techniques and the
corresponding metrics should be adapted to
incorporate them. Xiaofang [47] proposed a new,
general test case prioritization technique and
associated metric based on varying testing
requirement priorities and test case costs. They
proposed an algorithm that weights test cases by the
following factors: (a) test history (b) additional
requirement coverage (c) test case cost and (d) total
requirement coverage.

Manish [30] proposed an approach for test case
generation for web based applications. One of their
generation processes is the prioritization of test
cases. They presented a simple approach for test
case prioritization through the requirement
traceability matrix. The matrix can be produced by
mapping from use cases in the Use Case diagram to
functional requirements from users. They also
proposed simply to use weight values assigned to
each requirement by developers. Each requirement
is assigned a priority weight from 1 to 10, 10 being
highest.

2.2 Coverage-Based Prioritization Techniques

Test coverage analysis is a measure used in
software testing known as code coverage analysis
for practitioners. It describes the quantity of source
code of a program that has been exercised during
testing. It is a form of testing that inspects the code
directly and is therefore a form of white box testing.
The following lists a process of coverage-based
techniques: (a) finding areas of a program not
exercised by a set of test cases (b) creating
additional test cases to increase coverage (c)
determining a quantitative measure of code
coverage, which is an indirect measure of quality
and (d) identifying redundant test cases that do not
increase coverage.

The coverage-based technique is a structural or
white-box testing technique. Structural testing
compares test program behavior against the
apparent intention of the source code. This contrasts
with functional or black-box testing, which
compares test program behavior against a
requirements specification. It examines how the
program works, taking into account possible pitfalls
in the structure and logic. Functional testing
examines what the program accomplishes, without
regard to how it works internally. The coverage-
based techniques are methods to prioritize test cases
based on coverage criteria, such as requirement
coverage, total requirement coverage, additional
requirement coverage and statement coverage.

The following paragraphs present coverage-based
prioritization techniques that have been proposed.

Leon [9] presented an empirical comparison of
four different techniques for filtering large test
suites: test suite minimization, prioritization by
additional coverage, cluster filtering with one-per-
cluster sampling, and failure pursuit sampling. The
first two techniques are based on selecting subsets
that maximize code coverage as quickly as possible,
while the latter two are based on analyzing the
distribution of the tests’ execution profiles.

Rothermel [18] have researched and surveyed
test case prioritization. They considered nine
approaches for prioritizing a set of test cases and
reported results measuring the effectiveness of
those approaches to improve the capability to reveal
faults. They proposed the following techniques: (a)
random approaches (b) optimal prioritization (c)
total branch coverage prioritization (d) additional
branch coverage prioritization (e) total statement
coverage prioritization (f) additional statement
coverage prioritization (g) total fault-exposing-

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

50

potential prioritization and (h) additional fault-
exposing-potential prioritization.

Bryce [35] described an algorithm for re-
generating prioritized test suites. The generated test
suites are a special kind of a covering array called a
biased covering array. They began by defining a set
of interaction weights for each value of each factor.
For each factor the weight of combining it with
each other factor is computed as a total interaction
benefit. The factors are sorted in decreasing order
of interaction benefit and then filled as follows.
First, the individual interaction weights for each of
the factor’s values are computed. This selects the
value of the factor that has the greatest value
interaction benefit. After all factors have been
fixed, a single test has been added, and the benefits
for factors are recomputed and the process starts
again. The algorithm is complete when all pairs
have been covered.

Leon [9] believed that test case filtering is closely
related to the field of test case prioritization. The
goal of test case filtering is to select a relatively
small subset of a test suite which finds a large
portion of the defects that would be found if the
whole test suite were to be used. In their paper they
presented an empirical comparison of four different
techniques for filtering large test suites: test suite
minimization, prioritization by additional coverage,
cluster filtering with one-per-cluster sampling and
failure pursuit sampling. Their results indicate that
their techniques can be as efficient as or more
efficient at revealing defects than coverage-based
techniques, but that the two kinds of techniques are
also complementary in the sense that they find
different defects. Accordingly, some simple
combinations of these techniques were evaluated
for use in test case prioritization. The results
indicate that applying this combination of
techniques can produce results more efficiently than
applying prioritization by additional coverage
alone.

In fact, Elbaum [39], [41], [42] extended the
selection technique in order to prioritize the test
cases in a test suite, that is, to place the test cases in
non-decreasing order with respect to their perceived
likelihood of revealing defects. Elbaum’s approach,
which he called additional coverage prioritization,
involves running a greedy coverage maximization
algorithm repeatedly on the set of test cases that
have not yet been prioritized. The priority of a test
case corresponds to the order in which it is selected
during this process. The earlier a test case is
selected, the higher its priority is. In the sequel,

Leon [9] referred to the prioritization technique as
repeated coverage maximization.

In Xiao’s previous work [45], Xiao examined the
prioritization methods of CIT test suites and
developed several ways to control the prioritization
through weightings. They used methods that utilize
code coverage data from prior releases, as well as
one that is specification based. Further, they
observed that Bryce and Colbourn’s prioritization
technique [35] is a combination of the generation
and prioritization techniques, rather than a pure
prioritization method. This is because it regenerates
tests each time rather than simply reordering them.

Hyunsook [22] considered seven different test
case prioritization techniques, which they classified
into three groups: (a) the first group is the control
group, containing three “orderings” that serve as
experimental controls. The untreated ordering is the
ordering in which test cases are originally provided
with the object. The optimal ordering represents an
upper bound on prioritization technique
performance and is obtained by greedily selecting
each test case in terms of its exposure of faults not
yet exposed by test cases already ordered. The
process is repeated until all test cases are ordered.
Ties are broken randomly. The random ordering
places test cases in a random order (b) the second
group is the block level group, containing two
techniques: block-total and block-addtl. By
instrumenting a program, they can determine the
numbers of basic blocks in that program that are
exercised by that test case. The block-total
technique prioritizes test cases according to the total
number of blocks they cover simply by sorting them
by that number. The block-addtl technique
prioritizes test cases in terms of the numbers of
additional blocks test cases cover by greedily
selecting the test cases that cover the most as-yet-
uncovered blocks until all blocks are covered, then
repeating this process until all test cases have been
placed in order and (c) the third group is the method
level group, containing two techniques: methodtotal
and method-addtl. These techniques are exactly the
same as the corresponding block level techniques
just described, except that they rely on coverage
measured in terms of numbers of methods rather
than numbers of blocks covered.

The test case prioritization techniques studied in
[4], [11] are primarily based on variations of the
total requirement coverage and the additional
requirement coverage of various structural elements
in a program. For instance, total statement coverage
prioritization orders test cases in decreasing order
of the number of statements they exercise.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

51

Additional statement coverage prioritization orders
test cases in decreasing order of the number of
additional statements they exercise that have not yet
been covered by the tests earlier in the prioritized
sequence. These prioritization methods do not take
into consideration the statements which influenced,
or could potentially influence, the values of the
program output. Neither do they take into
consideration whether a test case traverses a
statement or not while prioritizing the test cases. It
is intuitive to expect that the output of a test case
that executes a larger number of statements that
influence the output, or have the potential to
influence the output, is more likely to be affected by
the modification than tests covering fewer such
statements. In addition, tests exercising modified
statements should have higher priority than tests
that do not traverse any modifications.

Jeffrey [10] presented a new approach for
prioritizing test cases that is based not only on total
statement coverage (also known in that paper as
branch coverage), but that also takes into account
the number of statements executed that influence or
have potential to influence the output produced by
the test case. The set of such statements
corresponds to the relevant slice, which is computed
on the output of the program when executed by the
test case [7]. The approach is based on the
following observation: If a modification in the
program has to affect the output of a test case in the
regression test suite, it must affect some
computation in the relevant slice of the output for
that test case. Therefore, their heuristic for
prioritizing test cases assigns higher weight to a test
case with larger number of statements in its relevant
slice of the output. They used the following factors
in their approach to prioritize test cases: (a) the
number of statements in the relevant slice of output
for the test case, because any modification should
necessarily affect some computation in the relevant
slice to be able to change the output for this test
case and (b) the number of statements that are
executed by the test case but are not in the relevant
slice of the output.

Jeffrey [10] ordered the test cases in decreasing
order of test case weight, where the weight for a test
is determined as follows:

TW = ReqSlice + ReqExercise (6)

Where:

• TW denotes a weight prioritization
determined for each test case.

• ReqSlice is a number of requirements
presented in the relevant slice of output for
each test case.

• ReqExercise is a number of requirements
exercised by the test case.

Ties are broken arbitrarily. This criterion
essentially gives “single” weight to those exercised
requirements that are outside the relevant slice, and
“double” weight to those exercised requirements
that are contained in the relevant slice.

Jones [24] presented new algorithms for test-suite
reduction and prioritization that can be tailored
effectively for use with modified coverage (MC)
and decision coverage (DC). Most existing
techniques from researchers who have been
investigating test suite reduction (also referred to as
test suite minimization) and prioritization
techniques consider a set of test-case coverage
criteria such as, statements, decisions, definition
user associations and specification items. In their
paper, they focused on MC and DC criteria as for
test case reduction and prioritization, building on
Rothermel’s test case prioritization technique [13],
[14]. Their approach uses total requirement
coverage and the additional requirement coverage
to weight and schedule test cases accordingly.

2.3 Cost Effective-Based Prioritization
Techniques

Cost effective-based techniques are methods of
prioritizing test cases based on costs, such as cost of
analysis and cost of prioritization. Many researchers
have researched this area. The following paragraphs
present existing cost effective-based test case
prioritization techniques.

Leung and White presented a cost model for
regression test selection in [23]. The proposed
model incorporates various costs of regression
testing, including the costs of executing and
validating test cases and the cost of performing
analyses to support test selection, and provides a
way to compare tests for relative effectiveness. This
model can be appropriately applied to an effective
regression test selection techniques [17], which
necessarily select all test cases in the existing test
suite that may reveal faults.

However, Leung’s model does not consider the
costs of overlooking faults due to discarded tests.
Alexey Malishevsky [1] presented cost models for
prioritization that take these costs into account.
They defined the following variables to prioritize

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

52

test cases: cost of analysis, Ca(T) and cost of the
prioritization algorithm, Cp(T).

WP = Ca(T) + Cp(T) (7)

Where:

• WP is a weight prioritization value for each
test case.

• Ca(T) includes the cost of source code
analysis, analysis of changes between old
and new versions, and collection of
execution traces.

• Cp(T) is the actual cost of running a
prioritization tool, and, depending on the
prioritization algorithm used, can be
performed during either the preliminary or
critical phase.

Furthermore, Malishevsky [1] divided the
regression testing process into two phases:
preliminary phase and critical phase. Preliminary
phase activities may be assigned different costs than
critical phase activities, since the latter may have
greater ramifications for things like release time.

The cost of a test case is related to the resources
required to execute and validate it. Additionally,
cost-cognizant prioritization requires an estimate of
the severity of each fault that can be revealed by a
test case. Fault severity may be used to order tests
by the same two criteria listed previously. Previous
works [14] have defined and investigated various
prioritization techniques. Meanwhile, Alexey
Malishevsky [2], [40] focus on four practical code-
coverage-based heuristic techniques. Those four
techniques are: total function coverage
prioritization (fn-total), additional function
coverage prioritization (fn-addtl), total function
difference-based prioritization (fn-diff-total) and
additional function difference-based prioritization
(fn-diff-addtl).

2.4 Chronographic History-Based Prioritization
Techniques

Chronographic history-based techniques are
methods to prioritize test cases based on test
execution history. The following paragraphs present
an overview of existing chronographic history-
based test case prioritization techniques.

Jung-Min [26] proposed to use information about
each test case’s prior performance to increase or
decrease the likelihood that it will be used in the
current testing session. Their approach is based on

ideas taken from statistical quality control
(exponential weighted moving average) and
statistical forecasting (exponential smoothing). Kim
[26] defined the selection probabilities of each test
case, TC, at time, t, to be Ptc,t(Htc, α), where Htc is a
set of t, time-ordered observations {h1, h2, …hn}
drawn from runs of TC and α is a smoothing
constant used to weight individual historical
observations. The higher values emphasize recent
observations, while lower values emphasize older
ones. These values are then normalized and used as
probabilities. The general form of:

P is P0 = h1 and Pk = αhk + (1- α)Pk-1, 0<=
α<=1, k>=1.

(8)

When testing in a black box environment, source
code related information is not available. In such
situations, practitioners only have output of test
cases and other run-time information available,
such as the running time of test cases. Bo Qu [3]
proposed a prioritization technique based on this
limited information. One general method of
prioritization for black box testing is to initialize a
test suite using test history, and then adjust the
order of the rest of the test cases based on run-time
information. To guide the adjusting strategy, a
matrix R is used. They defined the matrix, R, to
predict the fault detection relationship of test cases,
so once a test case revealed regression faults,
related test cases can be adjusted to higher priority
to achieve a better rate of fault detection. Let T be a
test suite, let T′ be a subset of T, and let R be a
matrix which describes the fault detection
relationship of test cases. Their general process of
test case prioritization for black box testing can be
described shortly as follows: (a) select T′ from T
and prioritize T′ using available test history (b)
build a test case relation matrix R based on
available information (c) draw a test case from T′,
and run it (d) reorder rest test cases using run-time
information and test case relation matrix R and (e)
repeat from step c until testing resource is
exhausted.

3. RESEARCH CHALLENGES

This section provides details of outstanding
research issues motivated this study. The literature
review reveals that there are many outstanding
research issues in the test case prioritization area,
such as poor performance of prioritization
algorithms, non-practical weight factors and non-
commercial prioritization methods.

However, this paper highlights two critical
outstanding research issues, which are: (a) existing

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

53

prioritization methods ignores prioritizing multiple
test suites and (b) existing techniques randomly
prioritize all test cases with the same weight values,
without any systematic algorithm.

The first issue can lead to the following difficult
situations in the commercial industry. In the
commercial systems, there is always more than a
single test suite, particularly during a system
integration testing. The existing prioritize
techniques are not applicable if there are many test
suites. In addition, it may take longer time to
individually prioritize each test suite with existing
methods. As a result, it may rapidly increase an
amount of time and cost to prioritize test suites.

The second issue may cause to a poor
performance problem while prioritization process.
The study shows that there is a high probability that
a significant number of test cases can be assigned to
the same weight values. With those test cases, the
existing methods randomly prioritize without any
systematic algorithm and weight factor.
Consequently, the prioritized test cases may not be
accurate with the right weight values.

Finally, researchers should develop an effective
test case prioritization method that can be used to
schedule many test suites and test cases with the
same weight values.

4. PROPOSED METHODS

This section describes a new practical set of
prioritization weight factors and two effective
methods. The following describes practical factors
and the proposed methods in details.

This study proposes practical factors to prioritize
and schedule test cases, as follows.

Table 1. Proposed Practial Weight Prioritization Factors

Factor Description
1. Cost Factors
Execution cost (EC) A total cost of running a set of test

cases.
Cost of analysis (Ca) Ca includes the cost of source code

analysis, analysis of changes
between old and new versions, and
collection of execution traces.

Cost of data
preparation (CoDP)

A total cost of preparing all input
values for test cases.

Cost of validation
(CoV)

A total cost for validating the
expected result and actual result.

2. Time Factors
Execution time (ET) A total time of running a set of test

cases.
Time consuming for
data preparation
(TCfDP)

A total time for preparing all input
values.

Time consuming for
validation (TCfV)

A total time for validating the
expected result and actual result.

3. Defect Factors
Defects occurred
(DO)

An indicator of how many test cases
have caused defects after execution.

Defects severity (DS) A dimension for classifying
seriousness for defects. This factor
contains: showstopper, critical and
minor severity.

4. Complex Factors
Test case complexity
(TCplx)

The complexity of test cases. It
measure how difficult and complex a
test case is. In addition, its
complexity usually determines the
effort required to execute it.

Requirement coverage
(ReqCov)

A number of requirements covered
by test cases. Requirements coverage
views can help validate that all
requirements are implemented in the
system.

Dependency (Dep) A dependency of test cases. This
factor describes how many pre-
requisite of each test case before
execution are required.

Test impact (TI) An impact of test cases. This factor
assesses how importance of test
cases if test cases are not be
executed.

The above factors can be elaborated in details as
follows.

Douglas Hoffman [57] addressed many cost
related factors, such as cost for test case execution,
cost for test results analysis including validation,
cost for data preparation, into his cost-benefits
analysis model. This can imply that cost related
factors proposed in this study (i.e. EC, Ca, CoDP
and CoV) are important and sensible. Also, Douglas
described that the time consuming, for data
preparation (or TCfDP), factor is one of common
factors used in software testing. Therefore, this
factor should be applied in prioritizing test cases.
Additionally, Douglas described that the
dependency, called “Dep” in this paper, factor is
one of common factors used in software testing.
Therefore, researchers should focus on this factor
during the prioritization process.

Kalyana [58] addressed that time consuming for
validation (or TCfV) factor is one of the most
important and practical metrics in the software
testing field. Also, it is related to the effort required
to validate results and find a defect. Also, Kalyana
referred the test impact (or TI) factor as business
impact that effort to end-users. Also, this factor is
widely used as software testing metrics. This can
represent how important of this factor is. In
addition, the impact of ignoring this test may lead to
the following problems: a) increasing failures due
to poor quality b) increasing software development
costs c) increasing time to market due to inefficient

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

54

testing and d) increasing market transaction costs
[66].

Cadar and Engler [59], from Stanford University,
argued that high cost is actually not so important in
some sense. They selected the execution time (or
ET) to measure their proposed technique in their
experiment. This can imply that this factor is a
significant factor that should be included.

In general, test case that detects bugs should have
higher priority, due to the fact that those bugs will
be fixed and are required to re-test again. This
factor can be referred to the “defect discovery rate”
(or also known as Do), one of the most widely used
metrics in software testing. The severity level of a
defect indicates the potential business impact for
the end user (or called Ds). The business impact
factor is equal to the multiply between effect on the
end user and frequency of occurrence. This factor
provides indications about the quality of the
software under test. A high-severity defect means
low product / software quality, and vice versa. At
the end of testing phase, this information is useful
to make the release decision based on the number of
defects and their severity levels. Kalyana [58]
addressed that this factor is one of the most
important and practical metrics in software testing.
In addition, Julie and Mark reported that this factor
is widely used in defect measurement system and
always recorded in defect report. This can imply
that prioritizing test cases with defects severity
factor has a significant reason.

Furthermore, this section proposes two methods
to resolve the following problems: (a) those existing
methods randomly prioritize test cases with the
same priority value and (b) existing prioritization
techniques assume explicitly that there is always a
single test suite. The first method, called MTSSP,
aims to improve the ability to prioritize test cases
with same weight values. The second method,
called MTSPM, is developed to prioritize many test
suites and test cases.

The following describes both of MTSSP and
MTSPM methods in details.

4.1 A Method for Multiple Test Cases with Same
Priority

The following lists reasons why this method has
been proposed in this study.

1. Poor weight algorithm can lead to the wrong
prioritization. Current prioritization
techniques ignore the problem of multiple

test cases with the same priority value [23],
[24], [25], [26], [27], [28], [29], [44], [52],
[53], [54], [55] [56].

2. Most current techniques use a random
method to prioritize test cases when they
have the same priority. Several empirical
studies provided by Rothermel [7], [9], [19],
[26], [27], [32] show that random method is
not desirable comparing to other
prioritization techniques.

3. Saif-ur-Rebman [40] stated that they applied
a random method for prioritizing test cases if
there are multiple cases with the same
weight values. This means that there is a
room to improve the ability for test case
prioritization for this case.

The following considers improving the capability
of weight algorithms in case that there are multiple
test cases with the same priority and multiple sets of
test cases.

Figure 3. A Flow Chart of MTSSP Method

From the above figure, the procedures can be
described as follows:

The beginning process starts with deciding that
defect factors are the first priority or not. If those
factors are the first priority factors, then assigning,
computing and prioritizing test cases by using the
proposed prioritization method, in section 4.2,
included the following formula:

WP = ∑2i=1(PFValuei * PFWeighti) (9)

Where:

• WP is weight prioritization for each test case
that calculates from two (2) factors, which
are: DO and DS

• PFValuei is a value assigned to each test case

• PFWeightj is a weight assigned for DO and
DS factor

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

55

Test cases can be ordered in accordance with
higher priority. However, if the weight priority
value is still the same, then go to next step.

In this step, time factors are required to be
concerned as second priority. Test cases can be
prioritized based on these secondary factors (e.g.
ET, TCfDP and TCfV) by using the method
addressed in section 4.2 and the following formula:

WP = ∑3i=1(PFValuei * PFWeighti) (10)

Where:

• WP is weight prioritization for each test case
that calculates from three (3) factors, which
are: ET, TCfDP and TCfV.

• PFValuei is a value assigned to each test case

• PFWeightj is a weight assigned for ET,
TCfDP and TCfV.

Test cases can be ordered in accordance with
higher priority. However, if the weight priority
value is still the same, then go to next step.

In this step, cost factors are required to be
concerned as third priority. Test cases can be
prioritized based on these factors (e.g. EC, Ca,
CoDP and CoV) by using the method stated in
section 4.2 and the following formula:

WP = ∑4i=1(PFValuei * PFWeighti) (11)

Where:

• WP is weight prioritization for each test case
that calculates from four (4) factors, which
are: EC, Ca, CoDP and CoV.

• PFValuei is a value assigned to each test
case

• PFWeightj is a weight assigned for EC, Ca,
CoDP and CoV.

Test cases can be ordered in accordance with
higher priority. However, if the weight priority
value is still the same, then go to next step.

In this step, other factors are required to be
concerned as last priority. Test cases can be
prioritized based on these factors (e.g. ReqCov,
TCplx, Dep and TI) by using this method mentioned
in section 4.2 and the following formula:

WP = ∑4i=1(PFValuei * PFWeighti) (12)

Where:

• WP is weight prioritization for each test case
that calculates from four (4) factors, which
are: TCplx, ReqCov, Dep and TI.

• PFValuei is a value assigned to each test
case

• PFWeightj is a weight assigned for TCplx,
ReqCov, Dep and TI.

Test cases can be ordered in accordance with
higher priority. However, if the weight priority
value is still the same, then select and prioritize test
cases randomly.

It is obvious that this proposed technique is
aiming to improve the ability to rank or score test
cases when there are multiple cases with the same
priority. This can improve the efficient of ranking
in test case prioritization techniques.

In addition, the above procedures can apply to
prioritize multi sets of test cases. The literature
survey reveals that most test case prioritization
techniques assume explicitly to prioritize a single
set of test case.

4.2 Many Test Suites Prioritization Method

Current test case prioritization techniques
explicitly prioritize a single set of test cases. The
literature review shows that no techniques
addressed a method to prioritize multiple sets of test
cases / many test suites [23], [24], [25], [26], [27],
[28], [29], [44], [52], [53], [54], [55] [56], [126]. In
this study, test suites define as a collection of test
cases. Therefore, the following has been proposed
to resolve the problem of prioritizing test suites.

Figure 4. A Flow Chart of MTSPM Method

From the above figure, the procedures can be
described as follows:

The beginning starts with prioritizing test suite
along with time and cost factors. In this step, the
method in section 4.2 has been proposed and used.
If there are many test suites with the same priority,
then select and order test suites randomly.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

56

In addition, the following lists formula using in
this step:

WP = ∑7i=1(PFValuei * PFWeighti) (13)

Where:

• WP is weight prioritization for each test suite
that calculates from seven (7) factors, which
are: EC, Ca, CoDP, CoV, ET, TCfDP, and
TCfV.

• PFValuei is a value assigned to each test
suite

• PFWeightj is a weight assigned for EC, Ca,
CoDP, CoV, ET, TCfDP, and TCfV.

If no test suites have the same priority value, then
prioritizing test cases in each test suite. If there are
many test cases with the same priority value, the
method addressed in section 4.3 has been proposed
to resolve that problem.

5. EVALUATION

This section describes an experiment design,
measurement metrics and results in order to
determine the most recommended test case
prioritization methods.

5.1 Experiments Design

An evaluation method for this experiment has
been proposed in order to compare and assess the
proposed method with other current prioritization
techniques, as follows:

1. Prepare Experiment Data. Generate
randomly 20 test suites with 1,000 test cases. Each
test suite contains the following values: test suite id,
test suite purpose, a set of test cases, EC, Ca,
CoDP, CoV, ET, TCfDP, TCfV. Also, each test case
contains the following values: test case id, test case
description, input, expected output, actual output
and pass / fail status.

2. Run Test Suites Prioritization Method. A
comparative evaluation method has been made
among the following techniques: (a) random
method (b) Hema’s technique [32] (c) Alexy’s cost-
effective prioritization method [2] and (d) the
“Multi-Prioritization” method presented in previous
section. The experiment data used in this
experiment are: 20 test suites that contain 1,000 test
cases.

3. Evaluate Results. In this step, collecting
results from previous steps are included. Also,
plotting graph and discussing results are required to

evaluate final results for the previous methods, from
previous step.

5.2 Measurement Metrics

The section lists the measurement metrics used in
the experiment. The section lists the measurement
metrics used in the experiment. This paper proposes
to use three metrics, which are: (a) percentage of
high priority reserve effectiveness (b) size of
acceptable test case and (c) total prioritization time.

Test case prioritization techniques aim to
prioritize and schedule high-priority test cases. This
is because a number of time and cost consumed in
the software testing process, particularly during a
regression testing process, can be significantly
decreased by executing those high-priority cases
first [22], [23], [30], [31] Thus, the percentage of
high-priority test cases is one of the important
metrics used in this experiment [51]. This
experiment compares the existing test case
prioritization and proposed methods to find out the
best methods that reserve a maximum number of
high-priority test cases. This paper proposes to use
a number of acceptable test cases as another metric,
because a size of prioritized test cases has an impact
to the effort, time and cost consuming during the
execution, particularly during a regression testing
phase [7], [22], [23], [30], [31]. Thus, the smaller
number of test cases consumes less effort, time and
cost. This paper compares a number of reserved
acceptable test cases between existing techniques
and proposed method. The acceptable test cases in
this experiment are test cases with high and medium
priority. All low-priority test cases are excluded.
Additionally, this paper proposes to use a total
prioritization time as last metrics. This is because
time-consuming prioritization techniques can
produce a huge amount of time during the software
testing process. The techniques with the least total
prioritization time are desirable. The following
describes details of each metric used in this
experiment.

1. Percentage of High Priority Reserve
Effectiveness: This metric measure the
effectiveness of reserving high priority test cases
from original test cases [51]. This is because high
priority test cases have higher priority value more
than lower priority test cases. Therefore, the high
percentage of high priority reserve effectiveness is
desirable.

In addition, this metric can be calculated as the
following formula:

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

57

% HPRE = (# of Reserved / # of Total)*100

Where:

• % HPRE is a percentage of high priority
reserve effectiveness.

• # of Reserved is a number of redundancy test
cases removed from original test cases.

• # of Total is a total number of test cases.

2. Size of Acceptable Test Cases: This metric is
a number of acceptable test cases, in the format of
percentage, as follows:

% Size = (# Size / # of Total Size)*100

Where:

• % Size is a percentage of a number of
acceptable test cases that exclude all low-
priority test cases.

• # of Size is a number of test cases that each
method generates, excluding low-priority
test cases.

• # of Total Size is a maximum number of test
cases in the experiment, which is assigned to
1,000.

3. Total Prioritization Time: This is a total
number of times running the prioritization methods
in the experiment. This metric is related to time
used during pre-process and post-process of test
case prioritization. Therefore, less time is desirable.

It can be calculated as the following formula:

TPT = ComT + CalT + RPMT

Where:

• TPT is a total number of times consuming in
running prioritization methods.

• ComT is a time to compile source code /
binary code in order to prioritize test cases.

• CalT is a total number of times consuming in
assigning weights, assigning values and
computing weight prioritization values.

• RPMT is a total time to run the test case
prioritization methods including ordering
test cases under this experiment.

Also, the following represents a formula that
calculates the total time in the format of percentage.

% Time = (# TPT / # of Maximum Total
Time)*100

Where:

• % Time is a percentage of total time.

• # of TPT is a total time consumed during the
generation process.

• # of Maximum Total Time is a maximum
time in the experiment, which is assigned to
1,000 seconds.

5.3 Results and Discussion

This section discusses an evaluation result of the
above experiment. This section presents a graph
that compares the above proposed method to other
three existing test case prioritization techniques,
based on the following measurements: (a) high
priority reserve effectiveness (b) size of acceptable
priority and (c) total time. Those three techniques
are: (a) random approach (b) Hema’s method and
(c) Alexey’s method. There are two dimensions in
the following graph: (a) horizontal and (b) vertical
axis. The horizontal represents three measurements
whereas the vertical axis represents the percentage
value.

Figure 5. An Evaluation Result of Prioritization Methods

The above graph shows that the MTSSP &
MTSPM method generates the highest high priority
reserve effectiveness. It is calculated as 96% where
as the other techniques is computed less than 70%.
Those techniques reserve the less number of test
cases with high priority.

Also, the graph shows that the “MTSSP &
MTSPM” method consumes the least total time
during a prioritization process, comparing to other
techniques. It used only 80%, which is slightly less
than others.

Finally, the graph presents that the “MTSSP &
MTSPM” method is the best technique to reserve
the acceptable priority test cases.

The following table ranks test case prioritization
techniques used in the experiments, based on the

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

58

above measurements, by 1 is the first, 2 is the
second, 3 is the third and 4 is the last.

Table 2. Test Case Generation Techniques Ranking

Methods High
Priority
Reserve

Effectiveness

Size of
Acceptable Test

Cases

Total
Time

Random
Approach

3 4 4

Hema’s
Method

4 3 3

Alexey’s
Method

2 2 2

MTSSP &
MTSPM
Method

1 1 1

In the conclusion, the MTSSP and MTSPM

method are the most recommended methods to
reserve the large number of high priority test cases
with the second runner of total time, during a
prioritization process.

6. CONCLUSION

Test case prioritization is a method to prioritize
and schedule test cases. The technique is developed
in order to run test cases of higher priority in order
to minimize time, cost and effort during software
testing phase. The literature review shows that
many researchers propose many methods to
prioritize and reduce the effort, time and cost in the
software testing phase, such as test case
prioritization methods, regression selection
techniques and test case reduction approaches. This
paper concentrates on test case prioritization
techniques only. This paper shows that there are
many prioritization techniques researched between
1998 and 2008. With the existing techniques, this
study introduces a new “4C” type of test case
prioritization techniques, which are: (a) customer
requirement-based techniques, (b) coverage-based
techniques, (c) cost effective-based techniques and
(d) chronographic history-based techniques. First,
the customer requirement-based techniques are
methods to directly prioritize test cases from
requirement specifications. Second, the coverage-
based techniques are structural white-box testing
techniques. They compare test program behavior
against the apparent intention of the source code.
This contrasts with functional black-box testing,
which compares test program behavior against a
requirements specification. In addition, they
examine how the program works, taking into
account possible pitfalls in structure and logic.
Third, the cost effective-based techniques are

methods of prioritizing test cases based on only cost
factors, such as cost of analysis and cost of
prioritization. Last, the chronographic history-based
techniques are methods to prioritize test cases based
on test execution history factors.

This paper reveals that there are many research
challenges and gaps in the test case prioritization
area. Those challenges and gaps can give the
research direction in this field. However, the
research issues that motivated this study are:

1. No existing prioritization techniques address
the problem of multiple cases with same weight
values. The existing test case prioritization
techniques use a random approach to prioritize
those cases to resolve that problem. The problem
may lead to a poor performance of an ability to
prioritize and schedule test cases.

2. Existing test case prioritization techniques
assume explicitly that there is only a single test
suite. The test suite is a collection of a set of test
cases. There are no prioritization techniques to
resolve the problem of multiple test suites.

This paper proposes two methods to resolve the
above research issues. The first method aims to
improve the ability to prioritize a set of test cases in
case that there are multiple cases with the same
priority weight values. The second method is
developed to prioritize multiple test suites, which
they contains a set of test cases. As the evaluate
result, it is appeared that the above two methods are
the best to reserve the large number of high priority
test cases with the second runner of total time,
during a prioritization process. Also, those proposed
methods can resolve the issues of duplicated
priority weight values and multiple test suites.
However, this paper suggests the following future
works to improve the capability of those two
methods: (a) apply the practical prioritization
weight values for commercial systems (b) improve
the ability to automatically find duplicate test cases
with the same values (c) improve the ability to
automatically prioritize multiple large test suites
with real commercial data.

REFRENCES:

[1] A. Srivastava, A. Edwards, and H. Vo., “Vulcan:

Binary Transformation in a Distributed
Environment”, Microsoft Research Technical
Report, MSR-TR-2001-50, 2001.

[2] Alexey G. Malishevsky, Gregg Rothermel and
Sebastian Elbaum, “Modeling the Cost-Benefits

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

59

Tradeoffs for Regression Testing Techniques”,
Proceedings of the International Conference on
Software Maintenance (ICSM’02), 2002.

[3] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg
Rothermel and Sebastian Elbaum, “Cost-cognizant
Test Case Prioritization”, Technical Report TR-
UNL-CSE-2006-0004, Department of Computer
Science and Engineering, University of Nebraska –
Lincoln, 2006.

[4] Amitabh Srivastava and Jay Thiagarajan,
“Effectively Prioritizing Tests in Development
Environment”, In Proceedings of the International
Symposium on Software Testing and Analysis, pages
97-106, 2002.

[5] Jefferson Offutt, Jie Pan and Jeffery M. Voas,
“Procedures for Reducing the Size of Coverage-
based Test Sets”, 1995.

[6] Barry W. Boehm, “A Spiral Model of Software
Development and Enhancement”, TRW Defense
Systems Group, 1998.

[7] Boris Beizer, “Software Testing Techniques, Van
Nostrand Reinhold”, Inc, New York NY, 2nd
edition. ISBN 0-442-20672-0, 1990.

[8] Bo Qu, Changhai Nie, Baowen Xu and Xiaofang
Zhang, “Test Case Prioritization for Black Box
Testing”, 31st Annual International Computer
Software and Applications Conference (COMPSAC
2007), 2007.

[9] Bogdan Korel and Ali M. Al-Yami, “Automated
Regression Test Generation”, ISSTA98, 1998.

[10] Boris Beizer, “Software Testing Techniques”, Van
Nostrand Reinhold, Inc, New York NY, 2nd edition.
ISBN 0-442-20672-0, 1990.

[11] B. Boehm, “Industrial Metrics Top 10 List”, IEEE
Software, pp. 84-85, 1987.

[12] B. Boehm, “Value-Based Software Engineering”,
ACM SIGSOFT Software Engineering Notes,
18(2):3-7, 2003.

[13] B. Korel and J. Laski, “Algorithmic software fault
localization”, Annual Hawaii International
Conference on System Sciences, pages 246–252,
1991.

[14] Cem Kaner, “Exploratory Testing”, Florida Institute
of Technology, Quality Assurance Institute
Worldwide Annual Software Testing Conference,
Orlando, FL, 2006.

[15] David Leon and Andy Podgurski, “A Comparison of
Coverage-Based and Distribution-Based Techniques
for Filtering and Prioritizing Test Cases”, Proc. Int’l
Symp. Software Reliability Eng., pp. 442-453, 2003.

[16] Dennis Jeffrey and Neelam Gupta, “Test Case
Prioritization Using Relevant Slices”, In
Proceedings of the 30th Annual International
Computer Software and Applications Conference,
Volume 01, 2006, pages 411-420, 2006.

[17] D. Binkley, “Using semantic differencing to reduce
the cost of regression testing”, In the Intl. Conf. on
Software Maintenance, pages 41–50, 1992.

[18] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton, “The AETG system: an approach to testing
based on combinatorial design”, IEEE Transactions
on Software Engineering, 23(7):437–444, 1997.

[19] Dr. Mark Austin, “Test Suite Analysis:
Minimization and Ordering”, 2004.

[20] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit
Baudry and Yves Le Traon, “Metamodel-based Test
Generation for Model Transformations: an
Algorithm and a Tool”, 17th International
Symposium on Software Reliability Engineering
(ISSRE’06), 2006.

[21] E. Lehmann and J. Wegener, “Test case design by
means of the CTE XL”, In Proc. of the 8th European
International Conf. on Software Testing, Analysis &
Review (EuroSTAR 2000), 2000.

[22] Gregg Rothermel, Roland H. Untch, Chengyun Chu
and Mary Jean Harrold, “Prioritizing Test Cases for
Regression Testing”, IEEE Transactions on
Software Engineering, 2001.

[23] Gregg Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold, “Test case prioritization: An empirical
study”, In Proceedings of the IEEE International
Conference on Software Maintenance, pages 179-
188, Oxford, England, UK, 1999.

[24] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin
and Christie Hong, “An Empirical Study of the
Effects of Minimization on the Fault Detection
Capabilities of Test Suites”, In Proceedings of IEEE
International Test Conference on Software
Maintenance (ITCSM'98), Washington D.C., pp. 34-
43, 1998.

[25] Gregg Rothermel, Mary Jean Harrold, Jeffery von
Ronne and Christie Hong, “Empirical Studies of
Test-Suite Reduction”, In Journal of Software
Testing, Verification, and Reliability, Vol. 12, No.
4, 2002.

[26] Gregg Rothermel and Mary Jean Harrold, “A Safe,
Efficient Regression Test Selection Technique”,
ACM Transactions on Softw. Eng. And
Methodology, 6(2): 173-210, 1997.

[27] Gregg Rothermel and Mary Jean Harrold,
“Analyzing Regression Test Selection Techniques”,
IEEE Transactions on Software Engineering,
22(8):529-551, 1996.

[28] Gregg Rothermel and Mary Jean Harrold, “A
Framework for Evaluating Regression Test
Selection Techniques”, 1994.

[29] Gregg Rothermel, Sebastian Elbaum, Alexey
Malishevsky, Praveen Kallakuri and Brian Davia,
“The Impact of Test Suite Granularity on the Cost-
Effectiveness of Regression Testing”, 2001.

[30] G. Rothermel, R. Untch, C. Chu, and M. Harrold,
“Test Case Prioritization”, IEEE Transactions on
Software Engineering, vol. 27, pp. 929-948, 2001.

[31] G. Mogyorodi, “Requirements-Based Testing: An
Overview, Starbase Corporation”, 2001.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

60

[32] Hema Srikanth and Laurie Williams,
“Requirements-Based Test Case Prioritization”,
North Carolina State University, ACM SIGSOFT
Software Engineering, pages 1-3, 2005.

[33] Hema Srikanth, Laurie Williams and Jason Osborne,
“System Test Case Prioritization of New and
Regression Test Cases”, In Proceedings of the 4th
International Symposium on Empirical Software
Engineering (ISESE), pages 62–71. IEEE Computer
Society, 2005.

[34] Hyunsook Do and Gregg Rothermel, “On the Use of
Mutation Faults in Empirical Assessments of Test
Case Prioritization Techniques”, IEEE Transactions
on Software Engineering, V. 32, No. 9, pages 733-
752, 2006.

[35] Hyunsook Do and Gregg Rothermel, “A Controlled
Experiment Assessing Test Case Prioritization
Techniques via Mutation Faults”, Proceedings of the
IEEE International Conference on Software
Maintenance, pages 411-420, 2005.

[36] H. Agrawal, J. R. Horgan, E. W. Krauser, and S.
London, “Incremental regression testing”, IEEE
International Conference on Software Maintenance,
pages 348–357, 1993.

[37] H. K. N. Leung and L. White, “A cost model to
compare regression test strategies”, In Proc. Conf.
Softw. Maint., pages 201–208, 1991.

[38] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing
JUnit Test Cases: An Empirical Assessment and
Cost-Benefits Analysis,” Empirical Software Eng.:
An Int’l J., vol. 11, no.1, pp. 33-70, March 2006.

[39] H. Leung and L. White, “Insights into regression
testing”, In Proceedings of the International
Conference on Software Maintenance, Miami,
Florida, U.S.A., pages 60-69, 1989.

[40] James A. Jones and Mary Jean Harrold, “Test-Suite
Reduction and Prioritization for Modified
Condition/Decision Coverage”, In Proceedings of
the International Conference on Software
Maintenance, 2001.

[41] Jeffery von Ronne, “Test Suite Minimization: An
Empirical Investigation”, 1999.

[42] Jennifer Black, Emanuel Melachrinoudis and David
Kaeli, “Bi-Criteria Models for All-Uses Test Suite
Reduction”, Proceedings of the 26th International
Conference on Software Engineering (ICSE’04),
2004.

[43] Jung-Min Kim, Adam Porter and Gregg Rothermel,
“An Empirical Study of Regression Test Application
Frequency”, ICSE2000, 2000.

[44] Jung-Min Kim and Adam Porter, “A History-Based
Test Prioritization Technique for Regression Testing
in Resource Constrained Environments”, In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 119–129. ACM
Press, 2002.

[45] J. Lee and X. He, “A methodology for test
selection”, Journal of Systems and Software,
13(3):177–185, 1990.

[46] John Joseph Chilenski and Steven P. Miller,
“Applicability of Modified Condition/Decision
Coverage to Software Testing”, Software
Engineering Journal, Vol. 9, No. 5, pp.193-200,
1994.

[47] K. Onoma, W.-T. Tsai, M. Poonawala, and H.
Suganuma, “Regression testing in an industrial
environment”, Comm. Of the ACM, 41(5):81–86,
1988.

[48] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer and
R. S. Roos, “Time-Aware Test Suite Prioritization”,
In Proceedings of the International Symposium on
Software testing and Analysis, pages 1-12, 2006.

[49] Londesbrough, I., “Test Process for all Lifecycles”,
IEEE International Conference on Software Testing
Verification and Validation Workshop, ICSTW’08,
2008.

[50] Lu Luo, “Software Testing Techniques: Technology
Maturation and Research Strategies”, Carnegie
Mellon University, USA, 1999.

[51] Rajib, “Software Test Metric”, QCON, 2006.
[52] Sreedevi Sampath, Sara Sprenkle, Emily Gibson and

Lori Pollock, “Web Application Testing with
Customized Test Requirements – An Experimental
Comparison Study”, 17th International Symposium
on Software Reliability Engineering (ISSRE’06),
2006.

[53] Xiaofang Zhang, Baowen Xu, Changhai Nie and
Liang Shi, “An Approach for Optimizing Test Suite
Based on Testing Requirement Reduction”, Journal
of Software (in Chinese), 18(4): 821-831, 2007.

[54] Xiaofang Zhang, Baowen Xu, Changhai Nie and
Liang Shi, “Test Suite Optimization Based on
Testing Requirements Reduction”, International
Journal of Electronics & Computer Science, 7(1): 9-
15, 2005.

[55] Xiaofang Zhang, Baowen Xu, Zhenyu Chen,
Changhai Nie and Leifang Li, “An Empirical
Evaluation of Test Suite Reduction for Boolean
Specification-based Testing”, The Eighth
International Conference on Quality Software, 2008.

[56] Xiaofang Zhang, Changhai Nie, Baowen Xu and Bo
Qu, “Test Case Prioritization based on Varying
Testing Requirement Priorities and Test Case
Costs”, Proceedings of Seventh International
Conference on Quality Software (QSIC’07), 2007.

[57] Douglas Hoffman, “Cost Benefits Analysis of Test
Automation”, STARW, Software Quality Methods
LLC., 1999.

[58] Kalyana Rao Konda, “Measuring Defect Removal
Accurately”, July 2005.

[59] Cristian Cadar and Dawson Engler, “Execution
Generated Test Cases: How to Make Systems Code
Crash Itself”, Stanford University, USA, 2005.

