
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

28

A TEST GENERATION METHOD BASED ON STATE
DIAGRAM

1 NICHA KOSINDRDECHA, 2JIRAPUN DAENGDEJ

1 Autonomous System Research Laboratory, Science and Technology, Assumption University, Thailand
2 Autonomous System Research Laboratory, Science and Technology, Assumption University, Thailand

ABSTRACT

In general, the software testing phase takes around 40-70% of the time and cost during the software
development life cycle. Software testing is well researched over a long period of time. Unfortunately, while
many researchers have found an efficient test case generation methods to minimize time and cost, there are
still a number of important research issues. The primarily issue that motivated this study is to: consume a
great amount of time and cost to automatically generate tests from diagrams, with a huge size of tests and
less test coverage. Therefore, this paper introduces an effective test sequence generation technique to
minimize time, cost and size of tests while maximizing test coverage. The proposed technique aims to
derive and generate tests from state chart diagram. The diagram is widely-used to describe a behavior of the
system. In addition, this paper discusses and determines the best effective test generation methods that
derive tests from diagrams.

Keywords: test generation technique, generate test from state diagram, test case generation, test data
generation and test sequence generation

1. INTRODUCTION

Software testing is an empirical investigation
activity conducted to provide all stakeholders with
information about the quality of given software or
applications. Software testing can be stated as a
process of validating and verifying that a software
or application: (a) has been implemented in line
with its design specification (b) meets the business
and technical requirements that guided its design
and development and (c) works as expected.

John [36] argued that software testing is one of
the most critical and important phases in software
testing. For instance, “In June 1996 the first flight
of the European Space Agency's Ariane 5 rocket
failed shortly after launching, resulting in an
uninsured loss of $500,000,000. The disaster was
traced to the lack of exception handling for a
floating-point error when a 64-bit integer was
converted to a 16-bit signed integer”. This has
proven that software testing is one of the most
critical phases and cannot be ignored. Bertolino [7]
argued that “Test case generation is a most
challenging and an extensively researched activity”.
Many test case generation techniques have been
proposed in order to facilitate generation and
preparation of test cases, such as Salas [50], Offutt

[9], Heumann [34] and Turner [19]. In addition,
Kaner [16] listed the purposes of test cases, for
instance to find defects, maximize bug count and
help managers make go / no-go decisions. These
papers have shown that test cases and methods are
one of the most challenging processes during
software testing phase.

Beizer argued that “Software testing accounts for
50% of the total cost of software development”
[14]. Many researchers from 1990 to 2006
mentioned that automated test case generation is
one approach to reducing cost. Many methods have
been proposed to identify a set of test cases, such as
Sanjai’s work [60], Hyungchoul’s work [28] and
Peter Frohlich’s work [51].

Although many test generation techniques have
been proposed, there are still outstanding research
issues. Specially, existing test sequence generation
methods consume a huge amount of cost and time
with less testing coverage. These issues may cause
the following critical problems: (a) the project
budget may be overrun, particularly in the large
software systems (b) software testing phase may
cause a delay of developing software systems and
(c) some test cases may not be covered and tested
properly, which causes to many known defects. As

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

29

a result, there are available rooms to improve the
ability to generate tests. Therefore, this paper
concentrates and introduces a new test generation
method, called “TGfMMD”, which aims to
minimize cost and time while maximizing testing
coverage.

Section 2 discusses the comprehensive set of test
generation techniques. Section 3 describes
outstanding issues motivated this study. Section 4
introduces a new generation process to prepare and
generate tests. In addition, section 4 proposes a new
effective test generation technique. The proposed
method is developed to generate tests from widely
used extended state diagram. Section 5 describes an
experiment design and measurement metrics used
in the evaluation experiment. Section 5 also
describes a result and provides a short discussion of
the evaluation. Section 6 concludes the contribution
of this paper and provides future works for further
researches. The last section represents all source
references used in this paper.

2. LITERATURE REVIEW

This section surveys and describes the waterfall
software development life cycle, software testing
process, test case generation process and all recent
research of test case generation techniques.

According to the waterfall software development
life cycle (SDLC) below, basically there are five
phases in the cycle, which are: (a) requirements (b)
design (c) implementation (also known as
development) (d) verification (also known as
software testing) and (e) maintenance.

Software testing phase is the process of executing
a program or system with the intent of finding
errors [44]. It involves any activity aimed at
evaluating an attribute or capability of a program or
system and determining that it meets its required
results [26]. Software is not unlike other physical
processes where inputs are received and outputs are
produced. Where software differs is in the manner
in which it fails. Most physical systems fail in a
fixed (and reasonably small) set of ways. By
contrast, software can fail in many bizarre ways.
Detecting all of the different failure modes for
software is generally infeasible.

Obviously, software testing is an essential
activity in the SDLC. In the simplest terms, it
provides quality assurance by observing the
execution of a software system to validate whether
it behaves as intended and to identify potential

malfunctions. Testing is also widely applied by
directly scrutinizing the software to provide realistic
feedback of its behavior. Earlier studies estimated
that testing can consume fifty percent, or even
more, of the development costs [14], and a recent
detailed survey in the United States [48] quantified
the high economic impacts of an inadequate
software testing infrastructure.

The following paragraphs describe the general
process of running software testing activities. This
study includes the software testing process provided
by Pan [49] from Carnegie Mellon University, as
follows.

1. Requirements analysis: Software testing
should begin in the requirements phase of the
SDLC. Software testing engineers should play a
major role during the requirement phase. During the
design phase, software testing engineers work with
developers in determining what aspects of a design
are testable and with what parameters those tests
work.

2. Test planning: Test strategy, test plan, testbed
creation. A testbed is a platform for
experimentation for large development projects.
Testbeds allow for rigorous, transparent and
replicable testing of scientific theories,
computational tools, and other new technologies.

3. Test development: Develop test procedures,
design test scenarios, produce test cases, prepare
test datasets, and build test scripts to use in testing
software.

4. Test execution: Once the test plan and test
cases, including test data, are generated and
prepared, software testing engineers can execute the
software based on the plans and tests and report any
errors found to the development team.

5. Test reporting: When the test cases have been
run, software testing engineers generate metrics and
make final reports on their test effort and whether
or not the software tested is ready for release.

6. Test result analysis (also known as defect
analysis): This step is done by the testing team. It is
usually done along with the client, in order to
decide what defects should be treated, fixed,
rejected (i.e. found software working properly) or
deferred to be dealt with at a later time.

7. Retesting the resolved defects: When a defect
has been resolved by the development team, the test
must be run again.

8. Regression testing: In general, it is common
to have a small test program built based on a subset

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

30

of tests, for each integration of new, modified or
fixed software, in order to ensure that the latest
delivery has not ruined anything. Additionally, this
step ensures that the software product as a whole is
still working correctly.

9. Test Closure: When the test meets the exit
criteria, the activities such as capturing the key
outputs, lessons learned, results, logs, documents
related to the project are archived and used as a
reference for future projects.

2.1 Test Case Generation Techniques

Test case generation has always been
fundamental to the testing process. Bertolino [7]
articulated that the test case generation step is one
of the most challenging and extensively researched
activities of software testing. There are many types
of test case generation techniques [46] such as
specification-based techniques, sketch diagram-
based techniques and source code-based techniques.
In addition, there are many researchers who have
investigated generating a set of test cases for web-
based applications [23], [75], [76]. Other techniques
include goal-oriented and random approaches.

Random techniques determine a set of test cases
based on assumptions concerning fault distribution.
Source code-based techniques generally use a
control flow graph to identify paths to be covered
and generate appropriate test cases for those paths.
Goal-oriented techniques identify test cases
covering a selected goal such as a statement or
branch, irrespective of the path taken.

Incorrect interpretations of complex software
from non-formal specification can result in
incorrect implementations leading to the necessity
to test them for conformance to its specification
[69].

Modeling languages may be used in the software
design specification. Since UML is the most widely
used language, many researchers are using UML
diagrams such as state diagrams, use-case diagrams
and sequence diagrams to generate test cases and
this has led to sketch diagram-based test case
generation techniques.

This section introduces a new “3S” classification
of test case generation techniques, as follows.

1. Specification-based techniques
2. Sketch diagram-based techniques
3. Source code-based techniques

Each group can be described in details as
follows.

2.1.1 Specification-Based Techniques
Specification-based techniques are methods to

generate a set of test cases from specification
documents such as a formal requirements
specification [27], [42], [50], [57], [59], [65], [73],
[74], [75]. In fact, the specification precisely
describes what the system is to do without
describing how to do it. Thus, the software test
engineer has important information about the
software’s functionality without having to extract it
from unnecessary details. The advantages of this
technique include that the specification document
can be used to derive expected results for test data,
and that tests may be developed concurrently with
design and implementation. The latter is also useful
for breaking “Code now test later” practices in
software engineering, and for helping develop
parallel testing activities for all phases [42]. The
specification requirement document can be used as
a basis for output checking, significantly reducing
one of the major costs of testing. Specifications can
also be analyzed with respect to their testability [6].
The process of generating tests from the
specifications will often help the test engineer
discover problems with the specifications
themselves. If this step is done early, the problems
can be eliminated early, saving time and resources.
Generating tests during development also allows
testing activities to be shifted to an earlier part of
the development process, allowing for more
effective planning and utilization of resources. Test
generation can be independent of any particular
implementation of the specifications [9].

Furthermore, the specification-based technique
offers a simpler, structured, and more formal
approach to the development of functional tests
than non-specification based testing techniques do.
The strong relationship between specification and
tests helps find faults and can simplify regression
testing. An important application of specifications
in testing is to provide test oracles. The drawbacks
of the specification-based technique with formal
methods are: (a) the difficulty of conducting formal
analysis and the perceived or actual payoff in
project budget. Testing is a substantial part of the
software budget, and formal methods offer an
opportunity to significantly reduce testing costs,
thereby making formal methods more attractive
from the budget perspective [27] and (b) there is
greater manual effort or processes in generating test
cases, compared with techniques involving

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

31

automatic generation processes. This research
reveals that many techniques have been proposed
such as heuristics algorithms [38], [65], model
checkers [27], [57], [60] and hierarchy approaches
[42], [74], [75]. The following paragraphs describe
examples of existing specification-based techniques
that have been proposed since 1997.

Percy [50] presented the underlying theory by
providing a set of test cases with formal semantics
and translated this general testing theory to a
constraint satisfaction problem. A prototype test
case generator serves to demonstrate the automation
of the method. It works on Object Constraint
Language (OCL) specifications. The OCL is part of
the UML 2.0 standard. It is a language allowing the
specification of formal constraints in context of a
UML model. Constraints are primarily used to
express invariants of classes, pre-conditions and
post-conditions of operations. These invariants
become elements of test cases. In their work, they
aimed to generate test-cases focusing on possible
errors during the design phase of software
development. Examples of such errors might be a
missing or misunderstood requirement, a wrongly
implemented requirement, or a simple coding error.
In order to represent these errors, they introduced
faults into formal specifications. The faults are
introduced by deliberately changing a design,
resulting in wrong behavior possibly causing a
failure. They focused dedicatedly on the problem
of generating test cases from a formal specification.
The problem can be represented as a Constraint
Satisfaction Problem (CSP). A CSP consists of a
finite set of variables and a set of constraints. Each
variable is associated with a set of possible values,
known as its domain. A constraint is a relation
defined on some subset of these variables and
denotes valid combinations of their values. A
solution to a constraint satisfaction problem is an
assignment of a value to each variable from its
domain, such that all the constraints are satisfied.
Formally, the conjunction of these constraints forms
a predicate for which a solution should be found. To
resolve the above problem, they proposed to embed
the test generation problem modeled as a CSP into a
specially designed and implemented Constraint
System. But this is not a novelty because this
approach has been widely explored and
implemented. The novelty in their approach is the
relation that they formalized between fault-based
testing and constraint solving.

Miao [42] presented a framework based on Phil
Stocks and David Carrington’s work [85], [86] He
defined a test class using an object-oriented concept

instead of Phil Stock’s test template in the
framework. Phil Stock’s test template defines test
data only. The benefit of their test framework for Z
specifications is that the test data and oracles are
defined in a test class which also contains the
information of before states and after states for an
operation. The test framework is therefore a
dynamic system involving state change, containing
three components: (a) valid input space & output
space (b) test class & test state space and (c) test
class hierarchy & instantiation.

Jefferson [10] presented a model for developing
test inputs from state-based specifications, and
formal criteria for test case selection. For state-
based specification technique, their paper used the
term specification-based testing in the narrow sense
of using specifications as a basis for deciding what
tests to run on software. Their proposed approach is
related to Blackburn’s state-based functional
specifications of the software, expressed in the
language, T-Vec [45]. It is used to derive
disjunctive normal form constraints, which are
solved to generate tests. Also, their approach is
related to Weyuker, Goradia [22] who presented a
test case generation method from Boolean logic
specifications. Moreover, they introduced several
criteria for system level testing. These criteria are
expected to be used both to guide the testers during
system testing and to help the testers find rational,
mathematical-based points at which to stop testing.
In those criteria, tests are generated as multi-part,
multi-step and multi-level artifacts. The multi-part
aspect means that a test case is composed of several
components: test case values, prefix values, verify
values, exit commands, and expected outputs. The
multi-step aspect means that tests are generated in
several steps from the functional specifications by a
refinement process. The functional specifications
are first refined into test specifications, which are
then refined into test scripts. The multi-level aspect
means that tests are generated to test the software at
several levels of abstraction.

Cunning [66] was interested in the model-based
codesign of real-time embedded systems. It relies
on system models at increasing levels of fidelity in
order to explore design alternatives and to evaluate
the correctness of these designs. As a result, the
tests that they desire should cover all system
requirements in order to determine if all
requirements have been implemented in the design.
The set of generated tests is maintained and applied
to system models of increasing fidelity and to the
system prototype in order to verify the consistency
between models and physical realizations. In the

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

32

codesign method, test cases are used to validate
system models and prototypes against the
requirements specification. In the paper, they
presented continuing research toward automatic
generation of test cases from requirements
specifications for event-oriented, real-time
embedded systems. They used a heuristic algorithm
to automatically generate test cases in their works.
The heuristic algorithm uses the greedy search
method followed by a distance based search if
needed. The algorithm with pseudo code is
addressed in their paper [65].

Hung [27] focused on existing research in using
model checking to generation test cases. He touched
on several areas, like the methodology of properly
testing software, the use of model checking to
generate tests suits and specialization of
specification to suit the needs of test generation. A
model checker is used to analyze a finite-state
representation of a system for property violations. If
the model checker analyzes all reachable states and
detects no violations, then the property holds.
However, if the model checker finds a reachable
state that violates the property, it returns a
counterexample – a sequence of reachable states
beginning in a valid initial state and ending with the
property violation. In his technique, the model
checker is used as a test oracle to compute the
expected outputs and the counterexamples it
generates are used as test sequences. In summary,
his approach is used to generate test cases by
applying mutation analysis. Mutation analysis is a
white-box method for developing a set of test cases
which is sensitive to any small syntactic change to
the structure of a program.

Sanjai [61] presented a method for automatically
generating test cases to structural coverage criteria.
He showed how, given any software development
artifact that can be represented as a finite state
model, a model checker can be used to generate
complete test cases that provide a predefined
coverage of that artifact. He provided a formal
framework that is: (a) suitable for defining their
test-case generation approach and (b) easily used to
capture finite state representations of software
artifacts such as program code, software
specifications, and requirements models. He
showed how common structural coverage criteria
can be formalized in their framework and expressed
as temporal logic formulae used to challenge a
model checker to find test cases. Finally, he
demonstrated how a model checker can be used to
generate test sequences for modified condition and
decision (MC/DC) coverage. Their approach to

generating test cases involves using the model-
checker as the core engine. A set of properties
called trap properties [8], is generated and the
model-checker is asked to verify the properties one
by one. These properties are constructed in such a
way that they fail for the given system
specification.

2.1.2 Sketch diagram-Based Techniques
Sketch diagram-based techniques are methods to

generate test cases from model diagrams like UML
Use Case diagram [11], [34], [35], [39] and UML
State diagrams [2], [4], [5], [20], [25], [30], [37],
[68]. The following paragraphs survey current
sketch diagram-based test case generation
techniques that have been proposed for traditional
and web-based application for a long time. A major
advantage of model-based V&V is that it can be
easily automated, saving time and resources. Other
advantages are shifting the testing activities to an
earlier part of the software development process
and generating test cases that are independent of
any particular implementation of the design [11].
The following paragraphs describe examples of
existing specification-based techniques that have
been proposed since 2000.

Jim [34] presented how using use cases to
generate test cases can help launch the testing
process early in the development lifecycle and also
help with testing methodology. In a software
development project, use cases define system
software requirements. Use case development
begins early on, so real use cases for key product
functionality are available in early iterations.
According to the Rational Unified Process (RUP), a
use case is used to fully describe a sequence of
actions performed by a system to provide an
observable result of value to a person or another
system using the product under development. Use
cases tell the customer what to expect, the
developer what to code, the technical writer what to
document, and the tester what to test. He proposed
three-step process to generate test cases from a fully
detailed use case: (a) for each use case, generate a
full set of use-case scenarios (b) for each scenario,
identify at least one test case and the conditions that
will make it execute and (c) for each test case,
identify the data values with which to test.

Johannes [35] raised the practical problems in
software testing as follows: (a) lack of
planning/time and cost pressure, (b) lack of test
documentation, (c) lack of tool support, (d) formal
language/specific testing languages required, (e)
lack of measures, measurements and data to

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

33

quantify testing and evaluate test quality and (f)
insufficient test quality. Their proposed approach to
resolve the above problems is to derive test cases
from scenarios / UML use cases and state diagrams.
In their work, the generation of test cases is done in
three stages: (a) preliminary test case and test
preparation during scenario creation (b) test case
generation from Statechart and dependency charts
and (c) test set refinement by application dependent
strategies (intuitive, experience-based testing).

Manish [39] were interested in testing web based
applications. Web based applications are of
growing complexity and it is a serious business to
test them correctly. They focused on black box
testing which enables the software testing engineers
to derive sets of input conditions that will fully
exercise all functional requirements. They believed
that black box testing is more generally suitable and
more necessary for web applications than other
types of application. Furthermore, they proposed
four steps to generate test cases, based on
Heumann’s four-steps [34], as follows: (a) prioritize
use cases based on the requirement traceability
matrix (b) generate tentatively sufficient use cases
and test scenarios (c) for each scenario, identify at
least one test case and the conditions and (d) for
each test case, identify test data values. They also
presented that the test cases contains: a set of test
inputs, execution conditions and expected results
developed for a particular objective.

Avik [5] described a new model based testing
technique developed to identify critical domain
requirements. The new technique is based on
modeling the system under test using a strongly
typed domain specific language (DSL). In the new
technique, information about domain specific
requirements of an application are captured
automatically by exploiting properties of the DSL
and are subsequently introduced in the test model.
The new technique is applied to generate test cases
for the applications interfacing with relational
databases and the example DSL. Test suites
generated using the new techniques are enriched
with tests addressing domain specific implicit
requirements.

Valdivino [69] focused on test sequence
generation from a specification of a reactive system,
space application software, in Statecharts [24] and
the use of PerformCharts [70]. In order to adapt
PerformCharts to generate test sequences, it has
been associated to a test case generation method,
switch cover, implemented within the Condado tool
[3]. Condado is a test case generation tool for FSM.
The algorithm implemented in Condado is known

as sequence of “de Bruijn”. The steps in the
algorithm are: (a) a dual graph is created from the
original one, by converting arcs into nodes (b) by
considering all nodes in the original graph, where
there is an arc arriving and another arc leaving, an
arc is created in the dual graph (c) the dual graph is
transformed into a “Eulerized” graph by balancing
the polarity of the nodes and (d) finally, the nodes
are traversed registering those that are visited.

2.1.3 Source Code-Based Techniques
Source code-based techniques generally use

control flow information to identify a set of paths to
be covered and generate appropriate test cases for
these paths. The control flow graph can be derived
from source code. The result is a set of test cases
with the following format: a) test case ID b) test
data c) test sequence (also known as test steps) d)
expected result e) actual result and f) pass / fail
status. The following paragraphs describe the
source code-based techniques that have been
proposed since 1999.

Sami [59] presented a novel approach to
automated test case generation. Several approaches
have been proposed for test case generation, mainly
random, source code-based, goal-oriented and
intelligent approaches [58]. Random techniques
determine test cases based on assumptions
concerning fault distribution (e.g. [1]). Source code-
based techniques generally use control flow
information to identify a set of paths to be covered
and generate appropriate test cases for these paths.
These techniques can further be classified as static
or dynamic. Static techniques are often based on
symbolic execution e.g. [18], whereas dynamic
techniques obtain the necessary data by executing
the program under test e.g. [12]. Goal-oriented
techniques identify test cases covering a selected
goal such as a statement or branch, irrespective of
the path taken e.g. [58]. Intelligent techniques of
automated test case generation rely on complex
computations to identify test cases e.g. [47].
Another classification of automated test case
generation techniques can be found in [47]. Their
algorithm proposed in this article can be classified
as a dynamic path-oriented one. Its basic idea is
similar to that in [12]. The path to be covered is
considered step-by-step, i.e. the goal of covering a
path is divided into sub-goals and test cases are then
searched to fulfill them. The search process,
however, differs substantially. In Bogdan’s work
[12], the search process is conducted according to a
specific error function. In their approach, test cases
are determined using binary search, which requires

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

34

certain assumptions but allows efficient test case
generation.

David [19] proposed an activity oriented
approach. Their approach is one possible approach
to test web applications; it is a black-box test based
on user interactions with the web application. As
web applications become more sophisticated, the
functionalities of web pages have become more
intricate, convoluted and loaded with links, buttons,
and multiple forms. Manual testing of such web
applications, though unavoidable, is grueling and
often not reliable. Hence it is preferable to develop
automated tests that can expose failures and
deviations from intended behavior. The user
interactions may be as simple as clicking a button
or as complicated as filling several forms to
accomplish a task. Such likely user interactions are
identified, analyzed, and defined to build an activity
oriented testing model. This test model can be
applied to functional testing and load testing. It can
also be used for data building (populating the
application with data) for the purpose of manual
testing and intermediate client evaluations. An
activity test program utilizes the test model suitably
for the above mentioned concerns and generates a
test report. A test report comprises a list of tests and
statuses, which is one of passed, failed or
unreachable.

2.2 Test Data Generation Techniques

Ian [29] included a test data generation process,
known as “preparing test data”, is one of the
important activities in the software testing process.
Phil [52] stated that a test data generation technique
is one of the interesting research topics with many
available research issues. This section discusses
existing techniques to prepare and generate a set of
input and output data, along with limitations. There
are many researchers who studied and proposed
effective test data methods, such Hayes’s works
[32], Grindal’s work [40], Richard’s works [57],
Sasa’s techniques [62] and Sara’s case studies [63].

This section introduces a new “2S” classification
of test data generation techniques, as follows: (a)
specification-based techniques and (b) source code-
based techniques (also known as path-oriented test
data techniques). Each group can be described in
details as follows.

2.2.1 Specification-Based Techniques
Specification-based techniques are methods to

generate test data from specification documents

such as state-based specification [6], [33], [55],
[56], object constraint language (OCL) and test
specification language (TSL) [43]. Eventually,
those techniques generate a set of test data with the
following format: (a) test case ID (b) input data and
(c) output data. The following paragraphs survey
existing specification-based test data generation
techniques studied since 1999.

Aynur [6], [33] defined the following definition
in their work: (a) test requirements are specific
things that must be satisfied or covered during
testing and (b) test specifications are specific
descriptions of test cases including test data, often
associated with test requirements or criteria. They
presented a test data generation method, based on
Offut’s state-based technique, to prepare and
generate a set of data from UML state charts
diagram. They proposed to use the TSL language to
describe all elements of a test case, like input,
output and pre-condition. However, they
concentrate on the following elements: (a) pre-
condition values (b) verify values (c) exit command
and (d) expected output data. Generally, those
elements are directly derived from triggering events
and pre-conditions in the state chart diagram. The
pre-condition values include all required input data.
Any input data, which are required to show the
results, are the verify values. The exit commands
are depended on the system or program being
tested. The expected output data are created from
the after-values of the triggering events and post-
conditions.

Jeff [33] presented a method to generate a set of
input data from state-based specifications. They
proposed general criteria for preparing data. The
criteria include the following techniques: (a)
transition predicates (b) transitions (c) pairs of
transitions and (d) sequences of transitions. These
techniques provide coverage criteria that are based
on the specifications, and are made up of several
parts, including test prefixes that contain inputs
necessary to put the software into the appropriate
state for the test values.

However, there are a few researchers who
investigated in generating a set of data for the
object-oriented modeling. For example, Mohammed
Benattou, Jean-Michel Bruel [43] presented
partition analysis concept, on which the approach
for generating test data is based. Also, they used the
OCL language to describe and generate test data. In
fact, the OCL language is used in the UML
semantics document to specify the well-formed
rules of the UML meta-model. Also, the OCL
language is a pure expression language and can be

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

35

used to specify invariants, pre-condition, post-
condition, and other kind of constraint in the
specification.

In addition, the literature review shows that there
are no existing test data techniques used for a web-
based application or complex systems, like real-
time system or embedded system.

2.2.2 Source Code-Based Techniques
Source code-based techniques, known as path-

oriented based techniques, are techniques to
generate and prepare test data from control flow
graph. The control flow graph can be directly
derived from source or binary code. The literature
review shows that there are a few researchers who
concentrate on preparing and generating both of
input and output data by using source or binary
code. The following paragraphs present shortly a
description of existing test data generation
techniques.

Bogdan [12] presented an alternative approach of
test data generation, referred to as a dynamic
approach of test data generation, which is based on
actual execution of a program under test, dynamic
data flow analysis, and function minimization
methods. Test data are developed using actual
values of input variables. When the program is
executed on some input data, the program execution
flow is monitored. If, during program execution, an
undesirable execution flow at some branch is
observed then a real-valued function is associated
with this branch. This function is positive when a
branch predicate is false and negative when the
branch predicate is true. Function minimization
search algorithms are used to automatically locate
values of input variables for which the function
becomes negative. In addition, dynamic data flow
analysis is used to determine input variables which
are responsible for the undesirable program
behavior, leading to significant speed-up of the
search process. Bogdan mentioned that arrays and
dynamic data structures can be handled precisely
because during program execution all variables
values, including array indexes and pointers, are
known; as a result, the effectiveness of the process
of test data generation can be significantly
improved.

Additionally, Bogdan [13] presented an effective
test data generation technique by using the control
flow graph, particularly used in the regression
testing phase. The technique focuses on
automatically generate test data for a modified
program or source code. It utilizes the original

version of the program in the test data generation
process. Specifically, it attempts to automatically
generate an input data on which the original
program and its modified version yield a different
result (or also known as output).

Jane [31] presented the input validation testing
(IVT) technique to prepare test data. The IVT
technique has been developed to address the
problem of statically analyzing input command
syntax as defined in the English textual interface
and requirements specifications. The technique does
not require design or code. Thus, it can be applied
early in the lifecycle. It focuses on the specified
behavior of the system and uses a control flow
graph. It contains four major aspects: (a) a way to
specify the format of requirement specifications, (b)
an approach to analyze an input command (c) a
method to generate valid test data and (d) a
technique to prepare an error test data

In addition, the literature review shows that there
are a few researchers who studied in the test data
generation techniques for web-based applications.
For example, Chien-Hung Liu [17] extended
traditional data flow testing techniques to generate a
set of data for web applications.

2.3 Test Sequence Generation Techniques

This section discusses test sequence generation
techniques that are used to generate a set of test
steps or procedures in the test cases. The literature
review reveals that there are several researchers
who proposed effective methods to prepare and
identify test sequence in the test case, for example,
Stefania’s work [64], Dalal’s study [67] and Eric
[73]. Also, this section introduces a new “2S”
classification of existing test sequence generation
techniques, as follows: (a) specification-based
techniques and (b) sketch diagram-based techniques
(also known as model-based test sequence
techniques). Each group can be described shortly as
follows.

2.3.1 Specification-Based Techniques
Specification-based test sequence generation

techniques are methods to generate test sequence or
test steps from requirement specifications. The
literature review shows that the test sequence or test
steps are one of the elements in the test cases. It
also shows that there is only one researcher who
studied these techniques.

Sanjai [60] proposed an effective test sequence
generation technique to prepare and generate a set

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

36

of sequences used in the test case. They developed
the generation method by using the hypothesis,
which model checkers can be effectively used to
automatically generate test steps or sequence.

2.3.2 Sketch Diagram-Based Techniques
Sketch diagram-based test sequence generation

techniques are methods to derive and generate test
sequences from diagrams. The literature review
shows that UML diagrams are typically used to
prepare a set of sequence or test steps. The basic
UML diagrams that researchers have studied and
used are: (a) UML activity diagram (b) UML state
chart diagram and (c) UML sequence diagram.

The following shortly describes examples of
existing sketch diagram-based test sequence
generation techniques.

Hyungchoul [28] proposed a method to generate
a test sequence, by using the UML activity diagram.
The method aims to minimize the number of test
steps generated while deriving all practically useful
tests. It consists of three main processes: (a) build
an input / output activity diagram (also known as
IOAD) (b) transforms to a directed graph, from
which test steps for the initial activity diagram are
derived and (c) generate a set of test sequence.

Wang [72] proposed an approach to generate test
sequences directly from the UML activity diagram
using a gray-box method, where the design is
reused to avoid the cost of test model creation. The
paper shows that test scenarios are directly derived
from the activity diagram modeling an operation.
Therefore, all the information, such as test
sequences or test data, is extracted from each test
scenario. At last, the possible values of all the
input/output parameters could be generated by
applying a category-partition method, and test case
could be systematically generated to find the
inconsistency between the implementation and the
design. Gray-box testing method, in the designer’s
viewpoint, generates test sequences based on high
level design models which represent the expected
structure and behavior of the software under test
(SUT). The design specifications are the
intermediate artifact between requirement
specification and final code. Those specifications
preserved the essential information from the
requirement, and are the basis of the code
implementation. Gray box method combines the
white box method and the black box method. It
extends the logical coverage criteria of white box
method and finds all the possible paths from the
design model which describes the expected

behavior of an operation. Then it generates test
sequences which can satisfy the path conditions by
black box method. It can find problems which used
to be ignored by both black and white method.
Gray-box method could systematically generate test
sequences directly from the activity diagrams which
can be used to test the system at code level.

Farooq [68] presented an effective control-flow
based test sequence generation technique using the
UML activity diagram, version 2.0, which is a
behavioral type of UML diagram. They proposed a
technique that enables the automatic generation of
test sequences according to a given coverage
criteria from the execution of the Colored Petri Nets
model. There are three steps, which are: (a) convert
the information from UML activity diagram into
control-flow graph, in the format of Colored Petri
Net (b) define coverage criteria from the execution
of the Petri Net model and (c) generate a test
sequence by using a random walk algorithm, based
on the probability.

Samuel [54] proposed an automatic test sequence
generation method that derived test sequence from
state machine diagrams. The state machine
diagrams are one of the extended UML state chart
diagram. They proposed to have three main steps in
the generation algorithm, which are: (a) to select a
predicate on a transition from the state diagram (b)
to transform to the function and (c) generate a test
sequence based on the transformed function.

Samuel [52] presented an approach to generate
test sequences from the UML sequence diagrams,
version 2.0. UML Sequence diagrams are one of the
most widely used UML models in the software
industry. They found that existing test sequence
generation techniques do not encompass certain
important features of the UML sequence diagrams,
version 2.0. Thus, they proposed an effective
method to generate a set of test steps by considering
many key features of UML sequence diagram,
version 2.0, like loop, alt and break feature.

3. RESEARCH CHALLENGES

This section discusses the details of research
issues motivated this study. The literature reviews
show that there are available rooms for researchers
to develop and enhance the ability to generate a set
of test case, test sequences and test data from sketch
diagrams, such as existing techniques ignores some
important information derived from those diagrams,
some techniques can’t generate both of test data and
test sequence from the diagrams and there are
limitations for some techniques for an commercial

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

37

systems, like real-time system, concurrent system
and financial banking system.

The research issues that motivated this paper are:
(a) existing techniques consumes a great deal of
effort, time and cost to automatically generate test
cases from extended state chart diagram (b) existing
techniques generate a significant number of test
cases with less coverage and (c) non-effective test
case generation methods for state or node coverage.

The literature review reveals that existing sketch
diagram test sequence generation techniques
consumes a great amount of time and cost. Some
techniques indirectly derive and generate test
sequences from diagrams, which it takes longer
time to transform those diagrams and design tests
respectively. This is one of the interesting
outstanding research issues for researchers who are
interested in test sequence generation methods.

Also, the study shows that existing methods
typically design and generate a large set of test
cases. However, even if those methods generate a
greater size of tests, but those tests do not maximize
test coverage. Some methods prepare and generate a
significant number of tests with less test coverage.
Consequently, it may cause a lot of known defects.

Finally, there are available rooms to improve the
ability to generate test sequence and maximize state
or node coverage. Researchers should develop a test
sequence methods that minimize a size of tests,
time and cost, while preserving test coverage.

4. PROPOSED METHODS

This section discussed a proposed technique that
prepare and generate both of test data and test
sequence from a state diagram. The state diagram is
a type of diagrams used in computer science and
related fields to describe the behavior of systems.
State diagram requires that the system described is
composed of a finite number of states; sometimes,
this is indeed the case, while at other times this is a
reasonable abstraction. There are many forms of
state diagrams, which differ slightly and have
different semantics. Many practitioners have
proposed several types of those diagrams, such as
Adam Petri [15], Wagner [71] and Mealy [41].
Also, they have applied these diagrams into the
commercial systems. The most widely used
diagrams in those systems are extended state
diagrams. Thus, this paper proposes to
automatically prepare and generate tests from those
extended state diagrams, called “TGfMMD”
method. Also, the literature reviews reveal that the
most famous and widely used extended state

diagrams is a “Mealy Machine” diagram. The
Mealy Machine diagram is extended from the UML
state diagram. Both of these diagrams are used to
describe the behavior of systems but differ in the
sense of Merly Machine diagram has input and
output while normal state diagram doesn’t have.

The following shows the flow-chart diagram of
the proposed method. The method is developed for
directly generating tests from Merly Machine
diagram.

Figure 1. A Flow Chart of Test Case Generation Method
From the above figure, the exact procedures can

be described shortly as follows:

The procedure begins with extracting all required
information entered in the extended state diagram.

Let S = {s1, s2, …, sn} for S to be a set of states,
I = {i1, i2, …, in} for I to be a set of input data, O =
{o1, o2, …, on} for O to be a set of output data, T =
{tr1, tr2, …, trn} for T to be a set of transitions or
edges.

In this step, there is a verification process to
ensure that all required information in the diagram
is completed, like state id, state information, input,
output and conditions. If the information is not
available and completed, then the process will
return false to allow re-designing the diagram and
filling more information. The re-design work is out
of this paper’s scope. Otherwise, the process will go
to next step.

In this step, the process generates a set of test
case, test data and test sequence and Wang’s
algorithm [72]. Wang’s algorithm is well-known
and widely used in the industry. His algorithm is
used to derive test cases from state diagram. The
TGfMMD method is built based on his algorithm. It
derives and generates test cases from the following
sets: (S, I, O and T), as mentioned in the first step.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

38

Let TS = {tc1, tc2, …, tcn} for TS to be a
collection of test cases. Thus, test case can be
defined as follows: TC = {S, I, O, TR} where S is a
set of stages, I is a set of input, O is a set of output
and TR is a set of transitions.

Although Wang’s algorithm is widely used, but it
doest not cover other critical attributes, like defect
id, dependency and automated test case indicator.
Thus, the TGfMMD method proposes to manually
input those values.

The last step proposes to minimize a size of
generated test cases while maximizing test coverage
in the set of test cases. In order to generate an
effective size of generated test case, this step
contains two sub-tasks, which are: (a) calculate
node coverage for each test case and (b) select
effective test cases.

Let NodeCov (tc) = {t1, t2, …, tn} for
NodeCov(tc) to be a set of test cases that tc is
covered by t1, t2, …, tn. Therefore, if a number of
set tc is zero, then tc is included in the effective set
of test cases.

The following presents an example of TGfMMD
method that generates and derives a set of test cases
from a mealy machine diagram.

Figure 2. An Example of Mealy Machine Diagram
First, the TGfMMD method aims to extract all

required information from the above diagram. Thus,
the result can be:

 S = {s1, s2, s3, s4, s5, s6, s7} where S is a set
of stage and sn is a stage or node in the diagram.

 I = {i1, i2, i3, i4, i5, i6, i7} where I is a set of
input data and in is an input value.

 O = {o1, o2, o3, o4, o5, o6, o7} where O is a
set of output data and on is an output value.

 T = {tr1, tr2, tr3, tr4, tr5, tr6, tr7} where T is
a set of transitions or edges and trn is a transition
between source and destination stage.

Each transition contains both of source and
destination stage or node, as follows: trn = {s1, s2}
where s1 is a source of stage and s2 is a destination
of stage. Thus, each transition can be extracted as
follows:

tr1 = {s1, s2}

tr2 = {s1, s3}

tr3 = {s2, s4}

tr4 = {s2, s5}

tr5 = {s3, s2}

tr6 = {s3, s6}

tr7 = {s3, s7}

Second, this step is to verify the completion of
extracted information, derived from the diagram.
This step assumes that the diagram and information
are complete in this example.

Third, the TGfMMD method is applying Wang’s
algorithm, in [72], to derive and generate test cases.
Therefore, all tests can be generated as follows:

TC1 = {s1, s2, i1, o1, tr1}

TC2 = {s1, s3, i2, o2, tr2}

TC3 = {s1, s2, s4, i1, i4, o1, o4, tr1, tr3}

TC4 = {s1, s2, s5, i1, i5, o1, o5, tr1, tr4}

TC5 = {s1, s3, s2, s4, i2, i3, i4, o2, o3, o4, tr2, tr5, tr3}

TC6 = {s1, s3, s2, s5, i2, i3, i5, o2, o3, o5, tr2, tr5, tr4}

TC7 = {s1, s3, s6, i2, i6, o2, o6, tr2, tr6}

TC8 = {s1, s3, s7, i2, i7, o2, o7, tr2, tr7}

TC9 = {s2, s4, i4, o4, tr3}

TC10 = {s2, s5, i5, o5, tr4}

TC11 = {s3, s2, i3, o3, tr5}

TC12 = {s3, s2, s4, i3, i4, o3, o4, tr5, tr3}

TC13 = {s3, s2, s5, i3, i5, o3, o5, tr5, tr4}

TC14 = {s3, s6, i6, o6, tr6}

TC15 = {s3, s7, i7, o7, tr7}

The last step is to minimize a set of test cases by
calculating node coverage for each test case and
determine which test cases are covered by other test
cases.

NodeCov (TC1) = {TC3, TC4, TC5, TC6}

NodeCov (TC2) = {TC5, TC6, TC7, TC8}

NodeCov (TC3) = {TC5}

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

39

NodeCov (TC4) = {TC6}

NodeCov (TC5) = {}

NodeCov (TC6) = {}

NodeCov (TC7) = {}

NodeCov (TC8) = {}

NodeCov (TC9) = {TC3, TC5, TC12}

NodeCov (TC10) = {TC4, TC6}

NodeCov (TC11) = {TC5, TC6, TC12, TC13}

NodeCov (TC12) = {TC5}

NodeCov (TC13) = {TC6}

NodeCov (TC14) = {TC7}

NodeCov (TC15) = {TC8}

Therefore, the following test cases should be
ignored during the execution time: TC1, TC2, TC3,
TC4, TC9, TC10, TC11, TC12, TC13, TC14 and TC15.
The remaining effective set of test cases is {TC5,
TC6, TC7, TC8}.

5. EVALUATION

This section describes an experiment design,
measurement metrics and results in order to
determine the most recommended test case
generation derived from the extended state chart
diagram.

5.1 Experiment Design

A comparative evaluation method has proposed
in this experiment design. The high-level overview
of this experiment design can be found as follows:

Figure 3. Experiment for Test Case Generation.
From the above figure, the following lists

procedures of this experiment:

1. Prepare Experiment Data. This step is
designs to generate 7 states along with 7 input data
from Mealy Machine diagram. The literature review
[33], [53], [54], [73] shows that other researchers

use a simple diagram to evaluate their generation
methods. They do not use large complex diagram
used in the commercial industry, as their case study
or evaluation method.

2. Generate Test Case. A comparative
evaluation method has been made among the
proposed test case algorithm, which are: Dehla’s
algorithm [21], Samuel’s technique [54] and
Santiago’s method [69].

3. Evaluate Results. In this step, graph and
discussion have been proposed to evaluate results
for the previous techniques.

5.2 Measurement Metrics

The section lists the measurement metrics used in
the experiment.

1. Size of Test Case: This is a total number of
generated test cases by each test case generation
methods described in the previous section. This
experiment proposes to use the following formula
to compute the percentage of size:

% Size = (# Size / # of Total Size)*100

Where:

• % Size is a percentage of a number of test
cases generated by each method.

• # of Size is a number of test cases that each
method generates.

• # of Total Size is a maximum number of test
cases in the experiment, which is assigned to
100.

2. Percentage of Node Coverage: This is an
indicator to identify a number of nodes or states that
a set of test cases cover in the state chart diagram
[54]. Every node in the state diagram must be tested
at least one time [33], [53], [54], [73]. Thus, each
method is expected to generate test cases that cover
all nodes in the diagram. This experiment proposes
to use the following formula to compute the
percentage of node coverage in the diagram.

% NC = (# of Node / # of Total)*100

Where:

• % NC is a percentage of node coverage.

• # of Node is a number of nodes or states
covered in the state chart diagram.

• # of Total is a total number of nodes in the
diagram.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

40

3. Total Time: This is a total number of times
running the generation methods in the experiment.
This metric is related to time used during testing
development phase (e.g. design test scenario and
produce test case). Therefore, less time is desirable.
It can be calculated as the following formula:

Total = Preparation Time + Compile Time +
Running Time

Where:

• Total is a total number of times consuming
in running generation methods.

• Preparation time is a total number of times
consuming in preparing before generating
test cases.

• Compile time is a time to compile source
code / binary code in order to execute
program.

• Running time is a total time to run the
program under this experiment.

Also, the following represents a formula that
calculates the total time in the format of percentage.

% Time = (# Total / # of Maximum Total
Time)*100

Where:

• % Time is a percentage of total time.

• # of Total is a total time consumed during
the generation process.

• # of Maximum Total Time is a maximum
time in the experiment, which is assigned to
100 seconds.

5.3 Results and Discussion

This section discusses an evaluation result of the
above experiment. This section presents a graph
that compares the TGfMMD method to other four
existing test generation techniques, based on the
following measurements: (a) size of test cases (b)
percentage of node coverage and (c) total time.
Those four techniques are: (a) Sinha’s technique (b)
Santiago’s method (c) Reza’s algorithm and (d)
Shams’s method. There are two dimensions in the
following graph: (a) horizontal and (b) vertical axis.
The horizontal represents three measurements
whereas the vertical axis represents the percentage
value.

Figure 4. An Evaluation Result of Generation Methods.
The above graph shows that TGfMMD method

generates the smallest size of test cases whereas
Dehla’s method generates the biggest size of test
cases. Samuel’s approach has the least percentage
of node coverage comparing other techniques.
Other three techniques cover 100% all nodes or
state in the state chart diagram. TGfMMD method
consumes a minimum of total time by 60%.
Santiago’s approach consumes total time greater
than TGfMMD by 30%.

The following table ranks test case generation
techniques used in the experiments, based on the
above measurements, by 1 is the first, 2 is the
second, 3 is the third and 4 is the last.

Table 1. Test Case Generation Techniques Ranking Table

Methods Size
of

Test
Cases

Percentage
of Node

Coverage

Total Time

Dehla’s
Method

4 1 3

Samuel’s
Technique

3 4 2

Santiago’s
Approach

2 1 4

TGfMMD
Method

1 1 1

In the conclusion, the TGfMMD method is the

most recommended method to generate the smallest
size of test cases with the minimum total time and
cover 100% all nodes in the state diagram.

6. CONCLUSION

With the existing techniques since 1990, this
paper introduces a new “3S” classification of test
case generation techniques, which are:
specification-based technique, sketch-diagram-
based technique and source code-based technique.
First, the specification-based technique is a method

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

41

to generate a set of test cases from specification
documents such as formal requirement
specification. Second, the sketch diagram-based
technique, also known as model-based technique in
other papers, is method to generate test cases from
model diagrams like UML Use Case diagram [34],
[35], [39], UML Sequence diagram [11] and UML
State diagram [2], [4], [5], [20], [25], [30], [37],
[68]. Last, the source code-based technique, also
known as path-oriented in other papers, generally
uses control flow information to identify a set of
paths to be covered and generated the appropriate
tests for the paths. Also, this paper introduces a new
“2S” classification of existing test data generation
techniques, researched since 1990, as follows:
specification-based technique and source code-
based technique. First, the specification-based
technique is an approach to generate a set of input
and output data, along with pre-condition, derived
from the requirement specifications. Second, the
source code-based technique aims to design test
data by using control flow graph and source code.

Moreover, this paper proposes a new “2S”
classification of existing test sequence generation
techniques, which are: specification-based
technique and sketch diagram-based technique. The
specification-based technique is a method to
prepare and design a set of test steps in the test
case, derived from the requirement or design
specifications. The sketch diagram-based technique
is an approach to generate a test sequence from
UML diagrams, such as UML activity diagram,
UML state chart diagram and UML sequence
diagram. According to the above comprehensive
literature review, this paper proposes a new test
case generation process, called “2D-4A-4D”. The
new procedure contains two main processes: (a)
define and (b) design. The first process is composed
of four sub-processes, called “4A”, which are: (a)
analyze requirement specification (b) analyze
designed diagrams (c) analyze source code and (d)
analyze type of testing. The second process is also
composed of four sub-processes, called “4D”,
which are: (a) design test scenario (b) design input
data (c) design test sequence and (d) design other
elements in the set of test case.

There are many research challenges and gaps in
the test case generation area. Those challenges and
gaps can give the research direction in this field.
For example, the existing test case generation
techniques generally ignore the size of test cases.
As a result, it will take a longer time and effort to
execute the set of test cases. Another example is
that most test case generation are inefficient test

case generation techniques. Those techniques do
not concern the limitation, such as time, cost and
effort. However, the research issues that motivated
this paper are: (a) existing techniques consumes a
great deal of effort, time and cost to automatically
generate test cases from extended state chart
diagram (b) existing techniques generate a
significant number of test cases with less coverage
and (c) inefficient test case generation methods for
node or path coverage.

This paper aims to resolve the following research
issues: (a) minimize size of test cases and test data
derived from extended state chart diagram (b)
maximize a number of nodes coverage and (c)
minimize total time of test case generation from
diagrams. This paper proposes an effective method
to prepare and generate both of test cases and test
data, called “TGfMMD” method. The TGfMMD
method is developed to verify the state chart
diagram before generation and generate both of test
cases and test data from extended state chart
diagram. Moreover, this paper proposes to compare
to other three test case generation techniques,
which are: Dehla’s work, Samuels’ method and
Santiago’s technique. As a result, this study found
that TGfMMD method is the best to generate the
smallest size of test cases with the minimum total
time and cover 100% all nodes in the state diagram.
Finally, this paper guides the following future
works: (a) implement the TGfMMD method in the
commercial industry (b) evaluate the proposed
method with larger set of states or more complex
state chart diagram and (c) improve the ability to
verify the state chart diagram in the TGfMMD
diagram.

REFRENCES:

[1] Alberto Avritzer and Elaine J. Weyuker, “The

automatic generation of load test suites and the
assessment of the resulting software”, IEEE
Transactions on Software Engineering,
21(9):705–716, 1995.

[2] Alessandra Cavarra, Charles Crichton, Jim
Davies, Alan Hartman, Thierry Jeron and
Laurent Mounier, “Using UML for Automatic
Test Generation”, Oxford University
Computing Laboratory, Tools and Algorithms
for the Construction and Analysis of Systems,
TACAS'2000, 2000.

[3] Amaral, “A.S.M.S. Test case generation of
systems specified in Statecharts. M.S. thesis –

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

42

Laboratory of Computing and Applied
Mathematics”, INPE, Brazil, 2006.

[4] Annelises A. Andrews, Jeff Offutt and Roger
T. Alexander, “Testing Web Applications.
Software and Systems Modeling”, 2004.

[5] Avik Sinha, Ph.D and Dr. Carol S. Smidts,
“Domain Specific Test Case Generation Using
Higher Ordered Typed Languages fro
Specification”, Ph. D. Dissertation, 2005.

[6] Aynur Abdurazik and Jeff Offutt, “Generating
Test Cases from UML Specifications”, 1999.

[7] A. Bertolino, “Software Testing Research and
Practice”, 10th International Workshop on
Abstract State Machines (ASM'2003),
Taormina, Italy, 2003.

[8] A. Gargantini and C. Heitmeyer, “Using model
checking to generate tests from requirements
specifications”, Software Engineering Notes,
24(6):146–162, 1999.

[9] A. Jefferson Offutt, Yiwei Xiong and Shaoying
Liu, “Criteria for Generating Specification-
based Tests”, 2007.

[10] A. Jefferson Offutt, Yiwei Xiong and Shaoying
Liu, “Criteria for Generating Specification-
based Tests”, 1999.

[11] A.Z. Javed, P.A. Strooper and G.N. Watson,
“Automated Generation of Test Cases Using
Model-Driven Architecture”, Second
International Workshop on Automation of
Software Test (AST’07), 2007.

[12] Bogdan Korel, “Automated Software Test Data
Generation”, IEEE Transaction on Software
Engineering, 1990.

[13] Bogdan Korel and Ali M. Al-Yami,
“Automated Regression Test Generation”,
ISSTA98, 1998.

[14] B. Beizer, “Software Testing Techniques”, Van
Nostrand Reinhold, Inc, New York NY, 2nd
edition. ISBN 0-442-20672-0, 1990.

[15] Carl Adam Petri and Wolfgang Reisig, “Petri
net”, Scholarpedia, 2008.

[16] Cem Kaner, “A Course in Black Box Software
Testing”, 2004.

[17] Chien-Hung Liu, David C. Kung, Pei Hsia and
Chih-Tung Hsu, “Object-Based Data Flow
Testing of Web Applications”, Proceedings of
the First Asia Pacific Conference on Quality
Software (APAQS'00), pp. 7-16, Hong Kong,
China, 2000.

[18] C. Ramamoorthy, S. Ho, and W. Chen, “On the
automated generation of program test data”,
IEEE Transactions on Software Engineering,
SE-2(4):293–300, 1976.

[19] David A. Turner, Arokiya L.M. Joseph, Wonik
Choi and Jinseok Chae, “An Activity Oriented

Approach for Testing Web Applications”,
2008.

[20] David C. Kung, Chien-Hung Liu and Pei Hsia,
“An Object-Oriented Web Test Model for
Testing Web Applications”, In Proceedings of
the First Asia Pacific Conference on Quality
Software (APAQS’00), page 111, Los
Alamitos, CA, 2000.

[21] Dehla Sokenou, “Generating Test Sequences
from UML Sequence Diagrams and State
Diagrams”, 2003.

[22] E. Weyuker, T. Goradia, and A. Singh,
“Automatically generating test data from a
boolean specification”, IEEE Transactions on
Software Engineering, 20(5):353-363, 1994.

[23] Flippo Ricca and Paolo Tonella, “Analysis and
Testing of Web Applications”, Proc. of the
23rd International Conference on Software
Engineering, Toronto, Ontario, Canada. pp.25-
34, 2001.

[24] Harel, D., “Statecharts: a visual formalism for
complex system”, Science of Computer
Programming, v. 8, n., p. 231-274, 1987.

[25] Hassan Reza, Kirk Ogaard and Amarnath
Malge, “A Model Based Testing Technique to
Test Web Applications Using Statecharts”,
Fifth International Conference on Information
Technology, 2008.

[26] Hetzel, William C., “The Complete Guide to
Software Testing”, 2nd ed. Publication info:
Wellesley, Mass.: QED Information Sciences.
ISBN: 0894352423, 1988.

[27] Hung Tran, “Test Generation using Model
Checking”, Proceeding Conference on
Automated Verification, 2001.

[28] Hyungchoul Kim, Sungwon Kang, Jongmoon
Baik, Inyoung Ko, “Test Cases Generation
from UML Activity Diagrams”, Eighth ACIS
International Conference on Software
Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed
Computing, 2007.

[29] Ian Sommerville, “Software Engineering”, 6th
edition Section 20, 2000.

[30] Ibrahim K. El-Far and James A. Whittaker,
“Model-based Software Testing”, 2001.

[31] Jane Huffman Hayes and A. Jefferson Offutt,
“Increased Software Reliability through Input
Validation Analysis and Testing”, 1999.

[32] Jane Huffman Hayes and A. Jefferson Offutt,
“Input Validation Testing: A Requirements-
Driven, System Level, Early Lifecycle
Technique”, 2000.

[33] Jeff Offutt, Shaoying Liu, Aynur Abdurazik
and Paul Ammann, “Generating Test Data

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

43

from State-based Specifications”, ISE
Department, George Mason University, USA,
2003.

[34] Jim Heumann, “Generating Test Cases From
Use Cases”, Rational Software, 2001.

[35] Johannes Ryser and Martin Glinz, “SCENT: A
Method Employing Scenarios to
Systematically Derive Test Cases for System
Test”, 2000.

[36] John E. Bentley, “Software Testing
Fundamentals – Concepts, Roles and
Terminology”, Proceeding with SUGI30,
Wachovia Bank, Charlotte NC, 2005.

[37] Mahnaz Shams, Diwakar Krishnamurthy and
Behrouz Far, “A Model-Based Approach for
Testing the Performance of Web
Applications”, Proceedings of the Third
International Workshop on Software Quality
Assurance (SOQUA’06), 2006.

[38] Mani Prasad Kancherla, “Generating Test
Templates via Automated Theorem Proving”,
Technical Report, NASA Ames Research
Center, 1997.

[39] Manish Nilawar and Dr. Sergiu Dascalu, “A
UML-Based Approach for Testing Web
Applications”, Master of Science with major in
Computer Science, University of Nevada,
Reno, 2003.

[40] Mats Grindal, Jeff Offutt and Sten F. Andler,
“Combination Testing Strategies: A Survey”,
2004.

[41] Mealy, George H., “A Method for Synthesizing
Sequential Circuits”, Bell Systems Technical
Journal, September 1955.

[42] Miao Huaikou and Liu Ling, “A Test Class
Framework for Generating Test Cases from Z
Specifications”, 2000.

[43] Mohammed Benattou, Jean-Michel Bruel and
Nabil Hameurlain, “Generating Test Data from
OCL Specification”, 2002.

[44] Myers, Glenford J., “The art of software
testing”, Publication info: New York : Wiley.
ISBN: 0471043281, 1979.

[45] M. Blackburn and R. Busser, “T-VEC: A tool
for developing critical systems”, In
Proceedings of the 1996 Annual Conference on
Computer Assurance (COMPASS 96), pages
237-249, Gaithersburg MD. IEEE Computer
Society Press, 1996.

[46] M. Prasanna S.N. Sivanandam R.Venkatesan
R.Sundarrajan, “A Survey on Automatic Test
Case Generation”, Academic Open Internet
Journal, 2005.

[47] Nigel Tracey, John Clark, and Keith Mander,
“Automated program flaw finding using

simulated annealing”, In SIGSOFT
International Symposium on Software Testing
and Analysis (ISSTA), volume 23 of Software
Engineering Notes, pages 73–81. ACM Press,
1998.

[48] NIST, “The economic impacts of inadequate
infrastructure for software testing”, 2002.

[49] Pan, Jiantao, “Software Testing (18-849b
Dependable Embedded Systems)”, Electrical
and Computer Engineering Department,
Carnegie Mellon University, 1999.

[50] Percy Antonio, Pari Salas and Bernhard K.
Aichernig, “Automatic Test Case Generation
for OCL: a Mutation Approach”, 2005.

[51] Peter Frohlich and Johannes Link, “Automated
Test Case Generation from Dynamic Models”,
2000.

[52] Phil McMinn, “Search-based Software Test
Data Generation: A Survey”, 2004.

[53] Philip Samuel and Anju Teresa Joseph, “Test
Sequence Generation from UML Sequence
Diagrams”, Ninth ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking and
Parallel/Distributed Computing, 2008.

[54] P. Samuel, R. Mall and A.K. Bothra,
“Automatic Test Case Generation Using
Unified Modeling Language (UML) State
Diagrams”, IET Software, 2008.

[55] P. Stocks, “Applying Formal Methods to
Software Testing”, PhD thesis, the Univ. of
Queensland, Australia, 1993.

[56] P. Stocks and David Carrington, “A
Framework for Specification-Based Testing”,
IEEE Trans. on Software Engineering, V01.22,
No. 11, 1996.

[57] Richard A. DeMillo and A. Jefferson Offutt,
“Constraint-Based Automatic Test Data
Generation”, IEEE Transaction on Software
Engineering, 1991.

[58] Roy P. Pargas, Mary Jean Harrold, and Robert
R. Peck, “Test-data generation using genetic
algorithms”, Software Testing, Verification
and Reliability, 9(4):263– 282, 1999.

[59] Sami Beydeda and Volker Gruhn, “BINTEST
– binary search-based test case generation”, In
Computer Software and Applications
Conference (COMPSAC), IEEE Computer
Society Press, 2003.

[60] Sanjai Rayadurgam and Mats P. E. Heimdahl,
“Test-Sequence Generation from Formal
Requirement Models”, Proceedings of the 6th
IEEE International Symposium on High
Assurance Systems Engineering (HASE’01),
2001.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

44

[61] Sanjai Rayadurgam and Mats P.E. Heimdahl,
“Coverage Based Test-Case Generation using
Model Checkers”, 2001.

[62] Sasa Misailovic, Alekasandar Milicevic,
Sarfraz Khurshid and Darko Marinov,
“Generating Test Inputs for Fault-Tree
Analyzers using ImperativePredicates”,
Proceeding in Workshop on Advances and
Innovations in Systems Testing, 2007.

[63] Sara Sprenkle, Emily Gibson, Sreedevi
Sampath and Lori Pollock, “A Case Study of
Automatically Creating Test Suites from Web
Application Field Data”, TAV-WEB’06, 2006.

[64] Stefania Gnesi, Diego Latella and Mieke
Massink, “Formal Test-case Generation for
UML Statecharts”, Proceedings of the Ninth
IEEE International Conference on Engineering
Complex Computer Systems Navigating
Complexity in the e-Enginerring Age, 2004.

[65] Suet Chun Lee and Jeff Offutt, “Generating
Test Cases for XML-based Web Component
Interactions Using Mutation Analysis”, 2001.

[66] S.J. Cunning and J.W. Rozenblit, “Automatic
Test Case Generation from Requirements
Specifications for Real-time Embedded
Systems”, 1999.

[67] S.R. Dalal, A. Jain, N. Karunanithi, J.M.
Leaton, C.M. Lott, G.C. Patton and B.M.
Horowitz, “Model-Based Testing in Practice”,
Proceeding of ICSE’99, 1999.

[68] U. Farooq, C.P. Lam and H. Li, “Towards
Automated Test Sequence Generation”, 19th
Australian Conference on Software
Engineering, 2008.

[69] Valdivino Santiago, Ana Silvia Martins do
Amaral, N.L. Vijaykumar, Maria de Fatima,
Mattiello-Francisco, Eliane Martins and Odnei
Cuesta Lopes, “A Practical Approach for
Automated Test Case Generation using
Statecharts”, 2006.

[70] Vijaykumar, N. L.; Carvalho, S. V.;
Abdurahiman, V., “On proposing Statecharts to
specify performance models”, International
Transactions in Operational Research, 9, 321-
336, 2002.

[71] Wagner, F., “Modeling Software with Finite
State Machines: A Practical Approach”,
Auerbach Publications, 2006.

[72] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng,
Hu Jun, Li Xuandong and Zheng Guoliang,
“Generating Test Cases from UML Activity
Diagram based on Gray-Box Method”,
Proceedings of the 11th Asia-Pacific Software
Engineering Conference (APSEC’04), 2004.

[73] W. Eric Wong, Yu Lei and Xiao Ma,
“Effective Generation of Test Sequences for
Structural Testing of Concurrent Programs”,
Proceedings of the 10th IEEE International
Conference on Engineering of Complex
Computer Systems (ICECCS’05), 2005.

[74] W.T. Tsai, X. Wei, Y. Chen, R. Paul and B.
Xiao, “Swiss Cheese Test Case Generation for
Web Services Testing”, IEICE Transactions
(IEICET) 88-D(12):2691-2698, 2005.

[75] Xiaoping Jia and Hongming Liu, “Rigorous
and Automatic Testing of Web Applications”,
2002.

[76] Xiaoping Jia, Hongming Liu and Lizhang Qin,
“Formal Structured Specification for Web
Application Testing”, Proc. of the 2003 Midwest
Software Engineering Conference (MSEC'03),
Chicago, IL, USA, pp.88-97, 2003.

