
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

18

ON ANALYSING INTERACTIONS BETWEEN ASPECTS
AT REQUIREMENTS PHASE

1AMEL BOUBENDIR, 2ALLAOUA CHAOUI

1Asstt Prof., Department of Computer Science, University of Skikda, Algeria
2Assoc. Prof., Department of Computer Science, Faculty of Engineering, University Mentouri Constantine,

Algeria

ABSTRACT

Aspect Oriented software development (AOSD) is an emerging technology, that improve existing
paradigms of development, by providing explicit mean to model crosscutting concern (aspect). However,
the complexity of interactions among aspects and between aspects and base modules may reduce the value
of aspect-oriented separation of cross-cutting concerns. Aspects must be identified as early possible in the
life cycle. Interactions analysis, as well, is desirable to be done as early as possible in the life cycle. In this
paper we propose a technique during the requirement phase that allows the user to analyse interactions
between aspects, identify aspects interactions, detect and resolve conflicts between them based on the
search of Hamiltonians paths. The technique is generic since it exploits the dependencies generated by the
operators such as before, after, around and replace. It uses the specification of composition of aspects to
analyse aspects and produce rules of composition witch may be used to compose or guide the process of
composition. The technique is illustrated through examples.

Keywords: Aspects, Aspect oriented development, Requirement phase, Aspects Interactions.

1. INTRODUCTION

 Aspects are widely accepted as proprieties that
crosscut several components in a system. Aspect
Oriented Software Development (AOSD) is an
emerging technology that provides explicit mean to
model concern that tends to crosscut multiple
system components [1, 2].
 It is a challenging field of research. On the one
hand, the main problems have been defined and
addressed, and on the other hand, these problems
and theirs solutions have brought new ones.
In this context, the idea of aspects maintains the
reasoning about aspects through the software
development process [20]. And in order to do that,
the software engineer should be equipped with
techniques that provide means for systematic
identification, separation, representation,
composition of crosscutting concern (aspects) [20].
In addition, the software engineer must be equipped
with means and methods for identification and
analysis of interactions between aspects. He has
need to systematic detection and resolution of
potential conflicts between aspects throughout the

software development process, in order to
successfully reason about aspects and successfully
compose them.
 From the modularity, adaptability and
“evolvability” point of view, the separation of
aspects in the base modules reduces the dependency
between modules and improves modularity.
However, understanding the behaviour of a module
and verifying its correctness requires a global
overview and understanding of all modules and
aspects that might affect the module under
construction [11].
 The complexity of interactions among aspects
and between aspects and base modules may reduce
the value of aspect-oriented separation of cross-
cutting concerns. Some interactions may lead to the
expected behaviour while others are source of
unexpected inconsistencies [10].
 Thus, it is desirable to detect interactions and
potential inconsistencies, as early as possible in the
life cycle, preferably at the modelling level [10].
Generally, Aspect Oriented Requirement
Engineering (AORE) approaches claim that dealing

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

19

with aspect is useful for software development [12,
14].
Identifying and managing early aspects helps to
improve modularity in the requirements and
architecture design and to detect conflicting
concern early, when trades off can be resolved
more economically” [3].
 There are few works that explicitly cover the
problematic of aspects interactions. A large part of
this works are focused on analyse and verify
programs oriented aspects such as [22, 11].
In [21] Douance et al. propose a first solution to the
aspect interaction. Authors use a formal language
and syntactical analysis for detection of interaction
between set of aspects. They propose a framework
to resolve static conflict.
 In [11], Mehner et al. dealt with semantics
conflicts problems of the crosscutting concerns.
Trough their work, they explain the difficulty to
handle crosscutting concerns and their interactions.
The approach oriented aspects adopted is
Composition Filters. However, a number of
solutions have been proposed to deal with
conflicting situation during analysis phase such as
[8, 15, 10, 6]. In [8], Rachid et al. propose a
generic aspect oriented requirement [AORE) model
based on view point and XML. In this approach the
authors identify concerns and theirs relation ships.
They identify candidate aspects and define in
granular level of requirement the specification of
composition of each candidate aspect. The conflict
are detected and resolved after composed. For
resolving conflicts, the authors use a contribution
Matrix and attribute weight to conflicting aspects.
Also, in [15] Araujo et al. Present an approach to
handle crosscutting non functional concern at
requirement stage. The process passes by identify
functional and no functional concerns, identify
crosscutting concerns. Then, compose crosscutting
concern in UML models and detect and resolve
conflicts.
For dealing with conflicting situations, the authors
also, suggest first study the contribution from one
concern in relation to all others. If there are two or
more crosscutting concerns that contribute
negatively and influence the same concern, there is
a conflicting case the authors, too suggest made a
trade off with stakeholders and attribute priority
then compose them accordingly.
In [10], Mehner et al. have proposed an approach
for analysing interactions between crosscutting
concerns and potential inconsistencies at
requirement models. The analysis is performed with
graph transformation tool. For that, activities are
used to refine use case and then, the activities and

their composition are formalised by using theory of
graph transformation system.
 In [6], Brito et al. Propose an process to
compose crosscutting concern with functional
requirement; the main concepts behind this process
are those of Match point, conflicting aspects,
dominant aspect and composition rule [6]. A match
point is where one aspect or more are applied and it
is used to detect conflict. To resolve conflict we
need to identify dominant crosscutting concern with
higher priority. Finally the composition rule is
defined for one match point and the concerns are
composed accord ally.
 In this paper we propose an approach, which
allows the user to identify the interactions between
aspects, to detect and resolve the conflicts between
them at requirement analysis phase. The method
exploits the dependencies generated by the
operators such as before, after, around and replace.
 A second contribution of the paper consists of
the proposition of an approach to compose aspects
with the base modules using the search of
Hamiltonians paths. The approach proposed in this
paper is illustrated through examples.
 The remainder of this paper is organised as
follows. In section 2 we briefly present general
concept of aspects oriented development and the
main concepts of Aspect oriented requirement
engineering (AORE). In Section 3 we present our
contribution and explain the technique using an
example. In section 4 the algorithm of the proposed
technique is turn up on concrete example. Section 5
concludes the paper and presents some perspectives
of the work.

2. GENERAL CONCEPTS OF ASPECT
ORIENTED DEVELOPMENT

Separation of concerns is a concept that is at the
core of software engineering. It refers to the ability
to identify, encapsulate, and manipulate those parts
of software that are relevant to a particular concern
(concept, goal ,purpose, etc…) [9]. Traditional
approaches to software development such as object
oriented and structured methods have been created
with this principle. Each module (class,
procedure...) encapsulates certain concerns of
software system [17]. However, in a given problem
decomposition, certain concerns may be not
encapsulated within a modular unit (class,
procedure...) [12]. They are called crosscutting
concerns (Aspect) [1].

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

20

 3. OVERVIEW OF THE PROPOSED
TECHNIQUE

 The proposed technique is generic, since, it is
not depend on the way to identify aspects or
compose them. It exploits the dependencies
generated by the operators to reason on interaction
between aspects, it uses composition specification
of candidate aspects to achieve roles attribute to
analyse component. And supplies an outcome:
composition rules, which can be used and
implemented by author languages and techniques of
composition to successfully, compose aspects with
component base

Composition Rules

Composition spécification
Analysis

component

FIGURE1: ANALYSIS COMPONENT

 The composition specification of aspect
specifies its composition, i.e. where and how it will
be attached at join points. But, this specification
remains limited. Each candidate aspect encapsulates
information needed for its composition. It does not
know: with witch others aspects it will be attached
at the same join point. it is necessary to get further
specification, complete, all encompassing, that
organise aspects interactions affecting the same join
point: Composition Rules [6] . To reach this
objective, it is necessary to analyse the problem in
order to

 Satisfy the behaviour of any candidate aspects
that will be attached at the join point

 Satisfy the base behaviour (the join point
behaviour), detect potential interactions with
aspects, and reason about interactions by
resolving any detected conflict and satisfying
dependencies between aspects.

No

No yes

Generate initial
dependency graph

Generate transitive
closure

Get Hamiltonians paths

Existed
Hamiltonians paths

yes

Is there one
Hamiltonian path

Generate composition
Rule

Generate the
longest paths

Identify no
satisfied aspects

Identify
conflicted

Identify dependency
among conflicted
aspects

D
etect conflict: analyse

the longuest paths

Inserting identified
dependencies in
dependency graph

Reviewing fictive
dependencies

Generate composition
Rules

 FIGURE 2: Algorithm of analysis of
interactions for one join point

Similarly to [5,], this is the general strategy adopted
by the proposed technique. In figure2 the general
algorithm for analyse interaction in one join point
is shown.
The analysis activity includes the following tasks:

 Detecting interactions between aspects
 Detecting dependencies
 Detecting potentials conflicts
 Reasoning and resolving conflicts
 Generating composition rule

3.1/- Composition specification of aspect:

 It is the input of analysis component. As used in
[5], we use a template (table1) to specify
crosscutting concerns. The template encapsulates
the crosscut specification of an aspect and the
behaviour attached at composition (Advice) to a
join point. It describes the composition
specification for one aspect. This specification
follows the general concepts adopted in AOSD.
The proposed template is constructed based on the
approach proposed in [20].

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

21

Aspect::(Name: …. Code:…
Advice: ………

…

Affected
use case

Opera
tor

Affected
point
(optiona
l)

Precond
ition
(optiona
l)

Post
condition
(optional)

TABLE1: Template to specify crosscutting
concern (composition specification of aspect)

 The template is used to specify functional
crosscutting concern and non-functional concern
without deference. Affected use case specifies the
base concerns. And, the following operators are
adopted to identify how each aspect affects the
concerns (operators):
Overlap/before: the candidate aspect is applied
before the base concern. The behaviour described
by the candidate aspect must be satisfied before
satisfaction of the base concern behaviour [15, 20].
Overlap/after: the candidate aspect is applied after
the base concern. The behaviour described by the
candidate aspect must be satisfied after the
satisfaction of the base concern behaviour [15,20].
Override: the behaviour described by the candidate
aspect substitutes the behaviour defined by the
concern. This operator represents the around
qualifier in Aspectj without Proceed [15, 20, 21].
Wrap: the behaviour described by the concern is
enveloped by the behaviour described by the
candidate aspect. This operator represents the
around qualifier in Aspectj with Proceed [15, 20]
These operators are generally used in AORE
approaches .in follow, the notation below is
adopted:

Overlap/before..........> before
Overlap/after…….…>After
Override …………..> replace
Wrap…………….…>around

3.2/- Detection of interactions with candidate
aspects

 Based on the method described in [6], we use a
matrix : matching point matrix, representing the
relationships between the stakeholder’s
requirements (actors) and the model elements (eq
Use case) to identify matching points (abstraction
of join point) [6], and to identify interactions
between candidate aspects . The set of matching
points of each candidate aspects are obtained used
the composition specification (crosscut
specification) of aspects and are filled in the MP-

Matrix, where each cell filled with the list of
candidate aspects (denoted Cai) represents a Match
point (denoted Mpi) [6].

Concern

Stakehold
er

Concer
n1

Concer2n…..concernn

Stakehold
er1

CA1,C
A2

(MPA)

CA1,CA4………………
…..

(MPb

…
 …………………………

.

Stakehold
er

CA3,C
A4

(MPd)

…………….cA2(

(MPc)

TABLE2: Match point matrix [6]

 For one matching point, it must be specified one
composition rule. If there is one candidate aspect
affecting the matching point, there is no problem.
The dependency aspect match point (base)
represented by the type of operator must be
satisfied. If there are many candidate aspects
affecting the same match point, there are
interactions among aspects and with match point
(base module).
The interaction is not always negative relationship.
It may be positive or negative one, we distinguish
between conflict and dependency interaction:
� Conflict: captures the situation of interference,
one aspect that works correct in isolation, and does
not
work correctly any more, when, it is composed with
other aspects. The aspect in conflict cannot take
place
after satisfying anthers aspects affected the same
base module. it is negative interaction [11,18].
� Dependency: covers the situation where one
aspect explicitly needs another aspect, and depend
on it to be satisfied. A dependency is positive one
[18,11]. It must be possible to reason about
interactions, identify dependencies, and identify
and resolve conflicts.

3.3. Identification of dependencies

 To illustrate technique , lets suppose the
candidates aspects A1,A2,A3,A4 A5 affected the
match point (join point) P. Suppose that:
 Aspect A1 overlaps before the match point (A1
before P). Aspect A2 overlaps after the match point

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

22

P (A2 after P).Aspect A3 wraps the match point
with (A3 around P). Aspect A4 substitutes the
match point (A4 replace P). Aspect A5 overlaps
before the Match point (A5 before P). Aspect A6
overlaps after the match point (A6 after P).
 There are interactions between aspects A1,
A2,A3,A4,A5,A6 and also with the match point P.
So, for identifying dependency we exploit the
dependencies generated by the operators.
We propose tree consideration:
First consideration: Based on the type of operator
applied to attach the aspect to the match point, we
are convinced that there is a dependency, between
aspect and the match point.

Operator before: the match point is never
satisfied before the satisfaction of the aspects (A1,
A5) and the satisfaction of P depends on the
satisfaction of Aspects A1 and A5. So, we identify
the dependencies: P→A1 and P→A5.

Operator After: the match point must be
satisfied before satisfying the aspects A2, A6,
because the behaviour of aspect A2, A6 must be
attached after P. So the satisfaction of A2 and A6
depends on the satisfaction of P and we identify the
dependencies A2→P and A6→P.

The operator around: the behaviour of the
aspect A3 must be satisfied in parallel with the
behaviour of the join point P. It is considered like a
case of synchronization (P synchronises with A3).
The behaviour of the join point is satisfied after the
satisfaction of the behaviour of aspect A3 (and
execution of precede instruction like Aspectj).
Therefore, the satisfaction of P depends on the
satisfaction of A3 and we identify the dependency:
P → A3. This dependency is noted (P=>A3) (in
parallel).

The operator replace: the operator substitutes
the behaviour of P by the behaviour of A4. The
behaviour of P is not executed, but, unless reach P,
the behaviour of A4 is not satisfied. So the
satisfaction of A4 depends on P. We denote this
dependency: A4---> P (P is note executed, A4
replace P).
 Second consideration: the dependency is a
transitive relationship. For aspects Ai,Aj,Ak: Ai
depend on Aj and Aj depend on Ak implies Ai
depends on AK. Let’s suppose candidate aspects Ai,
Aj, Ak. Ai must be satisfied before Aj , and Aj must
be satisfied before Ak. So it is evident that Ai must
be satisfied before Ak .
Third consideration concerns: for operators
around and replace, we can identify some fictive
dependencies (artificial). in definite likelihood

-Operator around: the behaviour of aspect A3
must be satisfied in parallel with the behaviour of

the join point P , it permits us to deduct that exists a
firm probability that the aspect A3 is dependent on
all aspects of which the join point P is dependent,.
Fictive dependencies A3 → A1, A3 → A5 are
identified. We note them in red .

-The operator replace: aspect A4 modifies the
behaviour of the join point P. Therefore, it permits
us to conclude, that exists a concrete probability
that all aspects depending on the join point P
become dependent on the aspect A4. The fictive
dependencies A6→ A4, A2→A4 are identified.
 The fictive dependencies are not real ones. They
are characterized by some degree of likelihood
(weak or strong), their use and identification is not
mandatory but they have the advantage to help and
to simplify the analysis. They allow us to generate
the possible solutions on a certain degree of
probability and to focus the analysis on a reduced
set of dependencies.

3.4. Graph of dependency and transitive closure:
 The graph of dependency G (X, U) represents
identified dependencies. Nodes set (X) includes
join point and aspects that will be inserted. Initially,
and in first stage, the set of edges (U) includes
aspects-match point dependencies (with or without
fictive dependencies). The transitive closure G+ (X,
U) of the dependency graph permits us to represent
direct and indict dependencies, while including the
transitive dependencies that one can deduce.

A1 A2

A3

A6

A5

A4

P

G : Dependency graph. Without
artificial dependencies
X={A1,A2,A3,A4,A5,A6,P}
 U set of dependencies identified

A1 A2

A3

A6

A5

A4

P

G : Dependency graph. With
artificial dependencies
X={A1,A2,A3,A4,A5,A6,P}
 U set of dependencies identified

 (A) (B)
FIGURE3: Dependency graph (a): without fictive
dependencies, (b) with fictive dependencies

A1 A2

A3

A6

A5

A4

P

G+ transitive closure
 = (M+I)n-1 , |X | =n
M: adjacency matrix

FIGURE4: TRANSITIVE CLOSURE

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

23

3.5. Detection of conflicts between Aspects

 Once the initial dependency graph and its
transitive closure are generated, our objective is to
satisfy all aspects and the join point according to
the dependencies between the aspects and the join
point.

 This may be done by a simple search of
Hamiltonian paths in the transitive closure of
dependency graph. We notice that, a Hamiltonian
path is an elementary path, which passes through all
nodes once only once.
 So, we can consider that the Hamiltonian path in
the transitive closure of dependency graph is a
solution, which satisfies the behaviour of join point
(bases) and aspects (that pass through all the nodes
once and only once). The identification of conflicts
between aspects becomes a response to the trivial
question: Is there a Hamiltonian path that satisfies
the bases (join point) and all the inserted aspects?
If there is no Hamiltonian path, then there is a
conflict. At least, one aspect is in conflict. It is not
satisfied (it can not reach the join point). Notice
that the conflict in this case is an order conflict.
 In the next step, we identify which aspects are
not satisfied. To this end, we generate all the
longest paths in the transitive closure. We analyze
generated paths to identify the non satisfied aspects
for each path. Then, we identify the aspects that are
satisfied in mutual exclusion. For instance, see the
transitive closure shown in figure4. There are no
Hamiltonian paths in the transitive closure, so there
is at least one order conflict. In this case, the
longest paths are shown in the following table.

 Longest paths Analyze of the longest

paths
CH1= A2A4PA3A5 A6,A1: are not

satisfied
CH2= A2A4PA3A1 A6,A5: are not

satisfied
CH3= A6,A4PA3A5 A2,A1: are not

satisfied
CH4= A6A4PA3A1 A2,A5: are not

satisfied
Synthesis of conflicts
analysis
(mutual exclusion)

Conflict between
(A1,A5)
Conflict between
(A6,A2)

TABLE 3: The longest paths of the example shown
in figure

3.6. Conflict Resolution

 Once, the aspects in conflict are detected. We
must resolve them. The solution we propose
consists of adding and identifying a resolution
dependency between aspects in order conflict
(mutual exclusion). The resolution dependencies
here represent information about the order of
execution of aspects in conflict. Let's say:

 The priority between aspects: Ai has a higher
priority than Aj implies that aspect Aj depends
on aspect Ai. The satisfaction of Ai before the
satisfaction of Aj

 An aspect Ai uses an aspect Aj , this imply
that aspect Ai depends on Aj (the satisfaction
of Ai depend on the satisfaction of Aj)

 An aspect Ai has preconditions included in
post-conditions of Aj implies that aspect Ai
depends on Aj (since the precondition to
execute Ai depends on the execution of Aj).

The added dependencies can be identified from the
analysis of the preoccupation specifications and or
making a direct trade-off with the concerned
stakeholder. For illustration, see the former
example. We suppose after a discussion with the
stakeholder, we define a priority on concerns: A1
has a higher priority than A5, A6 has a higher
priority than A2 . We identify the dependencies A5
→A1 and A2→A6. After, when conflicts are
treated and resolved, the identified dependencies of
resolution are added to the dependency graph.
 We generate the new dependency graph witch
includes resolution dependency (Aspect-Aspect).
Also, we generate the transitive closure of
dependency graph. At last, we find again
Hamiltonians paths. Two situations may occur:
there is one or several Hamiltonians paths. If there
are several Hamiltonians paths, we must review
each solution, to verify the fictive dependencies and
to only keep the strong one, the weak dependencies
are removed. Therefore, Hamiltonians paths which
include weak dependencies, are not considered
more like a solution, and will be suppressed.

3.7. Generate composition rule

 After obtaining Hamiltonians paths and
verification of fictive dependencies, we can
generate the composition rule specification easily.
For more illustration see previous the example:
(figure 3: initial transitive closure), figure 5: is
Transitive closure after inserting resolution
dependencie (A5→A1), (A2→A6)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

24

A1 A2

A3

A6

A5

A4

P

G+ transitive closure
 = (M+I)n-1 , |X | =n

FIGURE5: Transitive closure after inserting

resolution dependencies

 Hamiltonians paths founded are: Ch=
A2A6A4PA3A5A1

← .
The composition rule can be written (according to
the direction of the small arrow above the path)
A1 before P A5 before P A3 around P P A replace
P A6 after P A2 after P
We can write it according to LOTOS operators
described in [17] as follows:
A1>> A5>> ((P>]A4) ||A3)>>A6>> A2

4. CASE STUDY

 Let us consider the example borrowed from
[13]. It is a simple version of the sub way. The
requirements for the subway are: to use the subway
a client has to own a card that must have been
credited with some amount of money. A card is
bought and credited in special buying machines
available in any subway station. A client uses this
card in an entering machine to initiate her/his trip.
When she/he reaches the destination, the card is
used in an exit machine that debits it with an
amount that debits it with an amount that depends
on the distance travelled. If the card has not
enough credits the gates will not open unless the
client adds more money to the card. The client can
ask for a refund of the amount in the card by giving
it back to a baying machine.

 Let’s consider the simpler situation where only
the actor client is handled. The corresponding use
case diagram to specify the functional concerns is
illustrated in figure 8.

Validatecard

Entersubway

exitsubway

loadcard

«
include »

Buycard

refundcard

Client

Figure 8: the use case diagram of the subway
system

 In this example we identify the following
crosscutting concerns: validate card (functional
concern) and the no functional concerns: Response
time, Accuracy, Multi-access , Availability,
Security.
security is composed of sub concerns: S.integrity ,
S.availability The integrity is composed of sub
concern: S.integrity.completness. and
S.integrity.accuracy.
Let’s consider just the Enter subway and validate
card use cases (match point):
- Response time (RT) concern wraps Entersubway
use case : (RT around Entersubway)
- Availability (S.Av) overlaps before Entersubway
use case : (S.AV before Entersubway)
-integrity (S.integrity) overlaps after the match
point Entersubway: (S.integrity after
Entersubway)
- Accuracy (S.integrity.accuracy) wraps
Entersubway : (S.integrity.accuracy around
Entersubway)
- Validatecard overlaps before Entersubway use
case: (Validatecard before Entersubway)
and accuracy (S.integrity.accuracy) wraps
Validatecard use case: (S.integrity.accuracy before
Validatecard)
step1: Identify interaction :The interaction are
identified and represented in table 5.

Concern

Stakeholder

entersubway validatecard

client Validate card, RT,
S.AV,
S.integrity.AC
,S.integrity

s.integrity.AC

 Table 5. Identification of interactions

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

25

Step2: Generate initial dependency graph and
transitive closure:

S.AV

S.integrity

RT Entersubway

G : initial dependenciy graph.
With artificiel dependancies

Validatecard

S.integrity.AC

(A)

S.AV

S.integrity

RT Entersubway

G+ : initial transitive closure

Validatecard

S.integrity.AC

(B)

 Figure 6: (A) Dependency graph, (B) Transitive
closure of example.

Step3: Detection of conflicts: : No Hamiltonians
paths in the transitive closure: there is conflict.
Then we find the longest paths in the transitive
closure and analysis of each path. See table 6.

Longest paths Analysis of
longest paths

Ch1 =
S.integrité,Entersubway,s.inte
grity.AC, RT, Vaidatecard

S.AV : no
satisfied

Ch2 =
S.integrity,entersubway,RT,
S.integrity.AC, sSAV

Validatecard : no
satisfied

Ch3 = Sintegrity,
Entersubway,RT,
S.integrity,AC, validatecard

S.AV : no
Satisfied

Ch4 = S.integrity,
Entersubway,RT,
s.integrity,AC, s.AV

Validat card : no
satisfied

Summary of conflict analysis
 (mutuel exclusion)

Conflict between
(Validatecard,
S.AV)

Table6: Longest paths and their analysis

Step4: Resolution of conflicts S.AV has higher
priority than validatecard, (S.AV constrain all the
requirement of Entersubway use case):
(validatecard→s.AV) dependency is identified and
inserted to the dependency graph .

Step5: Regeneration of dependency graph and
transitive closure the generated dependency graph
and transitive closure are shown in figure 7.

S.AV

S.integrity

RT entersubway

G+: transitive cloture

validatecard

S.integrity.AC

Figure 7. The generated dependency graph and
transitive closure

The Hamiltonians paths are:
Ch1= S.integrité, Entersubway,S.integrity,AC, RT ,
Validatecard,S.AV
Ch2= S.integrity,entersubway,RT,S.integrity.AC,
Validatecard, S.AVE

Step6: Reviewing fictive dependencies: the
dependency (S.integrity AC →RT)is weak
dependency .So it is deleted, ch1 is not a
Hamiltonian path
The solution accepted is ch2.

Step7: Generation of the composition rule:
For Enersubway use case the composition rule is :
S.AV >>validatecard>> ((intersubway || RT) ||
S.integrity.AC) >>S.integrity
for Validate card use case the composition rule is:
Validatecard || S.integrity.AC
As validatecard use case is included in
Entersubway use case, we can fusion the two
composition rules to obtain: the synthesis
composition rule for Enersubway use case:
S.AV >> ((Validatecard >> (Entersubway || RT))
||S.integrity.AC)>>S.integrity

5. CONCLUSION

 In this paper we have proposed a generic
technique at requirement phase allowing the user to
identify interactions between aspects. Then, detect
and resolve the conflicts between these aspects. The
proposed technique is generic since it is

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

26

independent on the way to identify aspects or
compose them. It exploits the dependencies
generated by the operators to reason on interaction
between aspects and uses composition specification
of candidate aspects to achieve the roles attributed
to analyse component. The technique exploits the
dependencies generated, by the operators such as
before, after, around and replace. And also, use the
search of Hamiltonians paths in transitive closure to
detect potential conflicts

This work is a first step towards analysis of
interactions between aspects, and there are many
problems to resolve. Our future work will focus on
developing a support to this method, improving and
applying it on more complicated case studies.

REFRENCES:

[1] The Aspect-oriented Software Architecture

Design portal:
 Http://trese.cs.Utwente.nl/taosad/aosd.htm

[2] AOSD homepage, HTTP://WWW.AOSD.net

[3] E.Beniassad, P.C.Clements, J.Araujo,

A.Moriera, A.Rachid, B.Tekmerdogan, 2006,
“Discovring early aspects” ; IEEE Software,
e3[1):61-70

[4]

J.Araujo,E.Baniassad,P.Clements,A.Moriera,
A.Rachid, B.Tekinerdogan, “Early aspect: the
current landscape”, Technical Report ,
Lancaster university February, 2005 .

[5] A.Chaoui, A.Boubendir,”An approach to

analyse interactions between aspects at
requirement phase”, poster paer, CEE-SECR,
2009.

[6] I. Brito, A. Moreira, “Towards a composition

process for aspect-oriented requirements” ,
Proceeding of AOSD’03 Workshop on Early
Aspects: Aspect oriented Requirements
Engineering and Architecture , March 17,
Boston USA. 2003.

[7] A.Rachid, PSwer, A.Moreira and J.Araujo,

“Early aspect: a model for Aspect-Oriented
Requirements Engineering” in International
conference on Requirements Enginnering
(RE).2002,Essen, Germany : IEEE.

[8] A. Rachid, A.Moreira and J.Araujo/
“Modulaisation and composition of Aspectual
Requirements”. In 2and International
conference on Aspect Oriented Software
Development (AOSD). 2003 Bostan, USA:
ACM.

[9] Multi-Dimensional Separation of concern: an

overview:
http://www.reseach.ibm.com/hyperspace/MDSO

C.htm

[10] K. Mehner,Monga G. Taentzer , "Interaction

Analysis in Aspect-Oriented Models," re,
pp.69-78, 14th IEEE International
Requirements Engineering Conference
(RE'06), 2006.

[11] Bergmans, “Towards Detection of semantic

conflicts between crosscutting concerns”,
AAOS 2003,Darmastadt, Germany .

[12] L.Rosenheiner,”A method for Handling

Requirements- level crosscutting concern”,
available from URL:

http://www.pi.informatik.unisiegen.de/stt/26_1/01_
Fachgruppenberichte/RE/08_rosenhainer.pdf

[13] : I.Brito, A.Moreira, “Integrating the NFR

framework in a RE Model” .In Processing of
the 3rd workshop on Early Aspects, 3rd
international Conference on Aspect-Oriented
Software Development, March 2004.

[14] H. Kandi, “What is an aspect in Aspect

oriented Requirement Enginneering”
Procedding ofAMMASAD 2008.

[15] J.Araujo, A.Moreira,I.Brito, A. Rachid, “

Aspect oriented requirements with UML” ,
Workshop: Aspect-Oriented Modelling with
UML ,UML 2002,Dresden,Germany .
October 2002.

[16] J. Brichau, T. D’Hondt, “Introduction to

Aspect-Oriented Software Development”,
AOSD-Europe, 30August 2005.

[17] I. Brito ,A.Moreira. “Advenced separation of

concerns for requirements enginnering” , VIII
jornadas de ingenieria de Software y bases de
datos (JISBD), Alicande,Spain,12-14
november 2003.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT & LLS. All rights reserved.

www.jatit.org

27

[18]F.sanen,E.Truyen,B.D’win,W.Joosen,N.Loughr
an,G.Coulson,A.Rachid,A.Nedos,A.jackson,S
.clark,” Study on interaction issus”, AOSD-
Europe, 28 February 2006.

[19] B.Tekmerdogam, A.Moreira, J.Araujo,

Pclemnts,Early Aspects : Aspect-Oriented
Requirements Enginneering and Architecture
Design: Workshop Report AOSD 2004 TR-
CTIT-04-44 ,119PP University of twente Dep
of Computer science , October 2004.

[20] G.Sousa,S.Soares,PBorda and J.Castro,

Separation of crosscutting Concerns from
Requirements to Design: Adapting an use
case Driven Approach . In proceedings of the
3rd Workshop on Early Aspects, 3rd
international conference on Aspect-Oriented
Software Development, March 2004.

[21] Xerox corporation, AspectjProgramming

guide, available from:
Http://eclipse.org/Aspectj .

[22] R.Douance, P,Frader,”Detection and resolution

of aspect interactions”, INRIA technical
report N°RR 4435 April 2002.

