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ABSTRACT 
 

The idea of "Matrix encoding" was introduced in steganography by Crandall in 1998 [6]. The 
implementation was then proposed by Westfeld with steganography algorithm F5 [1]. The objective is to 
transmit a message within an image, but with the constraint of minimizing the number of changed 
coefficients of this image. In this paper, a new construction of steganography protocol is considered, which 
is an extension of the error correcting code and steganography construction. The proposed method consists 
of use the Majority logic decoding introduced in [5],  for embedding the message in the cover image, the 
extraction function is always based on syndrome coding. An asymptoticly tight bound on the performance 
of embedding schemes is given. 

Keywords: Steganography, Error correcting code, Majority logic decoding average distortion, matrix 
encoding, embeding efficient. 

 
1. INTRODUCTION  
 

The goal of digital steganography is to modify a 
digital object (cover) to encode and conceal a 
sequence of bits (message) to facilitate covert 
communication. The goal of steganalysis is to 
detect (and possibly prevent) such communication. 
Often, the cover media correspond to graphics 
files. Graphics files are the typical choice because 
of their ubiquitous presence in digital society, but 
any medium that contains a substantial amount of 
perceptually insignificant data can be used. 

An interesting steganographic method is known 
as matrix encoding, introduced by Crandall [6]. 
Matrix encoding requires the sender and the 
recipient to agree in advance on a parity check 
matrix H, and the secret message is then extracted 
by the recipient as the syndrome (with respect  to 
H) of the received cover object. This method was 
made popular by Westfeld [1], who incorporated a 
specific implementation using Hamming codes in 
his F5 algorithm, which can embed t bits of 
message in  cover symbols by changing, at 
most, one of them.  

There are two parameters which help to evaluate 
the performance of a steganographic method over 
a cover message of N symbols : the average 

distortion D= , where  is the expected number 
of changes over uniformly distributed messages ; 
and the embedding rate E =  , which is the 
amount  of  bits that can be hidden in a cover 
message [4]. In general, for the same embedding 
rate a method is better when the average distortion 
is smaller. 

Furthermore, we will also assume that a discrete 
source produces a sequence x = (  ), where, 
N is the block length and each  

. The message 
, where M is the message 

length, we want to hide into a host sequence x 
produces a composite sequence y = f(x, s), where 

, and each  . The 
composite sequence y is obtained from distorting  
x,  and the distortion will be assumed to be a 
squared-error distortion. In these conditions, if 
information is only carried  by the least significant 
bit (LSB) of each , the appropriate solution 
comes from using binary Hamming codes [1]. 

In this work we propose a steganography 
method based on a [n, k, t] codes BCH. While the 
size of each cover block is  , m = 3, 4, 
5…, and the rate of capacity is  m×t. Our method 
uses t = 2. Because with t = 2 BCH is semi perfect. 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT. All rights reserved.                                                                      
 

www.jatit.org 
 

 
43 

 

in this paper we find embedding efficiency=(rate 
of capacity/number of changes), better than 
Hamming code used in [1]. 

The rest of this paper is organized as follows. 
Section 2 introduces the relationship between 
error-correcting codes and steganography systems. 
We present our approach in section 3.  Section 4 is 
devoted to the bound on the performance of 
embedding schemes. Conclusions and future work 
are presented in section 5. 

2. STEGANOGRAPHY AND ERROR 
CORRECTING CODE 

 

R. Crandall introduced in [6] the matrix 
encoding idea to improve the embedding 
efficiency for steganography. The algorithme F5 
proposed by Westfeld [1] is to reduce modification 
of the quantized DCT coefficients. Since F5, 
steganographers take the reduction of embedding 
capacity sincerely and coding theory into 
consideration. Basically the matrix encoding 
technique in F5 modifies at most 1 coefficient 
among n nonzero coefficients to hide k bits. For 
example, the matrix encoding method modifies at 
most one coefficients among seven coefficients to 
hide three bits like a [7, 3] Hamming code. Thus, 
distortion of image is reduced at the cost of 
sacrificing the embedding capacity.  Now,  not all 
coefficients have to be modified by using [n, k, 1] 
code where . Modified matrix encoding 
(MME) [7] uses [n, k, 2] code where one more 
coefficients may be changed in each group 
compared with the matrix encoding. The concept 
of the matrix encoding technique is « the less 
number of modification to the DCT coefficients, 
the less amount of distortion in the image »[8]. 
Matrix encoding using linear codes (syndrome 
coding) is a general approach to improving 
embedding efficiency of steganographic schemes. 
The covering radius of the code corresponds to the 
maximal number of embedding changes needed to 
embed any message. Steganographers, however, 
are more interested in the average number of 
embedding changes rather than the worst case. In 
fact, the concept of embedding efficiency- the 
average number of bits embedded per embedding 
change-has been frequently used in steganography 
to compare and evaluate performance of 
steganographic schemes. 

Example  (LSB EMBEDDING) 

• Cover object = { 3, 6, 5, 0} = {011; 110; 101; 
000}  

• Secret message bits : (0, 0, 1, 1)  

• Stego-support={010, 110, 101, 001} 

• Embedding efficiency = =2 

2.1 Error Correcting Code in Steganography 

An important kind of steganographic protocols 
can be defined from coding theory. Error-
correcting codes are commonly used for detecting 
and correcting errors, or erasures, in data 
transmission. An explicit description of the 
relationship between error-correcting codes and 
steganographic  systems was presented by 
Menuera and Zhang, Li in [2,9] and shows that 
there is a corresponding relation between the 
maximum length embeddable (MLE) codes and 
perfect error correcting codes. The most used 
codes in steganography are linear. The existence of 
a parity check matrix helps on designing good 
steganographic protocols. 

 Let C be a linear [n, n-t] code over the finite 
field , equivalently, a linear subspace of  , of 
dimension is k =n-t. The covering radius δ of the 
code C is defined as δ = d(v,C), where 
d(v,C) means the minimum Hamming distance 
from the vector v to the code C. The support of a 
vector  in  is defined to be 
supp(v) = {i \ ≠0}.  

Let  and H be a parity check matrix of C. 
The syndrome of any v in  is the vector r(v) = 

 , where  means the vector v as a column 
vector. A coset C + v is the set of all vectors in 

with the same syndrome. A vector of 
the minimum weight in C + v will be called leader 
of the coset, it is not necessarily unique. The above 
syndrome map r :  such that r(v) = 

, is called the retrieval map of a [n, t, δ] 
steganographic protocol, which will be called 
linear to emphasize that the retrieval map r is a 
linear map. The embedding algorithm to compute 
e(s, v) for a linear steganographic protocol works 
in the following way [10] : 

COSET ALGORITHM 

 - Compute u := r(v) - s, 

- define e(s; v) := v - , where  is a 
leader of the coset C + u of all the vectors in 

with the same syndrome u. So, r( ) = u. 

SINGLE-ERROR CORRECTING CODES 
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We now give an example of a protocol 
steganography constructed from a linear single-
error-correcting code. This was also discussed, for 
example, in [1]. Start from the matrix 

 

H=  

 

whose entries are elements of . Extracting 
Scheme is defined 

F :     F( )=(  

 =  +  +  + ,  

     =  +  +  +  

  =  +  +  +  

This function can be described in terms of 
matrix H. In fact, , is the dot product of x and the 
i-th row of H. We claim that F is an extracting 
function of the (7, 3 ,1) protocol steganography. 

Embedding Scheme for example, 
F(0,0,1,1,0,1,0) =(1,0,0). Assume y = (1,1,1). We 
claim that it is possible to replace x = 
(0,0,1,1,0,1,0) by  such that F( ) =(1,1,1) and 
d(x, ) = 1. In fact, we claim more : the 
coordinate where x has to be changed is uniquely 
determined. In our case, this is coordinate number 
6, so   = (0,0,1,1,0,0,0), 

Here is the general embedding rule : form F(x) + 
y, (in the example this is 011). Find the column of 
H which has these entries (in our example, this is 
the sixth column). This marks the coordinate 
where x needs to be changed to embed payload y. 
This procedure indicates how H and F were 
constructed and how this can be generalized : the 
columns of H are simply all nonzero 3-tuples in 
some order. In general, we start from our choice of 
n and write a matrix H whose columns consist of 
all nonzero n-tuples. Then H has N = 

columns. The extracting function,        

        F :  

is defined by the way of the dot products with 
the rows of H. Finally it is clear that embedding 
efficiency= 3. 

2.2 MAJORITY LOGIC DECODER  

Majority logic decoding algorithm was 
introduced in [5] and is briefly explained below. 
Let H be a parity check matrix of a [n, k] linear 

code C. Majority logic decoding implements a 
voting scheme among a set of check sums 
orthogonal on a bit or subset of error bits. The 
majority logic decoding rule is defined for a set of,  
J check sums orthogonal on error bit ej as follows : 

Let the estimate êj of error bit ej be the value 
assumed by the majority of the J check sums. In 
the case of a tie, let  êj = 0. The majority logic 
decoding rule guarantees a correct estimate of ej as 
long as there are no more than [ ] errors among the 
error bits being checked. It is clear that for a block 
code with minimum distance dmin, majority logic 
decoding will be optimal when J = dmin -1. In such 
a case, the code is said to be completely 
orthogonalizable [5]. The J orthogonal check sums 
provide reliability information. In general, the 
greater the number of check sums which agree, the 
higher the reliability of the estimate. The lack of an 
extensive majority among the J orthogonal check 
sums can be used to generate a retransmission 
request. 

3. NEW PROTOCOL STEGANOGRAPHY 
 

The proposed approach works by dividing the 
cover into blocks of equal size. A block of binary 
data, e.g., LSB values of cover data, 
{ } over  can be represented by a 
polynomial of X over  such as v(X) =  + 

X + ... + . Embedding message m into 
the cover data v produces the stego data r which is 
represented as r(X) =    + X + … + . 
The relation between m and r can be expressed as 
a matrix form as follows : 

m  =  r×HT                                                      (1) 

Decoder also uses Equation (1) to extract 
message from the stego data. By hiding message, 
some of the cover data bits are flipped from 0 to 1 
and vice versa. Let e(X) be the flip pattern that 
represents which bit positions are flipped [8]. As a 
result, stego data is modified according to the flip 
pattern as follows :  

                    r(X) = v(X) + e(X)                       
(2) 

From Equations (1) and (2), we get 

              m-               =                                   
(3) 

The left-hand side of Equation (3) is called 
syndrome S. In other words, the syndrome is 
expressed as follows:   
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  S= m- 

or, equivalently 

          S=                                                          (5) 

From the steganographic point of view, our 
objective is to find a minimal number of flips of 
e(X) satisfying Equation (5) in order to decrease 
distortion. This is the syndrome coding. Data 
hiding by error-correcting code solves Equation 
(5) based on the vector e. The solution shows the 
proper positions of the elements in vector v(X) to 
be modified in order to hide message m to vector 
v(X). The stego vector r(X) is calculated according 
to the Equation (2). The hidden message can be 
recovered from stego vector r(X) using Equation 
(1).                                                 

3.1 PROPOSED EMBEDDING SCHEME 

 Inputs : message m, block of image C, 
distortion maximum allowed t. 

Output : stego-image 

- Step(1) : compute S by the equation 4. 

- Step(2) : if S = 0 ; supp(e) =  , e(X) = 0, then 
the message is already hiding else go to Step(3). 

- Step(3) : S = (  ,  ,… ,  ) ; It seeks to 
construct a set P systems of equations parity , Such 
that each system L P, there is an i supp(e) ; 
such that L is orthogonal to  

-Step(4) : solve all the systems belonging to P  
and find  = 0 or 1 ; for all i  supp(e(X))                  

-Step(5) : if w(e(X))  t ; go to step(6), else go 
to step(3). 

-Step(6) : compute the stego-support r(X) by 
Equation 2, you spin the algorithm for every image 
blocks 

EXTRACTING SCHEME 

The message is retrieved from the stego-support, 
with the function of syndrome : 

       m=      

3.2 EXPERIMENTAL RESULTS       

A generalization of perfect codes is the 
following : a t error- correcting code is said to be 
quasi-perfect if its covring radius is δ = t+1 (or 
equivalently, if the spheres of radius t+1 around 
the codewords contains all vectors of  ). For 

example, all double-error-correcting BCH codes 
are quasi-perfect (see [11], Chapter 9, Section 8). 
We can use these codes to construct 
steganographic protocols. For every integer m > 2, 
the binary two error correcting BCH code Cm has 
parameters [ , 2m- 1, 5] [11]. Its 
covering radius is  δ = 3. Let Sm be the protocol 
obtained from Cm, by taking a parity check matrix 
as described above. It is a [ , 2m, 3] 
protocol. The following tables collects the 
parameters of Sm and the corresponding version of 
F5 [1] (obtained from the Hamming code)  

Sm 

m n k δ 
  

3 7 6 3 0,857 2 

4 15 8 3 0,533 2,66 

5 31 10 3 0,322 3,33 

6 63 12 3 0,190 4 

7 127 14 3 0,110 4,66 

 

F5 

m n k δ 
  

3 7 3 1 0,428 3 

4 15 4 1 0,266 4 

5 31 5 1 0,161 5 

6 63 6 1 0,095 6 

7 127 7 1 0,055 7 

 

;  measure, respectively, the embeding rate 
and embeding efficient. 

4.  ASYMPTOTICLY TIGHT BOUND ON 
THE PERFORMANCE OF EMBEDDING 
SCHEMES 

 

Since for any given coverword v only  
different (stego) words can be obtained by 
changing at most t coordinates of v, then we have 
the following proposition [3] : 
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5. PROPOSITION 

For any embedding scheme of distorting t, using 
binary words of length n as coverwords, the 
number of different messages M(n, t) that can be 
embedded is bounded by  

M(n,t)≤                                             (6)  

proposed h(n, t) = logM(n, t). The right hand 
side of (7) is upper bounded by 

                           2nH
2

( ) 

 for 2t < n, where  

H2(x) = -xlogx - (1 - x)log(1- x) 

is the entropy function [3]. Therefor, we have  

                   h(n, t) = nH2( ) 

Note this is a good approximation of (1) when t 
grows linearly with n. For other important case t 
fixed and n growing to infinity it follows  

   h(n,t) = t  logn - log(t!); t fixed:                (7) 

 Fortunately there are known constructions of 
steganography methode very close to the 
Hamming bound.  

 

6. CONCLUSIONS 
 

We have seen that there exists a close relation 
between steganographic protocols and error 
correcting codes (see subsection 2.2). 
Construction, parameters and properties of both 
are similar, and the ones can be deduced from the 
others. Since error-correcting codes are rather well 
known, this relation can be used to construct good 
steganographic protocols and study their 
properties. In this paper, we have presented a new 
method for steganography, based on error 
correcting code. This methode uses a class of 
decoding for error correcting code "majority logic 
decoding". This technique has representation that 
makes them efficient to work with. Future work 
will consider doing the following modifications to 
the proposed method : 

• Investigating the proposed method on color 
images. 

• modifying the proposed approach to embed 
image inside another image. 

• Preserve the secret message even if we do 
some transformations on the image like 
rotation, scaling compression. 

• Relate the encryption process with 
steganography in which we encrypt the 
message before embedding it inside the 
image in order to increase the security of 
the proposed method. 
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