
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

19

SECURITY PROBLEMS AND THEIR UPSHOTS IN ROUTING
PROTOCOLS OF DHT BASED OVERLAY NETWORKS

1 ANIL SAROLIYA, 2 VISHAL SHRIVASTAVA

1 M. Tech. Scholar, Department of Comp. Science, ACEIT, Jaipur, Rajasthan, INDIA
2 Asst. Professor, Department of Comp. Science, ACEIT, Jaipur, Rajasthan, INDIA

E-mail: anilsaroliya@gmail.com, vishal500371@yahoo.co.in

ABSTRACT

Distributed hash tables (DHTs) are a very interesting research topic in the area of P2P overlay networks;
such networks are becoming very popular in applications like file sharing. The purpose of the Distributed
Hash Table is providing the way to search the resources (especially files) within a P2P network. A DHT
protocol typically provides a single function to the P2P application: provide a key and find the node (or
may be nodes) which is liable for such key [1][3]. All other functions (such as actually retrieving the
resource or storing the resource on the node responsible for it) are provided by higher layers of the P2P
application. In such paper our target is to find the security issues and resolve them on existing routing
protocols of such networks. The Chord [4] (a DHT protocol) is chosen as the target protocol for various
reasons it will be covered in this paper.

Keywords: Peer-To-Peer Overlay Networks, Distributed Hash Tables, Routing, Security

1. INTRODUCTION

1.1 Distributed Hash Table’s

DHT is capable to accomplish two of our main
needs. DHT is the distributed data structures that
hold the key and the value as a pairs in the fully
distributed way. It also puts every key-value
couple only on the single or limited node. To
decide on which node an exact pair has to be
stored we require a mapping mechanism. The
joining and disjoining a node does not cause the
remapping of all the keys. A specific hashing
mechanism (consistent hashing) is used in DHT to
map the key. Such hashing separates the key in
many parts. This process employs the distance
concept to map a key to a certain node. Distance is
a logical aspect and which is not related to or
bounded to physical distance of the nodes in P2P
network. In this network the node which is actually
in England might be closer to the node in Japan
than a node available in the same region. The
mapping function will be in use when the insertion
of the fresh key-value pair into the hash table will
take place and also as we desire to search the key.
This function utilizes only the key to decide the
appropriate node which will hold the pair. After
that, if the same key will be asked, then the above
mapping function will

resolve the place where the key is available, this
process makes the recovery of the value quicker.

Distributed hash table (DHT) protocols allow
resources to be located quickly in decentralized
distributed systems. Resources can include things
such as files, directory entries, discussion
messages, or any other type of object that can be
stored on and retrieved by nodes in a distributed
system. A DHT consists of a group of
participating nodes, where each node maintains a
small amount of information about a subset of
other nodes in the system and routes lookup
requests through the system towards their
destinations. Each resource has a key associated
with it. Given a key, a DHT can locate the node
responsible for the associated resource quickly,
typically within O(log n) hops, here n is the
number of available nodes in the system. The
number of other nodes in the system that each node
needs to be aware of is also typically O(log n).
Well known DHTs that received a huge amount of
concentration consist of CAN, Pastry, and Chord.

1.2 Chord Routing Algorithm

Individual numerical identifiers are provided for
both nodes and keys in Chord protocol. To get the
key’s identifier just hash that key by particular
hash function which is utilized by every nodes of

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

20

the system that returns m bit integers. The node
finds its identifier by hashing of its IP address.
Now these identifiers are ordered on an identifier
circle (ring) modulo 2m. Every key’s value is
assigned to the first node whose identifier is equal
to or follow that key’s identifier in the ring. This
aspect is illustrated following figure 1.

In the Chord ring shown in figure 1[4], the hash
bit length m is 6. There are 10 nodes in the
network (shown with N prefixes followed by the
node’s identifier) and 5 keys (shown with K
prefixes followed by the key’s identifier) are being
stored. Each key is shown being stored on the first
node that succeeds the identifier of key in circle, as
indicated by the arrows.

Every node stores some routing information to
locate nodes which are legally dependable for
keys. In Chord, this routing table is called a
“finger table.”

Figure 1: An illustration of keys mapping to nodes.

The Chord finger table for a node with identifier
id contains m entries (0 to m-1 entries). For finger
table entry i, the node stored in that entry is the
first node whose identifier succeeds id + 2i (mod
2k). It is possible (and often probable) to have
duplicate entries in the finger table. Figure 2
shows a sample finger table with an illustration of
how the finger table is derived for node N8. N8’s
last finger table entry should be the node that
succeeds 8+25. This node is N42, so a reference to
N42 is stored in the last finger table entry of N8’s
finger table. The rest of the finger table entries are
filled in with the same process for i = 0, 1, 2, 3,
and 4.

As figure 2 illustrates, each node only has
information about a subset of the nodes in the
overall system. As the system gets much larger,
the number of unique nodes in each node’s finger
table becomes a smaller fraction of the overall
number of nodes. The size of the finger table has

been shown by [4] to be O(log n) where n is the
number of nodes in the system. The advantage of
the finger table is that when performing a lookup
we can jump about half of the remaining distance
between the node doing the routing and the node
responsible for the key.

This divide and conquer approach to routing
lookup requests has been shown by [4] to use
O(log n) hops for each route. The algorithm for
routing a lookup request from a node is simple:
forward the request to the last finger table entry
that precedes the identifier of the key.

The node preceding the destination node will
detect that the key falls between itself and its
successor and return information about its
successor to the node performing the lookup.
Figure 3 presents an example of the route a lookup
request might take through a Chord network. In
this figure, N8 is performing a lookup request for
key K54. For a new node to join a Chord network,
it needs to know of any one node that is already in
the network. Finding a node that is already in the
network is done out of band. The joining node will
then use this “bootstrap” node to perform a lookup
on its own identifier. The node returned by this
lookup will be the new node’s successor in the
Chord ring. The new node will send a message to
its successor notifying it that it is now that node’s
predecessor and the successor will inform its
previous predecessor that the new node is now its
successor. The new node will then use its
successor to perform the appropriate lookups to fill
in its finger table.

Figure 2: An example finger table, taken from [4].

Since nodes will be joining and leaving
continuously, each node needs to periodically re-
perform these lookups in order to keep its finger
table up to date.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

21

Figure 3: An example of the route taken by a
lookup in a Chord network, taken from [4].

1.3 Chord Attack Vulnerabilities

Since DHT lookup requests rely on other nodes
in the system to follow the protocol correctly, they
are vulnerable to several types of attacks ([4]; [5]).

One category of attack is routing attacks, and
this is the category that this paper will focus on
defending against. A routing attack occurs when a
node intentionally drops lookup requests or
forwards the lookup request to another node in a
manner that violates the protocol specification.
Examples of incorrect forwarding would be to
forward the request to nodes further away from the
destination, to random nodes, or to other colluding
malicious nodes. Colluding malicious nodes might
run a separate Chord partition or a “sub-ring” in a
real Chord network and capture lookup requests
and forward them into this sub-ring. This attack
makes it seem as if lookup requests are being
forwarded correctly and it could even cause nodes
joining the system to unknowingly join the
malicious partition.

Another category of attack is an attack where
the node responsible for a key returns incorrect
values for that key. It is difficult for an attacker to
target specific keys in Chord since a malicious
node’s identifier is a hash of its IP address which
forces a node into a specific area of the network
and makes it easy for other nodes to verify that a
node is using its correct identifier. It is left to
higher levels in the P2P application to verify that
the retrieved data from nodes is correct once the
lookup process completes successfully. Chord
allows for a key’s corresponding value to be stored
on multiple nodes (called replicas) by using
multiple hash functions to obtain multiple
identifiers for keys. This paper will not focus on
attacks where nodes responsible for keys
misbehave; instead we focus on preventing

malicious nodes from keeping lookups from
reaching the node(s) responsible for them.

Yet another method of attacking a Chord
network is for a bootstrapping node to bootstrap a
joining node into a malicious network instead of
the intended network. Bootstrapping is out of
band, and there is little that can be done if a
malicious node is used to bootstrap. We will
therefore assume that the node used for
bootstrapping is trusted.

2. PROPOSED DEFENSE MECHANISMS

To mitigate routing attacks on Chord, we
propose the following major changes to the
protocol:

• Instead of lookup requests being
forwarded from node to node, the node
performing the lookup will directly contact each
node and request the next hop on the route to the
destination.

• Each hop will be verified for probable
correctness by checking the numerical difference
between node identifiers in the hop to statistical
information about network density derived from
the finger table of the node performing the
lookup.

• If a hop is determined to be invalid, the
node performing the lookup will backtrack to
the previous node on the route and ask for a
different finger table entry.

Each of these changes is described in more
detail in the following sections.

2.1 Source Node Routing

In the Chord protocol, a node performing a
lookup forwards the lookup request to the closest
preceding node in its finger table. Instead of
forwarding our lookup request out into the un-
trusted network, we will ask each hop in the route
for the next hop ourselves. This is possible in
overlay networks since we can establish a “direct”
overlay connection to any node on the physical
network. This change is straightforward to
implement.

When we perform lookups from the source,
when we detect a malicious node along our route
we can go back to the last good node on that route
and ask for an alternative next hop. Again, we

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

22

cannot rely on other nodes to perform these actions
since other nodes are not trusted.

2.2 Route Hop Verification

Route hop verification is the most important
change being made to the protocol. The goal of
hop verification is to answer this question: node a
returned a reference to node b as the next hop on
the route to some key. Is this hop correct?

The main idea is to look at the distance between
the identifier of the next hop returned by node A
and the “pointer” used by node A for the finger
table entry of that next hop and determines if this
distance is likely given the density of the network.
A finger table entry pointer for finger table entry i
of a node with identifier id is id + 2i (mod k). This
is the identifier that a node looks up when it is
filling in finger table entry i. We know that the
finger table pointer must fall between two nodes in
the Chord ring, so the distance between an entry’s
pointer and the identifier of the actual node stored
in that entry is less than the distance between that
node and its predecessor in the ring. By
comparing the numerical distance between the
entry pointer and the entry node’s identifier (the
dashed line in figure 2) to the average numerical
distance between nodes, we can determine how
likely it is that a node is using a proper node for a
particular finger table entry.

Each node will estimate the average numerical
distance between nodes in the ring from its own
finger table. Nodes in this modified version of
Chord will store additional information about its
finger table entries for this purpose. When
performing periodic finger table updates, nodes
will query the nodes in its finger table for the
identifiers of those nodes’ predecessors and
successors. This gives a node up to two unique
distance samples per finger table entry. From
these samples each node will compute its estimate
of the average distance between nodes and the
standard deviation of those distances from the
average.

Figure 4: An illustration of how hops are verified.

The green node is the source node, the yellow
node is the destination node, blue nodes are
uncompromised nodes in the network, and red
nodes are compromised nodes in the network.

If the distance between a finger table entry’s
pointer and the entry node’s identifier is greater
than the average distance between nodes plus a
parameter times the standard deviation of the
average distance between nodes, we will consider
the hop invalid. Otherwise we consider it valid.
Figure 4 above illustrates the hop verification
process. In this diagram, the green node represents
the source node and the yellow node represents the
destination node (the successor to the destination
key.) Blue nodes are nodes that are
uncompromised and are correctly participating in
the protocol. Red nodes are malicious nodes that
have formed a sub network in order to capture
lookup requests and forward them among
malicious nodes.

2.3 Defense Strategy

The idea of source routing, detecting malicious
nodes on the path to the destination, and routing
around those malicious nodes should get us to the
valid destination for a given key. If a node is
simply dropping lookup request, we can backtrack
and go around it and continue to the destination. If
node A refers a lookup requests to incorrect node
B, we can verify that that node B should not be
present in the finger table entry returned by node
A. If a group of malicious nodes form a sub ring
in the Chord network and run the Chord protocol
among themselves and only return routing
references to other malicious nodes, the malicious
network will have a lower node density than the
rest of the Chord network and we will detect this
as higher than expected node distances when we
query the malicious nodes. We can then route
around these malicious nodes.

3. GENERAL IDEA OF SYSTEM

The modified Chord protocol is implemented in
a simulator written in Java. The simulator allows
the user to run simulated Chord networks of
varying sizes. The user is able to decide how
many nodes will be compromised. The user will
have the ability to specify the standard deviation
parameter, which is described in section 2.2.
While the system should have the ability to test for
malicious nodes that drop packets and return

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

23

random incorrect next hops, the more interesting
test the system will run will be when a group of
nodes are colluding by running a sub-ring of
malicious nodes and only returning other nodes
within this sub-ring as hops when receiving a
lookup request. The software simulator will
perform lookups of random identifiers from
random, non-compromised nodes in the system.
The user will have the ability to specify how many
tests will be performed.

4. ASSUMPTION AND TESTS

This section contains a list of assumption about
the proposed system that we plan to investigate,
and how those assumptions will be tested.

i. Nodes performing lookups should be able to

route around malicious nodes that simply drop
lookup requests. This will be tested by
varying the fraction of malicious nodes that
drop lookup requests, performing a number of
lookups of random keys from random nodes,
and recording the lookup success rate. The
lookup success rate will then be plotted
against the fraction of malicious, lookup
request dropping nodes.

ii. Nodes performing lookups should be able to

detect non-colluding malicious nodes that
return false next hops. This will be tested in
the same fashion as assumption1, except the
malicious nodes will be set up to return
random, incorrect nodes during the lookup
requests instead of simply dropping the
packet. The same data will be plotted. This
has the effect of testing the verification and
the backtracking algorithm, but this type of
attack should be easier for the verification
algorithm to detect than the attack in the next
assumption.

iii. Nodes performing lookups should be able to

detect colluding malicious nodes that are
running a sub-ring and are returning
references to other malicious nodes during the
lookup process. Again, this will be tested in
the same fashion as assumption1 and 2, except
the malicious nodes will be running an
alternate finger table that consists of only
malicious nodes and using that finger table

during lookup requests. This has the effect of
testing the verification algorithm under the
attack method that is the most difficult to
detect.

As the number of nodes in the system increases,

the success rate in avoiding all three attacks
described above should increase. The data taken
from the tests for i, ii, and iii will test this
assumption. tests will be performed.

5. CONCLUSION & FUTURE SCOPE

Mischievous nodes in DHT’s can introduce
severe interruptions, even when they only exist in
small numbers. Several security concerns must be
targeted in order to use DHT’s in situations where
users cannot be trusted. In this paper, we proposed
a mechanism for mitigating the effects of one of
those concerns: routing threats.

The future work of regarding this aspect is, the
technique discussed here should transfer to other
DHTs protocols that make use of constrained
routing, and can serve as a crucial piece to a total
security solution.

 REFRENCES:

[1] Heinbockel, W., and Kwon, M.: Phyllo: A

peer-to-peer overlay security framework.
The First Workshop on Secure Network
Protocols (NPSec), Boston, MA (2005)

[2] Ratnasamy, S., Francis, P., Handley, M.,
Karp, R., Shenker, S.: A scalable content
addressable network. In: Proc. ACM
SIGCOMM’01, San Diego, CA (2001)

[3] Saroliya Anil, Shrivastava Vishal: Analysis of
Routing Attacks in Peer to Peer Overlay
Networks, Jaipur, In: National Conference on
“Recent Trends in IT: Opportunities and
Challenges”, S.S. Jain Subodh MCA Inst.,
Kukas, Jaipur (2010)

[4] Stoica, I., Morris, R., Karger, D., Kaashoek,
M.F., Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for Internet
applications. In: Proc. ACM SIGCOMM’01,
San Diego, California (2001)

[5] Wallach, D.: A survey of peer-to-peer
security issues, International Symposium on
Software Security, Tokyo, Japan (2002)

