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ABSTRACT 
 

Extracting three-dimensional objects from volume data, with previous techniques, were based on stitching a 
series of two-dimensional contours together or connecting two-dimensional contours using surface 
interpolation. Deformable simplex meshes DSM proposes an original surface representation to recover 3D 
object boundaries and treats data set as a complete volume as opposed to a series of slices. However, it 
requires that object of interest has been previously isolated from the other objects and the result of 
reconstruction depends on the interaction process between segmentation and interpolation. Moreover, as 
like as deformable models, it reveal poor convergence to concave boundaries and require initialization.  
In this paper, we propose to solve the problem resulting from the internal force formulation by adding a 
balloon force. Then, we combine the improved deformable simplex meshes (DSM-Balloon) with watershed 
method. The segmentation strategy is to use the segmentation result of watershed as prior information for 
DSM-Balloon. On one hand, the watershed prepares the initial lines for the DSM-Balloon which ensures 
automatic initialization and simplex meshes convergence. On other hand, the result of DSM-Balloon will 
overcome the over-segmentation and smoothing problem of watershed.  
 
Keywords: Hybrid Reconstruction, Deformable Simplex Meshes, Watershed, Balloon Force, 3D Medical 

Objects. 
 
 
1. INTRODUCTION  
 

The incorporation of priori information as shape, 
dimension, position and orientation of an object in 
the process of segmentation improve the efficiency 
and the accurateness of segmentation. Indeed, 
deformable models are a satisfactory solution that 
incorporates prior information in order to extract an 
object. While initializing coarsely a contour, it is 
possible to deform it so that it positioned itself on 
the boundaries of the object of interest. Generally, 
there are two types of deformable models: the 
parametric deformable models [1] and geodesic 
deformable models [2, 3]. The parametric 
deformable model "snake" has a considerable 
attention since its first introduction by Kass, 
Witkin, and Terzopoulus [1]. All properties and 
behaviors of parametric deformable models are 
specified through an energy function. A partial 
differential equation pushes the deformable model 
to evolve and reduce its energy, so that the local 
minimums of this energy correspond to the 
properties of the required image. The parametric 
deformable models have been used in a range of 
applications, including boundaries detection [1], 

object recognition [4, 5], shape modeling [5, 6], and 
movement tracking [4, 7]. The geometric 
deformable models were proposed simultaneously 
by Caselles et al. [3] and by Malladi et al. [2], to 
address topological change of parametric contours. 
However, due to calculating complexity and a 
slower speed convergence, the model require 
several times reset. 

3D medical image segmentation slice by slice, 
while applying 2D deformable models, is a process 
requiring post-treatments to reconnect the sequence 
of the 2D contours in a continuous surface.  Indeed, 
the 3D deformable surface is a robust segmentation 
technique that assures a global smoothing and a 
consistency between slices of 3D image. It treats 
data set as a complete volume as opposed to a series 
of slices. 3D medical object reconstruction can be 
achieved using the general algorithm of Delingette 
based on simplex meshes [8]. One of deformable 
simplex meshes advantages is that deformation 
process can be executed in a simple and efficient 
manner. However, internal energy formulation 
presents an inconvenient that decreases the 
boundaries extraction accurateness. Moreover, as 
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like as deformable models, it reveal poor 
convergence to concave boundaries and require 
initialization. 

The remainder of this paper is organized as 
follows: in the section 2, we review the essential 
mathematical jargon and the fundamental features 
of the DSM to inspire its interest to the 
segmentation problems. The section 3, focus on 
problem statement. In section 4, we present our 
contribution to improve the results of DSM to 
reconstruct valid object boundaries. The emphasis 
will be on properties and the rules used to build our 
combinatorial approach. Then, section (5 and 6) 
provide results, summarize the proposed method 
and points out our future research. 

 
2. SIMPLEX MESHES 
 
The simplex meshes have a constant connectivity. 
The main geometric of simplex mesh consists of a 
simple representation by giving the position of a 
vertex relatively to its neighbors. To represent 
three-dimensional surface, one uses the 2- simplex 
meshes where each vertex is connected to three 
neighboring vertices. The structure of simplexes 
meshes is dual to the structure of triangulation.  
 

 
 
Fig.1: duality between triangulations and 2-simplex 
meshes (Lift) and 1-simplex meshes (right).  
 

2.1 Geometry of 2-simplex meshes 

The coordinates of ( )iP  are defined relatively to its 
neighbors: 
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Fig. 2: The circle 1S of center ( )iC and ray 

( )ir circumscribes the vertices ( ) ( ) ( )( )iNiNiN PPP 321 ;; . 

The sphere 2S of center ( )iO and ray ( )iR circumscribes 

the four vertices ( ) ( ) ( )( )iNiNiNi PPPP 321)( ;;; . 
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2.2 Deformation law of 2-simplex meshes 

A deformable simplex meshes deforms under the 
combined action of a regularization (or internal) 
term and a data (or external) term enforcing the 
attraction of the surface towards object boundaries. 
In order to compute the evolution of the simplex 
mesh, the Newtonian law: 

ext
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is discretized using central finite differences with 
an explicit scheme: 
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Fig. 3: the geometry and definition of regularizing 
force. 
 

The internal force applied on vertex iP  is 
decomposed into a normal force and a tangential 
force. The goal of the tangential force is to control 
the vertex position with respect to its three 
neighbors in the tangent plane. 
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ikε  corresponding to the prescribed value of the 
metric parameters  after deformation.  
The goal of the normal force is to constrain the 
mean curvature of the surface through the simplex 
angle iϕ . 

 
Fig. 4: Definition of simplex angle iϕ . 

 
The general expression of the normal force is 
governed by the reference simplex angle iϕ

~  : 
 

( ) ( ) iiiiiiinr ndrLdrLF ),,~,,( ϕϕ −=      (6) 
 
Where L   is the function (2) that controls the local 
mean curvature at iP . 
The expression of the external force is dependent 
on the nature of the dataset. On volumetric images, 
the gradient intensity is used for local deflection of 

the mesh towards the voxels of maximum variation 
of intensity. The edge information, on the other 
hand, corresponds to gradient maxima and entails 
larger deformations of the mesh. Generally, the 
gradient intensity and edge information are 
combined to compute external force: 

EdgeGradext FFF +=           (7)                                                                  

The Gradient force at vertex ( )iP  relies on the 
search in his neighborhood for the voxel of 
maximum gradient intensity. If   V  is the voxel 
containing, ( )iP , then we inspect around V  for the 

voxel iG  of highest gradient intensity. 
 

( )( ) iiii
Grad
iGrad nnPGF .−= β    (8)       

                                                                   
The computation of the edge force at vertex ( )iP  

consists in finding the closest edge voxel iE in the 
normal direction in  of the mesh. The maximum 
number of edge voxels scanned is determined as a 
percentage of the overall radius of the edge image. 
 

( )ii
Edge
iEdge PEF −= β            (9)     

                                                                             
3.  PROBLEM STATEMENT 
 
 One of the difficulties with DSM internal 
forces formulation is that the process of 
deformation is based on a constant connectivity 
between vertices which implies that the position of 
a vertex is affected by neighboring vertices 
deformation. Because the coordinates of iP are 
computed relatively to its neighbors (1). 
Consequently, those interactions can push a number 
of vertices to left valid positions that fit 
conveniently the object boundaries and converge to 
the wrong position. Repeating the computation 
process for each vertex increases the likelihood of 
invalid missing data interpolation. Generally, we 
have noted two distinct behaviors of vertices during 
deformation: vertices that fit the object boundaries 
and those that pass from high gradient intensity to 
weak intensity values thus get over object 
boundaries. 
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Fig. 5: DSM vertices transitions from voxels t

iν  to voxels  
1+t

iν  : (a) positive +T and negative −T transitions 
caused by total force; (b) positive transitions caused by 
external force. 
 
The solution proposed to address this problem is 
based on inflation force.  Since DSM is initialized 
outside of object and the normal direction in is 
defined outside toward inside object (9), the mesh 
always deforms in the normal sense. And since we 
want to address the problem of negative vertices by 
bringing back and repositioning them again on the 
boundary, we define a new external force drifted 
from inflation force ballonF proposed by Cohen [9]. 
 
 ballonGradext FFF +=  
 
Indeed, we define a potential that permits "to 
inflate" or "to deflate" the mesh according to the 
normal signκ :  
 

( ) ( )iiiballon EPnF −= .κ  
 
The inflation force consists in finding the closest 
edge voxel iE in the sense of mesh normal 
directionκ . However, while DSM-Balloon resolve 
vertices negative transitions, it reveals poor 
convergence to concave boundaries and require 
initialization. Indeed, it requires that object of 
interest has been previously isolated from other 
objects. To overcome those artifacts, in our 
previews contribution [10], we have combining 
DSM and watershed. The watershed transforms 
[13, 14, 15, 16, 17] reduce sensitivity to 
initialization and alleviate convergence problem. 
However, the result of watershed depends on the 
order in which pixels are treated during execution. 
Also, there are many issues concerning the 

accuracy of watershed lines and over-segmentation 
[11, 12].  

 

 
 

Fig. 6: combined DSM and watershed diagram. 
 

However, the combination of DSM and watershed 
proposed in [10], don’t address the problem of 
vertices negative transitions in a convenient way. 
Indeed, after first stages of deformation, the 
vertices iP  witch fit the watershed voxels are 
labeled with an index. Consequently, unlabelled 
vertices follow the same law of motion. Labeled 
vertices on simplex meshes are not deformable yet 
inside the watershed boundary. Though, while 
stopping the evolution of vertices inside watershed 
lines, we prevent also the model to minimize its 
energy around watershed lines. Thus, we propose to 
combine DSM-Balloon and watershed algorithm to 
provide an explicit way to compute smooth 
minimal surfaces.   

 

Our basic assumption, DSM with watershed 
combination, is that the surface to be computed is 
embedded in the watershed segmentation images. 
This proposition is motivated by two observations. 
Firstly, the watershed lines contain all major 
boundaries of real images which can alleviate the 
convergence and initialization problem.  Secondly, 
DSM-Balloon is able to overcome the watershed 
over-segmentation and smoothness problem and 
can interpolate messing data between slices. Thus, 
we propose to solve the following combinatorial 
problem: finding a surface composed of a finite 
union of watershed lines such that DSM-Balloon 
minimizes a given geometric functional. 
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Fig. 7: combined DSM-Balloon and watershed diagram. 
 
The method consists in the first phase to segment 
each image. Once a set of slices has been 
segmented with watershed, it becomes necessary to 
map the result to tri-dimensional space (Lattice of 
watershed voxels).  Watershed lattice serves to 
initialize, in preliminary stage, DSM-Balloon. The 
initial mesh undergoes rigid and affine 
transformations that place mesh as accurately as 
possible over the watershed lines. After this step, 
the mesh progressively begins to undergo globally-
constrained deformations, which allow it to adapt 
itself to smaller variations of watershed lines. The 
mesh deformation, over watershed lattice voxels, is 
concretely different to deformation process of 
original simplex meshes reconstruction algorithm. 
 
4. RESULTS 
 
We estimate the volume of heart left ventricle LV 
to compare the previously cited models. In this 
paper, LV reconstruction doesn't take into account 
the heart dynamics, that is, the volumetric variation 
sequence of the heart during the time. Our objective 
is to reconstruct the LV at the end of systole and at 
the end of diastole. 

 

Fig. 8: (a) the end of systole "contraction" and (b) the 
end of diastole" dilation ". 

The method proposed through our system is 
consistent and regular. The combined results of 
DSM-Balloon and watershed are given in (Fig. 10 

and Fig. 11). As observed in the results, our method 
has two advantages. The first one is the ability to 
inflate and deflate the deformable simplex mesh 
which prevents vertices negative transitions. 
Thus, wrong boundary extraction. The second 
important advantage: this approach alleviates the 
convergence problem and allows a closely 
automatic initialization of the simplex meshes. The 
initialization is based on the knowledge acquired 
with watershed segmentation, which is often 
practical when segmenting complex 3D objects. 

 
Fig. 9: (End of systole) Reconstruction results of LV with 
the DSM, and combined watershed with DSM-Balloon 
respectively with 1 and 2-simplex meshes. 

 

Fig. 10: (end of diastole) Reconstruction results of LV 
with the DSM, and combined watershed with DSM-
Balloon respectively with 1 and 2-simplex meshes. 
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5. CONCLUSION 
 
Generally, the mesh closeness to modelled object 
depends on the number of its vertices, the distance 
of vertices to the data and the relative location of 
vertices on the surface object  
DSM-balloon increases the likelihood to fit the 
valid boundaries and the surface energy 
minimisation. Thus, improve valid missing data 
interpolation. The efficient knowledge extracted by 
watershed from 2D images is used to generate 
meaningful constraints deformation rules and to 
write new guidelines to improve outcomes of DSM-
Balloon. By incorporating watershed knowledge as 
prior information about the object shape, our 
proposed system combines the benefits of 
deformable simplex meshes and the robustness of 
watershed based method. Indeed, the proposed 
hybrid method allows overcoming the poor 
convergence and initialization problem of DSM-
balloon.   
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