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ABSTRACT 

This paper present a new computationally efficient improved stochastic algorithm for solving multi-area 
DC Optimal Power Flow (DC-OPF) in interconnected power systems. This algorithm is based on the 
combined application of Fuzzy Logic strategy incorporated in Particle Swarm Optimization (PSO) 
algorithm, hence termed as Fuzzy  PSO (FPSO). Multi-area DC-OPF calculations determine optimum 
generation schedule, optimal control variables and system quantities of each area with due consideration of 
generation and transmission system limitations for efficient power system operation. The proposed method 
is tested on IEEE 30-bus interconnected three area system. The investigation reveals that the proposed 
method can provide accurate solution with fast convergence and has the potential to be applied to other 
power engineering problems. 

Keywords:  DC-Optimal Power Flow, Fuzzy Logic, Particle Swarm Optimization.

 

NOMENCLATURE 

TF       Total fuel cost. 
ng  Number of committed generating units 

excluding the slack bus generator. 
, ,j j ja b c  Fuel cost coefficients of jth committed 

unit. 
 G jP  Active power generation of jth 

generating unit. 
 sGP  Slack bus active power generation. 
, ,s s sa b c  Fuel cost coefficients of slack bus 

generator. 
A  Area  index. 
AA  Index of the area adjacent to area A. 

AB  Area   A network admittance matrix. 
Aθ  Area A bus voltage phase angle vector. 
AP  Area A unit active power output vector. 
AD  Area A bus active power demand 

vector. 
AT  Set of area A tie-lines. 
AR  Area A  node  to tie-line incidence 

matrix. 
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 (i: bus index of area A; j: tie-line index 
connecting bus i ).  

A
refθ  Area  A reference bus voltage phase 

angle. 
NL        Number of  lines in area A. 
NT  Number of tie-lines connecting area A.  

ijx  Reactance of the line connecting buses 
i and j. 

kLF  Power   flow on the line k connecting 
buses i-j. 

tST  Scheduled power flow on the tie-line t 
connecting area A (ith bus) and area AA 
(jth bus). 

pN  Number  of individuals. 

piI  pith parent population. 

pif  Fitness function of pith parent 

population. 
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1. INTRODUCTION 
 
ELECTRIC power systems are interconnected due 
to the fact that it is a better system to operate with 
more reliability, improved stability and less 
production cost than the isolated systems. Multi-
area DC Optimal Power Flow (DC-OPF) problem 
is a large scale non-linear optimization problem 
with linear constraints. Multi-area DC-OPF 
calculations determine optimum generation 
schedule, optimal control variables and system 
quantities of each area with due consideration of 
generation and transmission system limitations. 
Many approaches [1-5] have been developed for 
solving multi-area DC-OPF problem. In [3], a new 
effective decomposition method for solving DC-
OPF problem in large interconnected decentralized 
power systems is proposed. This method 
decomposes the overall multi-area OPF problem 
into independent OPF sub-problems, one for each 
area. In this paper, similar decomposition technique 
is adopted for resolving the multi-area DC-OPF 
into independent equivalent single area DC-OPF 
sub-problems by incorporating scheduled tie-line 
power flow. 

Conventional optimization methods [3-5] have 
been used for economic dispatch and OPF 
calculations. Methods based on successive 
linearization (SLP) are popular. For medium size 
power systems, the conventional methods for OPF 
calculations may be fast and efficient enough. 
However, for large scale interconnected power 
systems the higher dimension of possible solution 
space and increase of constraints result in excessive 
computational burden. 

 With a view to reduce the computational burden, 
some stochastic techniques have been developed.  
The recent trend is on the application of modern 
and improved heuristic application techniques. 
Artificial intelligence techniques are the most 
widely used tool for many power system 
optimization problems. These methods (e.g., 
genetic algorithms, evolutionary programming and 
PSO etc.,) seem to be promising and are still 
evolving. In Genetic Algorithm (GA) the solution 
space is discrete in nature (binary representation) 
and hence it is difficult to effectively apply GA to 
multi-area DC-OPF problem in a continuous multi-
dimensional space. Evolutionary Programming 
(EP) is capable of finding global or near global 
optimal solutions within reasonable computation 
time hence it has become increasingly popular in 
recent years in science and engineering disciplines. 

Particle Swarm Optimization (PSO) is a powerful 
optimization procedure that has been successfully 
applied to a number of combinatorial optimization 
problems.  It has the ability to avoid entrapment in 
local minima by employing a flexible memory 
system. The multi-area DC-OPF problem is 
effectively solved using PSO algorithm in [6 -8]. 
The major drawback of PSO method is large 
number of iterations and very large computation 
time. 

In the present trend, there has been an increasing 
interest in the application of Fuzzy model [12]. 
Fuzzy logic has been applied in PSO algorithm. 
This gives promising results especially in cases 
where the processes are too complex to be analyzed 
by conventional techniques or where the available 
information is inexact or uncertain. Hence in this 
paper an amendment based on fuzzy logic is 
incorporated in PSO technique for solving the 
multi-area DC-OPF problem. The fuzzy logic is 
implemented in this effective stochastic algorithm 
(PSO) for obtaining a much better (faster) 
convergence.     

2. MULTI-AREA DC-OPF PROBLEM 
FORMULATION 

 
The multi-area DC-OPF problem is decoupled to 

equivalent independent single area sub-problem, 
one for each area by the addition of related tie-line 
power flows. The resulting equivalent independent 
single area sub-problem (considering area A) is 
formulated as a mathematical optimization problem 
as follows: 
Objective function 

2 2
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(i) Power flow equation 

A A A A A AB R T P Dθ + = −                                        
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(3) 
(ii) Line flow limit 
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x
θ θ− ≤ =  

     
         (4) 
(iii) Generator limit 

  min   max
   ; 1, 2,......A A A

G j G j G jP P P j ng≤ ≤ =  

     
         (5) 
(iv) Slack bus generator limit 

 min  max
 s  s  s

A A A
G G GP P P≤ ≤    

     
        (6) 
(v) Tie-line flow limit 

1 ( ) 0; 1,2,......A AA
i j t

ij
ST t NT

x
θ θ− − = =        (7)

       
3. OVERVIEW OF PSO 

 
The PSO method was introduced in 1995 

by Kennedy and Eberhart [6]. The method is 
motivated by social behavior of organisms such as 
fish schooling and bird flocking. PSO provides a 
population-based search procedure. Here 
individuals called as particles change their positions 
with time. These particles fly around in a 
multidimensional search space. During flight, each 
particle adjusts its position according to its own 
experience, and the experience of neighbouring 
particles. Thus each particle makes use of the best 
position encountered by itself and its neighbours. 
The direction of the particle is given by the set of 
particles neighbouring the particle and its past 
experience. Let x  and v  denote the particle 
position and its corresponding velocity in the search 
space. pbest is the best previous position of the 
particle and  gbest is the best particle among all the 
particles in the group. The velocity and position for 
each element in the particle at (t+1)th iteration is 
calculated by using the following equations. 
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(9)  

where ix  and iv  are the current position and 

velocity of the thi  particle, w  is the inertia weight 
factor, 1ϕ  and 2ϕ  are acceleration constants, 

()rand is the function that generates uniform 

random number in the range [0,1] and k  is the 
constriction factor introduced by Eberhart and Shi 
to avoid the swarm from premature convergence 
and to ensure stability of the system. 
Mathematically, k  can be determined as follows  

ϕϕϕ 42

2
2 −−−

=k                                      

(10) 

 where 21 ϕϕϕ +=  and 4>ϕ  . 

The selection of w provides a balance between 
global and local explorations. In general, the inertia 
weight w  is set as 

t
t

ww
ww ×

−
−=

max

minmax
max                              

(11) where maxt  is the maximum number of 

iterations or generations and maxw  and minw  are the 
upper and lower limit of the inertia weight. The 
inertia weight balances global and local 
explorations and it decreases linearly from 0.9 to 
0.4 in each run. The constants 1c and 2c  pulls each 
particle toward pbest and gbest positions. 
Maximum Velocity maxV  was set at 10 – 20 % of 
the dynamic range of variable on each dimension. 
The Flow chart for basic PSO approach is shown in 
Figure. 1. 

4. PARTICLE SWARM OPTIMIZATION (PSO) 
BASED MULTI-AREA DC-OPF     PROBLEM 
 

PSO, as an optimization tool, provides a 
population-based search procedure in which 
individuals called particles change their positions 
(states) with time. It is similar to the other 
evolutionary algorithm in which each particle in the 
swarm is initialized randomly within the effective 
real power operating limits. 
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These particles fly around in a multidimensional 
search space with a velocity which is dynamically 
adjusted according to the flying experiences of its 
own and its colleagues. The location of the 

thj particle is represented as 
( )jmnjnjj PPPX ,,1,11 ......,.....,=  for pNj ,...2,1= and 

],[ max,min,, mnmnjmn PPP ∈ , Pmn,min and Pmn,max  are the 

lower and upper bounds for the generation 
respectively. The best previous position (giving the 
best fitness value) of the thj particle is recorded and 
represented as ( )pppp

j jmnjnj
PPPX

,,1,11
......,.....,= , for 

pNj ,...2,1=  which is also called pbest. The index 

of the best particle among all the particles in the 
swarm is represented 
as ( )GGGG

j jmnjnj
PPPX

,,1,11
......,.....,= , called as gbest. 

The velocity for the thj particle is represented as 

( )jnmjnjj vvvV ,,1,11 ....,....,= , is clamped to a 

maximum velocity 
( )mnn vvvV max,1max,11max,max ....,....,= , which is 

specified by the user. In PSO, at each iteration ( )t , 
the velocity and location of each particle is changed 
toward its pbest and gbest locations according to 
the equations (12) and (13), respectively. 
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jmn
t

jmn vPP
                       

(13)
 

where w  is inertia weight, 1c  and 2c are 
acceleration constants and rand() is a uniform 
random number in the range [0, 1]. In equation 
(12), the first part represents the inertia of pervious 
velocity; the second part is the “cognition” part, 
which represents the private thinking by itself; the 
third part is the “social” part, which represents the 
cooperation among the particles. If the sum of 
accelerations would cause the velocity jmnv ,  on 

that dimension to exceed mnvmax,  then jmnv ,  is 

limited to mnvmax, . maxV  determines the resolution 

with which regions between the present position 
and the target position are searched. 
 
The process for implementing PSO is as follows: 
a) Initialization of particles: An initial swarm of 
size Np is generated randomly within the feasible 
range.  
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t
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t
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(14) 
The elements of each particle jX ; j = 1,2, …., pN

 
are the real power output of committed generating 
units.  
b)The fitness function for each particle is computed 
as, 

Calculate pbest and gbest

Update position and velocity of the 
particles 

Print the result 

Stop 

Start 

Get the parameters of 
PSO and power system 

Initialize positions and velocities of 
particles 

Calculate the fitness function 

YES 

NO 
 

Is 
 stopping criteria 

satisfied? 

Fig. 1 Flow chart for basic PSO approach 
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Where APBC the area power balance constraint and 
the values of penalty factors k1 and k2 are chosen 
such that if there is any constraint violations the 
fitness function value corresponding to that particle 
will be ineffective. The maximum fitness function 
value among the particles is stored as fmax. 
 
c) Determination of pbest and gbest particles: 
Compare the evaluated fitness value of each 
particle with its pbest. If current value is better than 
pbest, then set the current location as the pbest 
location. If the best pbest is better than gbest, the 
value is set to gbest.  
d) Modification of member velocity: Change the 
member velocity of the each individual particle 

jmnv ,  according to the equations (12).  

e) Modification of member position: The member 
position in each particle is modified according to 
(13).  
f) If t = tmax then the individual that generates the 
latest gbest is the optimal solution. Otherwise 
repeat the process from step b. 

5. 5. FUZZFIED PSO (FPSO) 
In the classical PSO technique the value of 

inertia weight is computed based on the iteration (t 
& tmax) alone which is independent of the problem 
being solved. However, for practical applications it 
may lead to slow and premature convergence. 
Hence there is a need for an adaptive inertia weight. 
The convergence depends on the relative fitness 
function value  fpi / fmax . It is an essential factor 
which has a major influence in the convergence 
process. If the relative fitness value fpi / fmax is low 
then the inertia weight is small and vice versa.  

The other factor is the search range 
(Pmn,max - Pmn,min)  which is a constant throughout the 
whole search process. But actually the search range 
varies for each generation or iteration. Hence there 
is a need for an effective search range. Thus these 
factors need a certain control to obtain a better 
convergence. Moreover the relationship between 
them seems arbitrary, complex and ambiguous to 
determine,     hence fuzzy logic strategy where the 
search criteria are not precisely bounded would be 
more appropriate than a crisp relation. Thus an 
adaptive inertia weight can be obtained from the 
fuzzy logic strategy thereby leading to an improved 

PSO technique termed as Fuzzy PSO (FPSO). The 
various sequential steps involved in the fuzzy 
implemented PSO based algorithm are as follows: 
 
(i) The fuzzy logic inputs and output are decided 
and their feasible ranges are declared. The two 
fuzzy inputs are as follows: 
 
Input 1 = fpi / fmax                                                (16) 
 
Input 2 = Max { ( Pmn,max – Pmn

pi); ( Pnm
pi – P mn,min) 

} 
                                                                              
(17) 
 
The Input1 is the first essential factor and Input 2 is 
an active search range determined as the maximum 
search distance or range pertaining to each element 
Pmn of particle Ipi in the present iteration from any 
of its corresponding limits (maximum or 
minimum). The output of the fuzzy logic strategy is 
the inertia weight w. 
(ii) Fuzzification of inputs and output using 
triangular membership function. Five fuzzy 
linguistic sets have been used for each of the inputs 
and output as shown in Figure.2. 
 

 
Figure.2. Fuzzy Membership function 
 
(iii) The fuzzy rule base is formulated for all 
combinations of fuzzy inputs based on their ranges.  
 
(iv) Defuzzification of output using Centroid 
method.                     
              

5 5

1 1
/i i i

i i
C x y y

= =

= ∑ ∑                         

(18)   
Where ix the mid-point of each fuzzy output set 

and iy  is its corresponding membership function 
value. The Centroid C is scaled (multiplied by its 
range) to obtain inertia weight value of each 
element in the particle. 
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6.  SAMPLE SYSTEMS AND RESULTS 
The proposed algorithm FPSO is tested on 

a standard IEEE 30-bus [3] test system, an 
interconnected two area test system formed by 
interconnecting two identical standard IEEE 30-bus 
systems through a tie-line of scheduled interchange 
(from area 1 to area 2) and an interconnected four 
area system. The standard IEEE 30-bus test system 
consists of 6 generating units, 41 lines and a total 
demand of 283.4 MW. The interconnected two area 
test system has a scheduled tie-line power flow of 
20 MW between buses 3 and 26 corresponding to 
area 1 and 2 respectively.  The four area 
interconnected system consists of four identical 
standard IEEE 30-bus systems with five tie-lines as 
shown in Figure. 3. The scheduled tie-line 
interchange STA-AA  are as follows : 
 
STA1-A2 = 70 MW ,  STA2-A4 = 70 MW , STA4-A1 = 60 
MW ,  STA1-A3 = 60 MW , STA3-A4 = 60 MW. 
 
For all the test systems Np is chosen as 10. The 
penalty factors k1, k2 and k3 are chosen by trial and 
error. Initially a small value between 10 and 100 
will be chosen. After the investigation if the 
constraint violated individuals have not been 
effectively eliminated then, the penalty factor 
values will be increased until a converged solution 
is reached with no constraint violations. 
Convergence is tested for 100 trial runs. The 
simulations were carried out on Pentium IV, 2.5 
GHz processor. 

 
 

Fig.3 Four Area Interconnected system  
 

The fuzzy logic data for mutation and 
recombination are presented in TABLE I and TABLE 
II respectively. 

 
TABLE I 

Data for Fuzzy Mutation 
Fuzzy 

Set Input 1 Input 2 Output 

XSmall 0.00001 to 
0.00004 10 to 30 0.001 to 0.005 

Small 0.00003 to 0.006 25 to 50 0.004 to 0.06 
Medium 0.005 to 0.05 40 to 80 0.04 to 0.08 

Large 0.03 to 0.5 70 to 150 0.075 to 0.09 
XLarge 0.4 to 1 140 to 190 0.085 to 0.1 

 
TABLE II 

Data for Fuzzy Recombination 
Fuzzy Set Input 3 Input 4 Output 
XSmall 10 to 30 10 to 30 0.001 to 0.006 
Small 25 to 50 25 to 50 0.004 to 0.08 

Medium 40 to 80 40 to 80 0.07 to 0.09 
Large 70 to 150 70 to 150 0.085 to 0.2 

XLarge 140 to 190 140 to 190 0.15 to 0.3 
 
The convergence characteristics of IEEE 30-bus 

test system corresponding to EP, FMEP, PSO and 
FPSO algorithms based single area DC-OPF (with 
same initial population) are shown in Figures. 4, 5 
and 6 respectively. The convergence characteristics 
are drawn by plotting the minimum fitness value 
from the combined population across iteration or 
generation index. 
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Fig.4 Convergence characteristic of EP and FMEP 

 
   From Figures. 4, 5 and 6 it is observed that the 
fitness function value converges smoothly to the 
optimum value without any abrupt oscillations, thus 
ensuring convergence reliability of the proposed 
algorithm and this algorithm have much better 
convergence than EP technique. 
 

 
Fig.5 Convergence characteristic of PSO and FPSO 
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Fig. 6 Convergence characteristic of FMEP and FPSO 

. 
TABLE III 

Optimal solution of IEEE 30-bus system 
Algorith

m SLP EP FMEP PSO FGPS
O 

PG S  
(MW) 

136.95
3 

137.49
9 

137.59
7 

137.59
5 

137.59
5 

PG 2  
MW) 59.13 60.515

6 
60.973

1 
60.975

1 
60.975

9 
PG5 

(MW) 23.9 22.323
7 

22.461
2 

22.461
0 

22.460
2 

PG 8 

(MW) 25.89 32.185 32.584
7 

32.584
9 32.585 

PG 11 

MW) 14.61 15.807
3 

14.653
7 

14.653
9 14.654 

PG 13 

MW) 22.88 15.069
7 

15.130
3 

15.130
2 

15.130
2 

Total 
Fuel cost 

($/hr) 

789.27
5 

787.15
1 

787.14
7 

787.14
9 

787.14
9 

Max no 
of 

iterations 
6 150 120 80 60 

CPU 
time in 

ms 
15 90 65 60 35 

 
From Fig. 6 it is inferred that the FPSO has a 

faster convergence than FMEP. Similar 
convergence characteristics can be obtained for 
each decoupled equivalent single area DC-OPF 
sub-problem.  

 The optimal solutions of IEEE 30-bus test 
system using the proposed algorithms are compared 
with Successive Linear Programming (SLP)[3], EP 
[9] and PSO techniques and the results are 
presented in TABLE III. 

From TABLE III it is inferred that for the same 
optimum the number of iterations or generations are 
low for FMEP[12] and FPSO algorithms than EP 
and PSO techniques respectively. Moreover the 
FPSO algorithm has a faster convergence (less 
number of iterations) than FMEP algorithm. Even 
though the number of iterations and CPU time are 
less for SLP, the optimal solution mainly depends 
on the initial conditions. It is observed that the 
deterministic SLP method initially suffers from 

oscillations and also the model becomes inaccurate 
when wider variations are allowed in  the control 
variables.  It is   also observed that with infeasible 
initial solutions the   proposed algorithm have 
smooth convergence 

 
TABLE IV 

Optimal solution of interconnected two area system using PSO 
and FPSO 

Area Area 1 sub-problem Area 2 sub-problem 
Algorithm PSO FMPSO PSO FMPSO 
PG S  (MW) 136.649 136.998 136.593 136.35 

PG 2  (MW) 67.3767 67.8788 57.4071 57.0314 
PG5 (MW) 24.7875 25.6412 22.5134 21.7156 
PG 8 (MW) 35 34.8767 23.4836 22.0071 
PG 11 (MW) 18.7835 18.2925 11.4033 13.7489 
PG 13 (MW) 20.803 19.7124 12 12.5471 
Total Fuel 
cost ($/hr) 866.228 866.12 713.46 713.443 

Max no of 
iterations 150 120 150 120 

CPU time in 
ms 90 65 90 65 

 
The optimal solutions of an interconnected two 

area test system using the proposed algorithms are 
compared with PSO and FPSO techniques and the 
results are presented in TABLE IV. From TABLE V it 
is observed that fuzzy implemented PSO algorithm 
have faster convergence.  

The tie-line flow with respect to its scheduled 
value (20MW) is shown in Fig. 7 for FMEP and 
FPSO algorithms. Fig.7 shows the effectiveness of 
the proposed algorithms in maintaining the tie-line 
scheduled value.  
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 Fig. 7 Tie-line flow convergence using FMEP and FGPSO 

 
In order to depict the effectiveness of this 

algorithm in maintaining the line flows within their 
limits, a critical line, 39 (between buses 29-30 with 
1p.u flow limit) flow is shown in Fig. 7 for FMEP 
and FPSO algorithms. 
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TABLE V 
Optimal solution of interconnected four area system 

for Area 1 and  Area 2 
Algorithm EP 

 
FMEP 

 
PSO FPSO 

Area 1   sub-problem 
PG S  (MW) 142.83 141.307 141.55 142.131 
PG 2  (MW) 65.34 57.35 58.3 60.5 
PG5 (MW) 50 50 50 50 
PG 8 (MW) 35 35 35 35 
PG 11 (MW) 10 19.76 18.51 15.15 
PG 13 (MW) 30.21 29.97 30.01 30.01 
Total Fuel 
cost ($/hr) 1027.47 1027.09 1026.71 1026.2 

Max no of 
iterations 150 120 80 60 

CPU time in 
ms 90 65 50 35 

Area 2   sub-problem 

PG S  (MW) 136.46 136.668 136.5 136.79 
PG 2  (MW) 57.01 57.187 57.21 59.38 
PG5 (MW) 28.19 27.544 27.07 24.76 
PG 8 (MW) 23.609 22.144 23.194 31.86 
PG 11 (MW) 18.47 19.753 19.75 15.59 
PG 13 (MW) 19.64 20.102 19.35 15.25 
Total Fuel 
cost ($/hr) 791.208 791.136 790.645 790.268 

Max no of 
iterations 150 120 80 60 

CPU time in 
ms 90 65 60 35 

TABLE VI 
Optimal solution of interconnected four area system 

 for Area 3 and Area 4 
Algorithm EP 

 
FMEP 

 
PSO FPSO 

Area 3   sub-problem 
PG S  (MW) 137.218 137.465 137.465 137.69 
PG 2  (MW) 60.18 60.71 59.97 60.72 
PG5 (MW) 24.23 22.77 23.08 22.95 
PG 8 (MW) 27.55 29.28 33.58 32.16 
PG 11 (MW) 19.21 17.08 14.13 16.29 
PG 13 (MW) 15.01 16.07 15.16 13.57 
Total Fuel 
cost ($/hr) 788.054 787.314 787.261 787.162 

Max no of 
iterations 150 120 80 60 

CPU time in 
ms 90 65 60 35 

Area 4    sub-problem 
PG S  (MW) 125.514 124.914 125.838 125.511 
PG 2  (MW) 35.908 35.3 34.73 35.88 
PG5 (MW) 15 15.5 15.84 16.54 
PG 8 (MW) 10.572 12.64 11.98 10.26 
PG 11 (MW) 11.74 10 10 10.19 
PG 13 (MW) 12.65 12 12 12 
Total Fuel 
cost ($/hr) 546.895 546.00 545.623 545.605 

Max no of 
iterations 150 120 80 60 

CPU time in 
ms 90 65 60 35 

  
It can be observed that the proposed algorithm 
effectively eliminates the line limit violations. 
The optimal solutions of an interconnected four 
area test system using the proposed algorithms are 
compared with EP and PSO techniques and the 
results are presented in TABLE V and TABLE VI 
respectively. 
From TABLE V and TABLE VI it is observed that 
fuzzy implemented EP and PSO algorithms have 
faster convergence. The computation times taken 
by the proposed algorithms (FMEP and FPSO) are 
only 70% and 60% of the time taken by EP and 
PSO methods respectively. Also it is inferred that 
the proposed algorithms can be used to solve "n" 
number of areas / buses. 
 
7. CONCLUSION  

 
This paper presents a simple, efficient and 

reliable fuzzified PSO (FPSO) for solving multi-
area DC-OPF problem. This paper demonstrates 
this algorithm with clarity, chronological 
development and by successful application of the 
proposed algorithm on standard test systems for 
solving multi-area DC-OPF problem. The results 
obtained from the proposed algorithms are 
compared with those obtained from SLP. The 
analysis reveals that PSO based algorithm 
converges faster than EP based algorithm and in 
both techniques the fuzzy implemented algorithms 
are much faster in convergence. The proposed 
algorithm have the potential to be applied to other 
power engineering problems such as, AC-OPF, 
SCOPF (Security Constrained Optimal Power 
Flow) since they can produce accurate optimum 
with fast convergence.    
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