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ABSTRACT 
 

The term Distributed Systems is used to describe a system with the following characteristics: i) it consists 
of several computers that do not share memory or a clock, ii) the computers communicate with each other 
by exchanging messages over a communication network, iii) each computer has its own memory and runs 
its own operating system. In the mobile distributed system, some of the processes are running on mobile 
hosts (MHs).A checkpoint algorithm for mobile computing systems needs to handle many new issues like: 
mobility, low bandwidth of wireless channels, and lack of stable storage on mobile nodes, disconnections, 
limited battery power and high failure rate of mobile nodes.   These issues make traditional checkpointing 
techniques unsuitable for such environments. Minimum-process coordinated checkpointing is an attractive 
approach to introduce fault tolerance in mobile distributed systems transparently. In this paper, we propose 
a minimum-process coordinated checkpointing algorithm for deterministic mobile distributed systems, 
where no useless checkpoints are taken, no blocking of processes takes place, and anti-messages of very 
few messages are logged during checkpointing. We try to reduce the loss of checkpointing effort when any 
process fails to take its checkpoint in coordination with others. 

Keywords: Checkpointing algorithm, Mobile computing, Distributed Mobile systems etc 
 
1. INTRODUCTION  
 
A distributed system is one that runs on a collection 
of machines that do not have shared memory, yet 
looks to its users like a single computer [1]. A 
distributed system consists of a finite set of 
processes and a finite set of channels. It can be 
described by a labeled, directed graph in which the 
vertices represent processes and the edges represent 
channels. A computer in distributed system is 
having two types of resources: i) local resources 
that are owned and controlled by it, ii) remote 
resources that are only accessible through network 
and incurring CPU delay and delay due to 
communication protocol [1].     
Checkpoint is defined as a designated place in a 
program at which normal process is interrupted 
specifically to preserve the status information 
necessary to allow resumption of processing at a 
later time. A checkpoint is a local state of a process 
saved on stable storage. By periodically invoking 

the checkpointing process, one can save the status 
of a program at regular intervals. 
 If there is a failure one may restart computation 
from the last checkpoints thereby avoiding 
repeating computation from the beginning. The 
process of resuming computation by rolling back to 
a saved state is called rollback recovery. In a 
distributed system, since the processes in the 
system do not share memory, a global state of the 
system is defined as a set of local states, one from 
each process. The state of channels corresponding 
to a global state is the set of messages sent but not 
yet received.  
  A message whose receive event is recorded, but its 
send event is lost. A global state is said to be 
“consistent” if it contains no orphan message. To 
recover from a failure, the system restarts its 
execution from a previous consistent global state 
saved on the stable storage during fault-free 
execution. In distributed systems, checkpointing 
can be independent, coordinated [3], [8], [11] or 
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quasi-synchronous [2], [9]. Message Logging is 
also used for fault tolerance in distributed systems 
[14].  
In coordinated or synchronous checkpointing, 
processes coordinate their local checkpointing 
actions such that the set of all recent checkpoints in 
the system is guaranteed to be consistent [6, 8]. In 
case of a fault, every process restarts from its most 
recent permanent/committed checkpoint. Hence, 
this approach simplifies recovery and it does not 
suffer from domino-effect. Furthermore, 
coordinated checkpointing requires each process to 
maintain only one permanent checkpoint on stable 
storage, reducing storage overhead and eliminating 
the need for garbage collection. Its main 
disadvantage is the large latency involved in output 
commit.  
A straightforward approach to coordinate 
checkpointing is to block communications while 
the checkpointing process executes. A coordinator 
takes a checkpoint and broadcasts a request 
message to all processes, asking them to take a 
checkpoint. When a process receives a message, it 
stops its execution, flushes all the communication 
channels, takes a tentative checkpoint, and sends an 
acknowledgement message back to the coordinator. 
After the coordinator receives acknowledgement 
from all processes, it broadcasts a commit message 
that completes the two phase checkpointing 
protocol. After receiving the commit message, each 
process receives the old permanent checkpoint and 
makes the tentative checkpoint permanent. The 
process is then free to resume execution and 
exchange messages with other processes.     The 
coordinated checkpointing algorithms can also be 
classified into following two categories: minimum-
process and all process algorithms. In all-process 
coordinated checkpointing algorithms, every 
process is required to take its checkpoint in an 
initiation [6], [8]. In minimum-process algorithms, 
minimum interacting processes are required to take 
their checkpoints in an initiation.  
If two processes start in the same state, and both 
receive the identical sequence of inputs, they will 
produce the identical sequence outputs and will 
finish in the same state. The state of a process is 
thus completely determined by its starting state and 
by sequence of messages it has received [23, [24], 
[25].  The ith CI of a process denotes all the 
computation performed between its ith and (i+1)th 
checkpoint, including the ith checkpoint  but not the 
(i+1)th checkpoint. Pj is directly dependent upon Pk 
only if there exists m such that Pj receives m from 
Pk in the current CI and Pk has not taken its 
permanent checkpoint after sending m.  

A process Pi is in the minimum set only if 
checkpoint initiator process is transitively 
dependent upon it. In these algorithms, only a 
subset of interacting processes (called minimum 
set) are required to take checkpoints in an initiation.  
   David R. Jefferson [29] introduced the concept of 
anti-message. Anti-message is exactly like an 
original message in format and content except in 
one field, its sign. Two messages that are identical 
except for opposite signs are called anti-messages 
of one another. All messages sent explicitly by user 
programs have a positive (+) sign; and their anti-
messages have a negative sign (-). Whenever a 
message and its anti-message occur in the same 
queue, they immediately annihilate one another. 
Thus the result of enqueueing  a message may be to 
shorten the queue by one message rather than 
lengthen it by one. We depict the anti-message of m 
by m-1.   
The Chandy-Lamport [6] algorithm is the earliest 
non-blocking all-process coordinated checkpointing 
algorithm. In this algorithm, markers are sent along 
all channels in the network which leads to a 
message complexity of O(N2), and  requires 
channels to be FIFO. Elnozahy et al. [8] proposed 
an all-process non-blocking synchronous 
checkpointing algorithm with a message 
complexity of O(N). In coordinated checkpointing 
protocols, we may require piggybacking of integer 
csn (checkpoint sequence number) on normal 
messages [5], [8], [13], [19], [22]. Kumar et al. [18] 
proposed an all-process non-intrusive 
checkpointing protocol for distributed systems, 
where just one bit is piggybacked on normal 
messages. It results in extra overhead of vector 
transfers during Checkpointing.   
In the mobile distributed system, some of the 
processes are running on mobile hosts (MHs). An 
MH communicates with other nodes of the system 
via a special node called mobile support station 
(MSS) [1]. A cell is a geographical area around an 
MSS in which it can support an MH. An MH can 
change its geographical position freely from one 
cell to another or even to an area covered by no 
cell. An MSS can have both wired and wireless 
links and acts as an interface between the static 
network and a part of the mobile network. Static 
network connects all MSSs. A static node that has 
no support to MH can be considered as an MSS 
with no MH. 
The existence of mobile nodes in a distributed 
system introduces new issues that need proper 
handling while designing a checkpointing algorithm 
for such systems. These issues are mobility, 
disconnection, finite power source, vulnerable to 
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physical damage, lack of stable storage etc.  These 
issues make traditional checkpointing techniques 
unsuitable to checkpoint mobile distributed systems 
[1], [5], [15]. To take a checkpoint, an MH has to 
transfer a large amount of checkpoint data to its 
local MSS over the wireless network. Since the 
wireless network has low bandwidth and MHs have 
low computation power, all-process checkpointing 
will waste the scarce resources of the mobile 
system on every checkpoint. Prakash and Singhal 
[15] gave minimum-process coordinated 
checkpointing protocol for mobile distributed 
systems.  
A good checkpointing protocol for mobile 
distributed systems should have low overheads on 
MHs and wireless channels and should avoid 
awakening of MHs in doze mode operation. The 
disconnection of MHs should not lead to infinite 
wait state. The algorithm should be non-intrusive 
and should force minimum number of processes to 
take their local checkpoints [15]. In minimum-
process coordinated checkpointing algorithms, 
some blocking of the processes takes place [4], 
[11], or some useless checkpoints are taken [5], 
[13], [19].   
Acharya and Badrinath [1] gave a checkpointing 
protocol for mobile systems. In this approach, an 
MH   takes a local checkpoint whenever a message 
receipt is preceded by the message sent at that MH. 
This algorithm has no control over checkpointing 
activity on MHs and depends totally on 
communication patterns. In worst case, the number 
of local checkpoints taken will be equal to the 
number of computation messages, which may lead 
to high checkpointing overhead.  
Cao and Singhal [5] achieved non-intrusiveness in 
the minimum-process algorithm    by introducing 
the concept of mutable checkpoints. The number of 
useless checkpoints in [5] may be exceedingly high 
in some situations [19]. Kumar et. al [19] and  
Kumar et. al [13] reduced the height of the 
checkpointing tree and the number of useless 
checkpoints by keeping non-intrusiveness intact, at 
the extra cost of maintaining and collecting 
dependency vectors, computing the minimum set 
and broadcasting the same on the static network 
along with the checkpoint request.  
Koo and Toeg [11], and Cao and Singhal [4] 
proposed minimum-process blocking coordinated 
checkpointing algorithms.  Neves et al. [12] gave a 
loosely synchronized coordinated protocol that 
removes the overhead of synchronization. Higaki 
and Takizawa [10] proposed a hybrid 
checkpointing protocol where the mobile stations 
take checkpoints asynchronously and fixed ones 

synchronously. Kumar and Kumar [29] proposed a 
minimum-process coordinated checkpointing 
algorithm where the number of useless checkpoints 
and blocking are reduced by using a probabilistic 
approach. A process takes its mutable checkpoint 
only if the probability that it will get the checkpoint 
request in the current initiation is high. To balance 
the checkpointing overhead and the loss of 
computation on recovery, P Kumar [27] and Kumar 
et al [26], proposed a hybrid-coordinated 
checkpointing protocol for mobile distributed 
systems, where an all-process checkpoint is taken 
after executing minimum-process checkpointing 
algorithm for a certain number of times.  
Transferring the checkpoint of an MH to its local 
MSS may have a large overhead in terms of battery 
consumption and channel utilization. To reduce 
such an overhead, an incremental checkpointing 
technique could be used [16]. Only the information, 
which changed since last checkpoint, is transferred 
to the MSS.  
Johnson and Zwaenepoel [26] proposed sender 
based message logging for deterministic systems, 
where each message is logged in volatile memory 
on the machine from which the message is sent. 
The massage log is then asynchronously written to 
stable storage, without delaying the computation, as 
part of the sender’s periodic checkpoint. Johnson 
and Zwaenepoel [27] used optimistic message 
logging and checkpointing to determine the 
maximum recoverable state, where every received 
message is logged.  
In the present study, we propose a minimum-
process coordinated Checkpointing algorithm for 
Checkpointing deterministic distributed 
applications on mobile systems. We eliminate 
useless checkpoints as well as blocking of 
processes during checkpoints at the cost of logging 
anti-messages of very few messages during 
Checkpointing. We also try to minimize the loss of 
checkpointing effort when any process fails to take 
its checkpoint. 
 
2. THE PROPOSED CHECKPOINTING 
ALGORITHM 
 
2.1 SYSTEM MODEL  
 
Our system model is similar to [28]. There are n 
spatially separated sequential processes P0, P1,.., Pn-

1, running on MHs or  MSSs, constituting a mobile 
distributed computing system. Each MH/MSS has 
one process running on it.  The processes do not 
share memory or clock. Message passing is the only 
way for processes to communicate with each other. 
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Each process progresses at its own speed and 
messages are exchanged through reliable channels, 
whose transmission delays are finite but arbitrary. 
A process in the cell of MSS means the process is 
either running on the MSS or on an MH supported 
by it. It also includes the processes of MHs, which 
have been disconnected from the MSS but their 
checkpoint related information is still with this 
MSS. We also assume that the processes are 
deterministic. The ith CI (checkpointing interval) of 
a process denotes all the computation performed 
between its ith and (i+1)th checkpoint, including the 
ith checkpoint  but not the (i+1)th checkpoint. 
When an MH sends an application message, it is 
first sent to its local MSS over the wireless cell. 
The MSS piggybacks appropriate information with 
the application message, and then routes it to the 
destination MSS or MH. When the MSS receives 
an application message to be forwarded to a local 
MH, it first updates the data structures that it 
maintains for the MH, strips all the piggybacked 
information, and then forwards the message to the 
MH. Thus, an MH sends and receives application 
messages that do not contain any additional 
information; it is only responsible for 
checkpointing its local state appropriately and 
transferring it to the local MSS.  
 
2.2 DATA STRUCTURES 
 
Here, we describe the data structures used in the 
proposed checkpointing protocol. A process on MH 
that initiates checkpointing, is called initiator 
process and its local MSS is called initiator MSS. If 
the initiator process is on an MSS, then the MSS is 
the initiator MSS. All data structures are initialized 
on completion of a checkpointing process, if not 
mentioned explicitly.    
Pr_csni: A monotonically increasing integer 
checkpoint sequence number for each process. It is 
incremented by 1 on mutable checkpoint.  
td_vecti []: It is a bit array of length n for n process 
in the system. td_vecti[j] =1 implies Pi is 
transitively dependent upon Pj. When Pi receives m 
from Pj such that Pj has not taken any permanent 
checkpoint after sending m then Pi sets 
td_vecti[j]=1. When Pi commit its checkpoint, it sets 
td_vecti[]=0 for all processes except for itself which 
is initialized to 1.   
chkpt-sti: A boolean which is set to  ‘1’ when Pi 
takes a tentative checkpoint; on commit or abort, it 
is reset to zero  
m_vect[]:  An bit array of  size n for n processes in 
the systems. When Pi starts checkpointing 

procedures, it computes tentative minimum set as 
follows: m_vect[j] = td_vecti[j] where j=1,2, ….,n.  
TC[] An array of size n to save information 
about the processes which have taken their tentative 
checkpoints in the second phase. When process Pj 
takes its tentative checkpoint then jth bit of this 
vector is set to 1. It is initialized to all zeros in the 
beginning of the checkpointing process. It is 
maintained by the checkpoint initiator MSS only.   
MC[]:  A bit array of size n, maintained by initiator 
MSS. MC[i]=1 implies Pi has taken its mutable 
checkpoint in the first phase. 
MSS_chk_taken2[]: A bit array of length n 
maintained by each MSS. MSS_chk_taken2[i] =1 
implies Pi has taken its tantative checkpoint 
successfully in the second phase.   
MSS_chk_request2[]:  A bit array of length n at 
each MSS. MSS_chk_request2[i] =1, Pi has been 
issued tentative checkpoint request in the second 
phase. 
Max_time : it is a flag used to provide timing in 
checkpointing operation. It is initialized to zero 
when timer is set and becomes ‘1’ when maximum 
allowable time for collecting global checkpoint 
expires.   
MSS_plist[] : A bit array of length n for n 
processes which is maintained at each MSS 
MSS_plistK[j]=1 implies each process Pj is running 
on MSSk. If Pj is disconnected, then it checkpoint 
related information is on MSSk.  
MSS_chk_taken: A bit array of length n bits 
maintained by the MSS. MSS_chk_taken [j]=1 
implies  Pj  which is in the cell of MSS has taken its 
mutable checkpoint in the first phase. 
MSS_chk_request: A bit array of length n at each 
MSS. The jth bit of this array is set to ‘1’ whenever 
initiator sends the checkpoint request to Pj and Pj is 
in the cell of this MSS. 
MSS_fail_bit:  A flag maintained on every 
MSS, initialized to ‘0’; set to ‘1’ when any process 
in the cell of MSS fails to take tentative checkpoint 
Pin : The process which has initiated the 
checkpointing operation 
MSSin : The MSS which has Pin in its cell 
p_csnin : checkpoint sequence number of initiator 
process 
g_chkpt: A flag which indicates that some global 
checkpoint is being saved 
csn[]: An array of size n, maintained on  every 
MSS, for n processes. csn[i] represens the most 
recently committed checkpoint sequence number of 
Pi. After the commit operation, if m_vect[i]=1 then 
csn[i] is incremented. It should be noted that entries 
in this array are updated only after converting 
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tentative checkpoints in to permanent checkpoints 
and not after taking tentative checkpoints. 
m_vect1[]: An array of size n maintained on every 
MSS. It contains those new processes which are 
found on getting checkpoint request from initiator. 
m_vect2[]: An array of size n. for all j 
such that m_vect1[j]  o, m_vect2= 
m_vect2  m_vect1.  
m_vect3[]: An array of length n; on receiving 
m_vect3[], m_vect[], m_vect1[] along with 
checkpoint request [c_req] or on the computation of 
m_vect1[] locally: m_vect3[]=m_vect3[] ∪ 
c_req.m_vect3[]; m_vect3[]=m_vect3[]∪m_vect[]; 
m_vect3[]=m_vect3[] ∪c_req.m_vect1[]; 
m_vect3[]=m_vect3[] ∪ m_vect1[];  m_vect3[] 
maintains the best local knowledge of the minimum 
set at an MSS; 
 
2.3 COMPUTATION Of M_VECT[], 
M_VECT1[], M_VECT2[], 
M_VECT3[]: 
1. Suppose a process Pr wants to initiate 
checkpointing procedure. Its send its request to its 
local MSS, say MSSr.. MSSr maintains the 
dependency vector of Pr (say td_vectr[]).MSSr  
coordinates checkpointing on behalf of Pr.  It 
computes tentative minimum set as follows: 

i=1,n  m_vect[i] = td_vectr[i] 
2. On receving m_vect[] from MSSr, any MSS (say 
MSSS) computes the m_vect1[] as follows: 
Suppose MSSs maintains the process Pj such that Pj  

 MSSs and Pj  m_vect 
 m_vect1[i]=1 iff m_vect[i]=0 and td_vectj[i]=1 

m_vect1[] maintains the new processes found for 
the minimum set when a process receives the 
checkpoint request.  
m_vect2=m_vect2 U m_vect1 

 i, m_vect1[i]=0 
 3. m_vect3= m_vect U m_vect2 
MSSin sends c_req to MSSs along with m_vect[]and 
some process (say Pk)  is found at MSSs, which 
takes the checkpoint to this c_req. All MSSs 
maintains the processes of minimum set to the best 
of their knowledge in m_vect3. It is required to 
minimize duplicate checkpoint requests. Suppose, 
there exists some process (say Pl) such that Pk is 
directly dependent upon Pl and Pl is not in the 
m_vect3 , then MSSs sends c_req to Pl. The new 
processes found for the minimum set while 
executing a potential checkpoint request at an MSS 
are stored in m_vect1. When an MSS finds that all 
the local processes, which were asked to take 

checkpoints, have taken their checkpoints, it sends 
the response to the MSSin along with m_vect2; so 
that MSSin may update its knowledge about 
minimum set and wait for the new processes before 
sending commit. In this way, MSSin sends commit 
only if all the processes in the minimum set have 
taken their tentative checkpoints. 
 
2.4 FORMAL OUTLINE OF THE 
CHECKPOINTING ALGORITHM: 
2.4.1 Actions taken when Pi sends m to Pj: 
 
send (Pi,Pj, m, pr_csni,td_vecti[]); 
//Pi piggybacks its own csn and transitive 
dependency vector onto m. 
 
2.4.2 Algorithm executed at initiator MSS (say 
MSSin) 
 
Suppose Pin initiates checkpointing. Pin sends the 
request to MSSin. MSSin computes m_vect []. 
1. On the basis of computed m_vect, MSSin 
computes m_vect1, m_vect2, m_vect3 [Refer 
section 4.1]. 
2. m_vect = m_vect3. 
3. MSSin sends c_req to all MSS  along with 
m_vect[]//Multiple checkpoint request 
4. Set max-time. 
5. Wait for response. 
6. On receiving response (Pin, MSSin, MSSs,  
mss_,chk_taken, m_vect2, mss_fail_bit) or at 
max_time 
     6.1 If (max_time)OR(mss_fail_bit) { send 
message abort (Pin, MSSin, pr_csnin} to all MSSs, 
Exit; 
//Maximum allocated time expired or some process 
//failed to take checkpoint   

6.2 m_vect[] = m_vect[] m_vect2[]. [“ ” is a      
set union operator] 

     6.3 MC[] =MC[] mss_chk_taken[] 
7. For (k=0;k<n; k++) 

 If (  k such that MC[k] m_vect[k]) then go to 
step 5; 
8. S  end message tent_req (Pin, MSSin   , pr_csnin, 
m_vect[]) to all MSSs; 
         // m_vect[] is the exact minimum set//tent_req 
is tentative checkpoint request. 
9. 0n receving response (Pin,MSSin, MSSs, 
mss_chkpt_taken2[], mss_fail_bit)or at max time 
 i) if( (max_time)or (MSS_fail_bit)) send 
message abort to all MSSs 
 ii) TC[]=TC[] U mss_chk_taken2[] 
10. for (k=0; k<n; k++)  



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT& LLS. All rights reserved.                                                                      
 

www.jatit.org 

 
6 

 

If (there exit k such that TC[k] not equal m_vect[k] 
then go to step 9 
11. send message commit() to all MSSs. 
 
2.4.3 Algorithm Executed at a process Pj on 
receiving of m from Pi: 
Case 1. If (m.pr_csni = = csn[i])// Pi has not taken 
its checkpoint                       
// before sending m 
             { rec(m); 
 td_vectj[i]=1}; 
Case 2. If (m.pr_csni<csn[i]; rec (m)); Pi has taken 
some permanent checkpoint                        
 // after sending m 
 
Case 3. If(( m.pr_csni>csn[i])  AND 
(pr_csnj>csn[j]))  
 {rec (m); td_vectj[i]=1}//Pi & Pj, both, have taken 
their tentative    
 //checkpoints 
Case 4. If(( m.pr_csni>csn[i])  AND 
(pr_csnj=csn[j])) 
{Pj log m-1 } Pi has taken its tentative checkpoint                       
 // before sending m while Pj has not. 
 
2.4.4 Algorithm executed at any MSS (say MSSs) 
1. Wait for Response 
2. Upon receiving message c_req (Pin, MSSin,   
p_csni, m_vect) from MSSin 
 2.1 For any Pi such that mss_plists[i]=1∧ 
m_vect[i]=1; send c_req toPi 
 2.2 ++pr_csni; mss_chk_request[i]=1, chkpt_sti=1 
 2.3 Compute m_vect1, m_vect2, m_vect3 //Refer  
Section 4.1 

 2.4 If  such that m_vect1[i]=1;  
    send c_req to Pi.   //m_vect1 contains the new 
processes found for the //minimum set 
3. On receiving c_req from some other MSS say 
MSSp 

i such that(( mssp. m_vect1[i] =  1) 

(mss_p_mss[i]= 1)  (mss_chk_req=1)) 
{ send c_req to Pi; compute m_vect1, m_vect2, 
m_vect3} 

If  j such that m_vect1[j]=1;  
send c_req to Pj; 

i, m_vect1[i]=0; 
4. On receiving response to checkpointing from Pj 
     4.1 If (Pj has taken the mutable checkpoint   
successfully the mss_chk_taken[j]=1 else mss_set 
fail_bit.) 

     4.2 If (mss_fail_bit)  ( j 
mss_chk_taken[j]=mss_chk_request[j]; 

Send response (Pin, MSSin,msss, mss_chk_taken, 
mss_fail_bit, m_vect2) to MSSin; 
5. On receiving tantative checkpoint request from 
MSSin tent_req(Pin, _MSSin ,pr_csn, m_vect[]) 
a) Send tentative checkpoint request to all process 
in its all which are in m_vect[] and store such 
processor in MSS_Chk_request2[] 
For(k=0;k<n;n++) 
{ 
If (m_vent[u]==s and MSS_plist[h]==1 
Then(send tentative checkpoint report 2[h]=1); 
b) on receiving positives response to checkpoint 
from Pj 
if (Pj has taken its tentative checkpoint 
successfully, MSS_chk_taken2{j]=1 
else 
set MSS_fail_bit 
if((mss_fail_bit)OR(for all j 
mss_chk_taken2[j]=mss_chk_request2[j]) 
send response (pin, mssin,msss,mss_chk_taken2, 
mss_fail_bit) to mssin)  
6. On receiving commit(). 
Convert the tentative checkpoints in to permanent 
ones and discard old permanent checkpoints.if any. 

j such that m_vect[j]=1, csn[j]++; 
Initialize relevant data structures. 
7. On receiving abort(). 
Discard the tentative checkpoints, if any. 
Update relevant variables. 
 
2.4. 5 Algorithm executed at any process Pi 
On receiving tentative/mutable checkpoint request; 
Take tentative/mutable checkpoint and inform local 
MSS. 
 
2.8 Handling Node Mobility and Disconnections  
  
MHs are typically powered by battery. From time 
to time, MHs may turn to doze mode or get 
disconnected with the network to save battery 
power. The duration of disconnection can be 
arbitrarily long and if a disconnected MH is 
involved in the checkpointing operation, then the 
checkpointing operation may have to wait for a 
long time or the operation must be aborted. To 
seamlessly execute the coordinated checkpoint 
collection algorithm, these situations needs to be 
taken care efficiently. 
We, hereby, propose the following strategy to 
handle the above undesirable situations in the 
mobile systems during checkpointing operation. 
When a MH is disconnected from the cell of its 
MSS then it takes a local checkpoint and saves it 
with the MSS. This local checkpoint is saved in the 
same manner as it saves in normal situations on 
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receiving the checkpointing request from the 
initiator process. All the concerned data structures 
related with the MH are also saved on the MSS. 
During the disconnection, if a checkpoint request 
arrives for the MH then the MSS will execute the 
algorithm for the disconnected MH and will convert 
its local checkpoint (which was saved on MSS by 
MH before disconnection) in to tentative 
checkpoint and on getting the commit request will 
convert this tentative checkpoint into permanent 
checkpoint. If the messages are received for the 
disconnected MHs then the MSS will buffer all the 
messages in FIFO queue.  
On reconnection, if the MH is not connected with 
the original MSS, then it first contact the original 
MSS and downloads all the data structures which 
were sent by this MH before disconnection. It also 
downloads all the messages which were buffered by 
the original MSS during the period of 
disconnection. The MH then processes these 
buffered messages in the same order in which they 
were received by the original MSS. 
 
2.9 Handling Failures during checkpointing  
 
An MH may fail during checkpointing process. If 
an MH fails after taking its tentative checkpoint or 
if it is not a member of minimum set, then the 
checkpointing procedure can be completed 
uninterruptedly. If a process fails during 
checkpointing, then our straight forward approach 
is to discard the whole checkpointing operation . 
The failed process will not be able to respond to the 
initiator’s request and the initiator will detect the 
failure by timeout and will discard the complete 
checkpointing operation. If the initiator fails after 
sending commit, the checkpointing process can be 
considered complete. If the initiator fails during 
checkpointing, then some processes, waiting for 
commit will time out and will issue abort on his 
own. 
 Kim and Park [6] proposed that a process commits 
its tentative checkpoints if none of the processes, on 
which it transitively depends, fails; and the 
consistent recovery line is advanced for those 
processes that committed their checkpoints. The 
initiator and other processes, which transitively 
depend on the failed process, have to abort their 
tentative checkpoints. Thus, in case of a node 
failure during checkpointing, total abort of the 
checkpointing is avoided. 
 
 
 

 
3. PERFORMANCE EVALUATION 
 
3.1General Comparison with existing minimum  
process algorithms: 
 
In  [13], initiator process/MSS collects dependency 
vectors for all the processes and computes the 
minimum set and sends the checkpointing request 
to all the processes with minimum set. The 
algorithm is non-blocking; the message received 
during checkpointing may add processes to the 
minimum set. It suffers from additional message 
overhead of sending request to all processes to send 
their dependency vectors and all processes send 
dependency vectors to the initiator process. But in 
our algorithm, no such overhead is imposed. The 
Cao-Singhal [5] suffers from the formation of 
checkpointing tree as shown in basic idea. In our 
algorithm, theoretically, we can say that the length 
of the checkpointing tree will be considerably low 
as compared to algorithm [5], as most of the 
transitive dependencies are captured during the 
normal processing. We do not compare our 
algorithm with Prakash-Singhal [15], as Cao-
Singhal proved that there no such algorithm exists 
[4]. 
Furthermore, in [5] algorithm, transitive 
dependencies are captured by direct dependencies. 
Hence the average number of useless checkpoints 
requests will be significantly higher than the 
proposed algorithm. In [5], huge data structure are 
piggybacked along with checkpointing request, 
because they are unable to maintain exact 
dependencies among processes. Incorrect 
dependencies are solved by these huge data 
structures. In our case, no such data structures are 
piggybacked on checkpointing request and no such 
useless checkpoint requests are sent., because we 
are able to maintain exact dependencies among 
processes and furthermore, are able to capture 
transitive dependencies during normal computation 
at the cost of piggybacking bit vector of length n 
for n processes. 
 
3.2 Comparison with other Algorithms: 
 
We use following notations to compare our 
algorithm with other algorithms: 
Nmss: number of MSSs. 
Nmh: number of MHs.   
Cpp: cost of sending a message from one process to 
another     
Cst: cost of sending a message between any two 
MSSs. 
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Cwl: cost of sending a message from an MH to its 
local MSS (or vice versa). 
Cbst: cost of broadcasting a message over static 
network. 
Csearch:  cost incurred to locate an MH and forward 
a message to its current    local MSS, from a    
source MSS. 
Tst: average message delay in static network. 
Twl: average message delay in the wireless network. 
Tch: average delay to save a checkpoint on the 
stable storage. It also includes the time to    transfer 
the checkpoint from an MH to its local MSS. 
N:  total number of processes 
Nmin: number of minimum processes required to 
take checkpoints.       
Nmut:  number of useless mutable checkpoints [5].    
Tsearch:   average delay incurred to locate an MH 
and forward a message to its current local MSS. 
Nucr: average number of useless checkpoint requests 
in [5]. 
Ndep: average number of processes on which a  
process depends. 
h1: height of the checkpointing tree in Koo-Toueg 
algorithm [11]. 
h2: height of the checkpointing tree in the proposed 
algorithm. 
In the  algorithm [11], [5] and in the proposed one, 
the checkpoint initiator process, say Pin  sends the 
checkpoint request to any process Pi if Pin  is 
causally dependent upon Pi. Similarly, Pi sends the 
checkpoint request to any process Pj if Pi is causally 
dependent upon Pj. In this way, a checkpointing tree 
is formed.  
 
3.2.1 Performance of our algorithm  
The Synchronization message overhead:  

 
Initiator process sends request and  response  to its 
local MSS: 2Cwl 
Initiator MSS broadcasts mutable |tentative |commit 
request over static network: 3Cbst 
Every process in the  minimum set receives 
mutable checkpoint request, tentative checkpoint 
request from the local MSS and it also sends 
responses to these requests to local MSS: 
4*Nmin*Cwl 
Every MSS sends mutable checkpoint and  tentative 
checkpoint response to initiator MSS : 2*Nmss*Cst 
Total Average overhead = 2Cwl+3 bst +4*Nmin*Cwl 
+ 2*Nmss*Cst 
In our algorithm, anti-messages of very few 
processes are blocked during checkpointing at 
receiver end. The loss of checkpointing effect is 
reduced in case of abort in the first phase.  

 Number of processes taking checkpoints: In our 
algorithm, only minimum numbers of processes are  
required to take their checkpoints.         
The blocking time of the Koo-Toueg [11] protocol 
is highest, followed by Cao-Singhal [4] algorithm.  
In the algorithms proposed in  [5], [19], [20], no 
blocking of processes takes place, but some useless 
checkpoints are taken, which are discarded on 
commit.  In Elnozahy et al [8] algorithm, all 
processes take checkpoints. In the protocols [4], 
[11], and in the proposed one, only minimum 
numbers of processes record their checkpoints. In 
algorithm [5], concurrent executions of the 
algorithm are allowed, but it may lead to 
inconsistencies in doing so [20]. We avoid the 
concurrent executions  of the proposed algorithm. 
We store anti-messages of very few messages at 
receiver end only during the checkpointing period.      
The message overhead in our algorithm is larger 
than two-phase algorithms as our algorithm is a 
three phase algorithm. In the first phase imitator  
 
    Cao-Singhal 

[4] 
Cao- 
Singhal 
[5] 
 

Koo-
Toeg  
[11] 

Elnozahy 
et al [8] 

Propos-
ed  
Algorit-
hm 

Avg. block 
 Time 

2Tst 0 h1*Tch 0 0 

Avg No. of 
checkpoints 

Nmin Nmin+ 
Nmut 

Nmin N Nmin 
 

Avg  
Messa-ge 
Over-head 

3Cbst+ 
2Cwireless 
+2Nmss*Cst 
+3Nmh 
* Cwl 

2Nmin 
*Cpp 
+Cbst+ 
Nucr* 
Cpp 

3*Nmin 
*Cpp 
* Ndep 

2Cbst + 
N *Cpp   

2Cwl 
+3 bst + 
4Nmin 
*Cwe + 
2Nmss 
*Cst 
 

 
Table 1 A Comparison of System Performance 
 
broadcast tentative minimum set over the static 
network and all processes in the minimum set send 
their response to the initiator. In this way extra 
message overhead as compared to other two phase 
algorithms is Cbst + 2*Nmin * Cwl. By increasing this 
message overhead, we try to reduce the loss of 
checkpointing overhead due to abort of 
checkkpointing protocol in the first phase. Because, 
in case of an abort of checkpointing algorithm in 
the first phase all processes need to abort their 
tentative checkpoints in two phase algorithms. But, 
in our algorithm processes need to abort their 
mutable checkpoints only. The effort of taking a 
mutable checkpoint is negligibly small as compared 
to tentative checkpoint[5]. 
In Cao-Singhal algorithm[5], some useless 
checkpoints are taken or some blocking of 
processes takes place, we avoid both by logging 
anti-messages of very few message at the receiver 
end only during the checkpoint process. The 
drawback of our algorithm is that it is not 
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applicable for non deterministic systems while the 
CS[5] algorithm is designed for non deterministic 
systems.  Our algorithm is distributed in nature that 
any process can initiate checkpointing. We do not 
allow concurrent executions of the protocol. If we 
allow, concurrent executions then our goal of 
minimizing checkpointing efforts will be defeated, 
many processes will start taking checkpoint quite 
frequently without advancing their recovery line 
significantly.  
             

4.9 4. CONCLUSION  
 
In this paper, we have proposed a minimum-
process non-intrusive checkpointing protocol for 
deterministic mobile distributed systems, where no 
useless checkpoints are taken. The number of 
processes that take checkpoints is minimized to 1) 
avoid  awakening of MHs in doze mode of 
operation, 2) minimize thrashing of MHs with 
checkpointing activity, 3) save limited battery life 
of MHs and low bandwidth of wireless channels. In 
minimum-process checkpointing protocols, some 
useless checkpoints are taken or blocking of 
processes takes place; we eliminate both by logging 
anti-messages of very few selective messages at the 
receiver end only during the checkpointing period. 
The overheads of logging a few anti-messages may 
be negligible as compared to taking some useless 
checkpoints or blocking the processes during 
checkpointing.   We try to reduce the checkpointing 
time by avoiding checkpointing tree which may be 
formed in Cao-Singhal [5] algorithm. We captured 
the transitive dependencies during the normal 
execution by piggybacking dependency vectors 
onto computation messages.  The Z-dependencies 
are well taken care of in this protocol. We also 
avoided collecting dependency vectors of all 
processes to find the minimum set as in [4], [13]. 
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