
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

1

A NON-BLOCKING MINIMUM-PROCESS
CHECKPOINTING PROTOCOL FOR DETERMINISTIC

MOBILE COMPUTING SYSTEMS

1Ajay Khunteta, 2Praveen Kumar
1,Singhania University, Pacheri, Rajasthan, India-313001

Email: ajay_khunteta@rediffmail.com
2Department of Computer Science & Engineering

Meerut Institute of Engineering & Technology, Meerut, India, Pin-250005

ABSTRACT

The term Distributed Systems is used to describe a system with the following characteristics: i) it consists
of several computers that do not share memory or a clock, ii) the computers communicate with each other
by exchanging messages over a communication network, iii) each computer has its own memory and runs
its own operating system. In the mobile distributed system, some of the processes are running on mobile
hosts (MHs).A checkpoint algorithm for mobile computing systems needs to handle many new issues like:
mobility, low bandwidth of wireless channels, and lack of stable storage on mobile nodes, disconnections,
limited battery power and high failure rate of mobile nodes. These issues make traditional checkpointing
techniques unsuitable for such environments. Minimum-process coordinated checkpointing is an attractive
approach to introduce fault tolerance in mobile distributed systems transparently. In this paper, we propose
a minimum-process coordinated checkpointing algorithm for deterministic mobile distributed systems,
where no useless checkpoints are taken, no blocking of processes takes place, and anti-messages of very
few messages are logged during checkpointing. We try to reduce the loss of checkpointing effort when any
process fails to take its checkpoint in coordination with others.

Keywords: Checkpointing algorithm, Mobile computing, Distributed Mobile systems etc

1. INTRODUCTION

A distributed system is one that runs on a collection
of machines that do not have shared memory, yet
looks to its users like a single computer [1]. A
distributed system consists of a finite set of
processes and a finite set of channels. It can be
described by a labeled, directed graph in which the
vertices represent processes and the edges represent
channels. A computer in distributed system is
having two types of resources: i) local resources
that are owned and controlled by it, ii) remote
resources that are only accessible through network
and incurring CPU delay and delay due to
communication protocol [1].
Checkpoint is defined as a designated place in a
program at which normal process is interrupted
specifically to preserve the status information
necessary to allow resumption of processing at a
later time. A checkpoint is a local state of a process
saved on stable storage. By periodically invoking

the checkpointing process, one can save the status
of a program at regular intervals.
 If there is a failure one may restart computation
from the last checkpoints thereby avoiding
repeating computation from the beginning. The
process of resuming computation by rolling back to
a saved state is called rollback recovery. In a
distributed system, since the processes in the
system do not share memory, a global state of the
system is defined as a set of local states, one from
each process. The state of channels corresponding
to a global state is the set of messages sent but not
yet received.
 A message whose receive event is recorded, but its
send event is lost. A global state is said to be
“consistent” if it contains no orphan message. To
recover from a failure, the system restarts its
execution from a previous consistent global state
saved on the stable storage during fault-free
execution. In distributed systems, checkpointing
can be independent, coordinated [3], [8], [11] or

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

2

quasi-synchronous [2], [9]. Message Logging is
also used for fault tolerance in distributed systems
[14].
In coordinated or synchronous checkpointing,
processes coordinate their local checkpointing
actions such that the set of all recent checkpoints in
the system is guaranteed to be consistent [6, 8]. In
case of a fault, every process restarts from its most
recent permanent/committed checkpoint. Hence,
this approach simplifies recovery and it does not
suffer from domino-effect. Furthermore,
coordinated checkpointing requires each process to
maintain only one permanent checkpoint on stable
storage, reducing storage overhead and eliminating
the need for garbage collection. Its main
disadvantage is the large latency involved in output
commit.
A straightforward approach to coordinate
checkpointing is to block communications while
the checkpointing process executes. A coordinator
takes a checkpoint and broadcasts a request
message to all processes, asking them to take a
checkpoint. When a process receives a message, it
stops its execution, flushes all the communication
channels, takes a tentative checkpoint, and sends an
acknowledgement message back to the coordinator.
After the coordinator receives acknowledgement
from all processes, it broadcasts a commit message
that completes the two phase checkpointing
protocol. After receiving the commit message, each
process receives the old permanent checkpoint and
makes the tentative checkpoint permanent. The
process is then free to resume execution and
exchange messages with other processes. The
coordinated checkpointing algorithms can also be
classified into following two categories: minimum-
process and all process algorithms. In all-process
coordinated checkpointing algorithms, every
process is required to take its checkpoint in an
initiation [6], [8]. In minimum-process algorithms,
minimum interacting processes are required to take
their checkpoints in an initiation.
If two processes start in the same state, and both
receive the identical sequence of inputs, they will
produce the identical sequence outputs and will
finish in the same state. The state of a process is
thus completely determined by its starting state and
by sequence of messages it has received [23, [24],
[25]. The ith CI of a process denotes all the
computation performed between its ith and (i+1)th
checkpoint, including the ith checkpoint but not the
(i+1)th checkpoint. Pj is directly dependent upon Pk
only if there exists m such that Pj receives m from
Pk in the current CI and Pk has not taken its
permanent checkpoint after sending m.

A process Pi is in the minimum set only if
checkpoint initiator process is transitively
dependent upon it. In these algorithms, only a
subset of interacting processes (called minimum
set) are required to take checkpoints in an initiation.
 David R. Jefferson [29] introduced the concept of
anti-message. Anti-message is exactly like an
original message in format and content except in
one field, its sign. Two messages that are identical
except for opposite signs are called anti-messages
of one another. All messages sent explicitly by user
programs have a positive (+) sign; and their anti-
messages have a negative sign (-). Whenever a
message and its anti-message occur in the same
queue, they immediately annihilate one another.
Thus the result of enqueueing a message may be to
shorten the queue by one message rather than
lengthen it by one. We depict the anti-message of m
by m-1.
The Chandy-Lamport [6] algorithm is the earliest
non-blocking all-process coordinated checkpointing
algorithm. In this algorithm, markers are sent along
all channels in the network which leads to a
message complexity of O(N2), and requires
channels to be FIFO. Elnozahy et al. [8] proposed
an all-process non-blocking synchronous
checkpointing algorithm with a message
complexity of O(N). In coordinated checkpointing
protocols, we may require piggybacking of integer
csn (checkpoint sequence number) on normal
messages [5], [8], [13], [19], [22]. Kumar et al. [18]
proposed an all-process non-intrusive
checkpointing protocol for distributed systems,
where just one bit is piggybacked on normal
messages. It results in extra overhead of vector
transfers during Checkpointing.
In the mobile distributed system, some of the
processes are running on mobile hosts (MHs). An
MH communicates with other nodes of the system
via a special node called mobile support station
(MSS) [1]. A cell is a geographical area around an
MSS in which it can support an MH. An MH can
change its geographical position freely from one
cell to another or even to an area covered by no
cell. An MSS can have both wired and wireless
links and acts as an interface between the static
network and a part of the mobile network. Static
network connects all MSSs. A static node that has
no support to MH can be considered as an MSS
with no MH.
The existence of mobile nodes in a distributed
system introduces new issues that need proper
handling while designing a checkpointing algorithm
for such systems. These issues are mobility,
disconnection, finite power source, vulnerable to

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

3

physical damage, lack of stable storage etc. These
issues make traditional checkpointing techniques
unsuitable to checkpoint mobile distributed systems
[1], [5], [15]. To take a checkpoint, an MH has to
transfer a large amount of checkpoint data to its
local MSS over the wireless network. Since the
wireless network has low bandwidth and MHs have
low computation power, all-process checkpointing
will waste the scarce resources of the mobile
system on every checkpoint. Prakash and Singhal
[15] gave minimum-process coordinated
checkpointing protocol for mobile distributed
systems.
A good checkpointing protocol for mobile
distributed systems should have low overheads on
MHs and wireless channels and should avoid
awakening of MHs in doze mode operation. The
disconnection of MHs should not lead to infinite
wait state. The algorithm should be non-intrusive
and should force minimum number of processes to
take their local checkpoints [15]. In minimum-
process coordinated checkpointing algorithms,
some blocking of the processes takes place [4],
[11], or some useless checkpoints are taken [5],
[13], [19].
Acharya and Badrinath [1] gave a checkpointing
protocol for mobile systems. In this approach, an
MH takes a local checkpoint whenever a message
receipt is preceded by the message sent at that MH.
This algorithm has no control over checkpointing
activity on MHs and depends totally on
communication patterns. In worst case, the number
of local checkpoints taken will be equal to the
number of computation messages, which may lead
to high checkpointing overhead.
Cao and Singhal [5] achieved non-intrusiveness in
the minimum-process algorithm by introducing
the concept of mutable checkpoints. The number of
useless checkpoints in [5] may be exceedingly high
in some situations [19]. Kumar et. al [19] and
Kumar et. al [13] reduced the height of the
checkpointing tree and the number of useless
checkpoints by keeping non-intrusiveness intact, at
the extra cost of maintaining and collecting
dependency vectors, computing the minimum set
and broadcasting the same on the static network
along with the checkpoint request.
Koo and Toeg [11], and Cao and Singhal [4]
proposed minimum-process blocking coordinated
checkpointing algorithms. Neves et al. [12] gave a
loosely synchronized coordinated protocol that
removes the overhead of synchronization. Higaki
and Takizawa [10] proposed a hybrid
checkpointing protocol where the mobile stations
take checkpoints asynchronously and fixed ones

synchronously. Kumar and Kumar [29] proposed a
minimum-process coordinated checkpointing
algorithm where the number of useless checkpoints
and blocking are reduced by using a probabilistic
approach. A process takes its mutable checkpoint
only if the probability that it will get the checkpoint
request in the current initiation is high. To balance
the checkpointing overhead and the loss of
computation on recovery, P Kumar [27] and Kumar
et al [26], proposed a hybrid-coordinated
checkpointing protocol for mobile distributed
systems, where an all-process checkpoint is taken
after executing minimum-process checkpointing
algorithm for a certain number of times.
Transferring the checkpoint of an MH to its local
MSS may have a large overhead in terms of battery
consumption and channel utilization. To reduce
such an overhead, an incremental checkpointing
technique could be used [16]. Only the information,
which changed since last checkpoint, is transferred
to the MSS.
Johnson and Zwaenepoel [26] proposed sender
based message logging for deterministic systems,
where each message is logged in volatile memory
on the machine from which the message is sent.
The massage log is then asynchronously written to
stable storage, without delaying the computation, as
part of the sender’s periodic checkpoint. Johnson
and Zwaenepoel [27] used optimistic message
logging and checkpointing to determine the
maximum recoverable state, where every received
message is logged.
In the present study, we propose a minimum-
process coordinated Checkpointing algorithm for
Checkpointing deterministic distributed
applications on mobile systems. We eliminate
useless checkpoints as well as blocking of
processes during checkpoints at the cost of logging
anti-messages of very few messages during
Checkpointing. We also try to minimize the loss of
checkpointing effort when any process fails to take
its checkpoint.

2. THE PROPOSED CHECKPOINTING
ALGORITHM

2.1 SYSTEM MODEL

Our system model is similar to [28]. There are n
spatially separated sequential processes P0, P1,.., Pn-

1, running on MHs or MSSs, constituting a mobile
distributed computing system. Each MH/MSS has
one process running on it. The processes do not
share memory or clock. Message passing is the only
way for processes to communicate with each other.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

4

Each process progresses at its own speed and
messages are exchanged through reliable channels,
whose transmission delays are finite but arbitrary.
A process in the cell of MSS means the process is
either running on the MSS or on an MH supported
by it. It also includes the processes of MHs, which
have been disconnected from the MSS but their
checkpoint related information is still with this
MSS. We also assume that the processes are
deterministic. The ith CI (checkpointing interval) of
a process denotes all the computation performed
between its ith and (i+1)th checkpoint, including the
ith checkpoint but not the (i+1)th checkpoint.
When an MH sends an application message, it is
first sent to its local MSS over the wireless cell.
The MSS piggybacks appropriate information with
the application message, and then routes it to the
destination MSS or MH. When the MSS receives
an application message to be forwarded to a local
MH, it first updates the data structures that it
maintains for the MH, strips all the piggybacked
information, and then forwards the message to the
MH. Thus, an MH sends and receives application
messages that do not contain any additional
information; it is only responsible for
checkpointing its local state appropriately and
transferring it to the local MSS.

2.2 DATA STRUCTURES

Here, we describe the data structures used in the
proposed checkpointing protocol. A process on MH
that initiates checkpointing, is called initiator
process and its local MSS is called initiator MSS. If
the initiator process is on an MSS, then the MSS is
the initiator MSS. All data structures are initialized
on completion of a checkpointing process, if not
mentioned explicitly.
Pr_csni: A monotonically increasing integer
checkpoint sequence number for each process. It is
incremented by 1 on mutable checkpoint.
td_vecti []: It is a bit array of length n for n process
in the system. td_vecti[j] =1 implies Pi is
transitively dependent upon Pj. When Pi receives m
from Pj such that Pj has not taken any permanent
checkpoint after sending m then Pi sets
td_vecti[j]=1. When Pi commit its checkpoint, it sets
td_vecti[]=0 for all processes except for itself which
is initialized to 1.
chkpt-sti: A boolean which is set to ‘1’ when Pi
takes a tentative checkpoint; on commit or abort, it
is reset to zero
m_vect[]: An bit array of size n for n processes in
the systems. When Pi starts checkpointing

procedures, it computes tentative minimum set as
follows: m_vect[j] = td_vecti[j] where j=1,2, ….,n.
TC[] An array of size n to save information
about the processes which have taken their tentative
checkpoints in the second phase. When process Pj
takes its tentative checkpoint then jth bit of this
vector is set to 1. It is initialized to all zeros in the
beginning of the checkpointing process. It is
maintained by the checkpoint initiator MSS only.
MC[]: A bit array of size n, maintained by initiator
MSS. MC[i]=1 implies Pi has taken its mutable
checkpoint in the first phase.
MSS_chk_taken2[]: A bit array of length n
maintained by each MSS. MSS_chk_taken2[i] =1
implies Pi has taken its tantative checkpoint
successfully in the second phase.
MSS_chk_request2[]: A bit array of length n at
each MSS. MSS_chk_request2[i] =1, Pi has been
issued tentative checkpoint request in the second
phase.
Max_time : it is a flag used to provide timing in
checkpointing operation. It is initialized to zero
when timer is set and becomes ‘1’ when maximum
allowable time for collecting global checkpoint
expires.
MSS_plist[] : A bit array of length n for n
processes which is maintained at each MSS
MSS_plistK[j]=1 implies each process Pj is running
on MSSk. If Pj is disconnected, then it checkpoint
related information is on MSSk.
MSS_chk_taken: A bit array of length n bits
maintained by the MSS. MSS_chk_taken [j]=1
implies Pj which is in the cell of MSS has taken its
mutable checkpoint in the first phase.
MSS_chk_request: A bit array of length n at each
MSS. The jth bit of this array is set to ‘1’ whenever
initiator sends the checkpoint request to Pj and Pj is
in the cell of this MSS.
MSS_fail_bit: A flag maintained on every
MSS, initialized to ‘0’; set to ‘1’ when any process
in the cell of MSS fails to take tentative checkpoint
Pin : The process which has initiated the
checkpointing operation
MSSin : The MSS which has Pin in its cell
p_csnin : checkpoint sequence number of initiator
process
g_chkpt: A flag which indicates that some global
checkpoint is being saved
csn[]: An array of size n, maintained on every
MSS, for n processes. csn[i] represens the most
recently committed checkpoint sequence number of
Pi. After the commit operation, if m_vect[i]=1 then
csn[i] is incremented. It should be noted that entries
in this array are updated only after converting

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

5

tentative checkpoints in to permanent checkpoints
and not after taking tentative checkpoints.
m_vect1[]: An array of size n maintained on every
MSS. It contains those new processes which are
found on getting checkpoint request from initiator.
m_vect2[]: An array of size n. for all j
such that m_vect1[j] o, m_vect2=
m_vect2 m_vect1.
m_vect3[]: An array of length n; on receiving
m_vect3[], m_vect[], m_vect1[] along with
checkpoint request [c_req] or on the computation of
m_vect1[] locally: m_vect3[]=m_vect3[] ∪
c_req.m_vect3[]; m_vect3[]=m_vect3[]∪m_vect[];
m_vect3[]=m_vect3[] ∪c_req.m_vect1[];
m_vect3[]=m_vect3[] ∪ m_vect1[]; m_vect3[]
maintains the best local knowledge of the minimum
set at an MSS;

2.3 COMPUTATION Of M_VECT[],
M_VECT1[], M_VECT2[],
M_VECT3[]:
1. Suppose a process Pr wants to initiate
checkpointing procedure. Its send its request to its
local MSS, say MSSr.. MSSr maintains the
dependency vector of Pr (say td_vectr[]).MSSr
coordinates checkpointing on behalf of Pr. It
computes tentative minimum set as follows:

i=1,n m_vect[i] = td_vectr[i]
2. On receving m_vect[] from MSSr, any MSS (say
MSSS) computes the m_vect1[] as follows:
Suppose MSSs maintains the process Pj such that Pj

 MSSs and Pj m_vect
 m_vect1[i]=1 iff m_vect[i]=0 and td_vectj[i]=1

m_vect1[] maintains the new processes found for
the minimum set when a process receives the
checkpoint request.
m_vect2=m_vect2 U m_vect1

 i, m_vect1[i]=0
 3. m_vect3= m_vect U m_vect2
MSSin sends c_req to MSSs along with m_vect[]and
some process (say Pk) is found at MSSs, which
takes the checkpoint to this c_req. All MSSs
maintains the processes of minimum set to the best
of their knowledge in m_vect3. It is required to
minimize duplicate checkpoint requests. Suppose,
there exists some process (say Pl) such that Pk is
directly dependent upon Pl and Pl is not in the
m_vect3 , then MSSs sends c_req to Pl. The new
processes found for the minimum set while
executing a potential checkpoint request at an MSS
are stored in m_vect1. When an MSS finds that all
the local processes, which were asked to take

checkpoints, have taken their checkpoints, it sends
the response to the MSSin along with m_vect2; so
that MSSin may update its knowledge about
minimum set and wait for the new processes before
sending commit. In this way, MSSin sends commit
only if all the processes in the minimum set have
taken their tentative checkpoints.

2.4 FORMAL OUTLINE OF THE
CHECKPOINTING ALGORITHM:
2.4.1 Actions taken when Pi sends m to Pj:

send (Pi,Pj, m, pr_csni,td_vecti[]);
//Pi piggybacks its own csn and transitive
dependency vector onto m.

2.4.2 Algorithm executed at initiator MSS (say
MSSin)

Suppose Pin initiates checkpointing. Pin sends the
request to MSSin. MSSin computes m_vect [].
1. On the basis of computed m_vect, MSSin
computes m_vect1, m_vect2, m_vect3 [Refer
section 4.1].
2. m_vect = m_vect3.
3. MSSin sends c_req to all MSS along with
m_vect[]//Multiple checkpoint request
4. Set max-time.
5. Wait for response.
6. On receiving response (Pin, MSSin, MSSs,
mss_,chk_taken, m_vect2, mss_fail_bit) or at
max_time
 6.1 If (max_time)OR(mss_fail_bit) { send
message abort (Pin, MSSin, pr_csnin} to all MSSs,
Exit;
//Maximum allocated time expired or some process
//failed to take checkpoint

6.2 m_vect[] = m_vect[] m_vect2[]. [“ ” is a
set union operator]

 6.3 MC[] =MC[] mss_chk_taken[]
7. For (k=0;k<n; k++)

 If (k such that MC[k] m_vect[k]) then go to
step 5;
8. S end message tent_req (Pin, MSSin , pr_csnin,
m_vect[]) to all MSSs;
 // m_vect[] is the exact minimum set//tent_req
is tentative checkpoint request.
9. 0n receving response (Pin,MSSin, MSSs,
mss_chkpt_taken2[], mss_fail_bit)or at max time
 i) if((max_time)or (MSS_fail_bit)) send
message abort to all MSSs
 ii) TC[]=TC[] U mss_chk_taken2[]
10. for (k=0; k<n; k++)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

6

If (there exit k such that TC[k] not equal m_vect[k]
then go to step 9
11. send message commit() to all MSSs.

2.4.3 Algorithm Executed at a process Pj on
receiving of m from Pi:
Case 1. If (m.pr_csni = = csn[i])// Pi has not taken
its checkpoint
// before sending m
 { rec(m);
 td_vectj[i]=1};
Case 2. If (m.pr_csni<csn[i]; rec (m)); Pi has taken
some permanent checkpoint
 // after sending m

Case 3. If((m.pr_csni>csn[i]) AND
(pr_csnj>csn[j]))
 {rec (m); td_vectj[i]=1}//Pi & Pj, both, have taken
their tentative
 //checkpoints
Case 4. If((m.pr_csni>csn[i]) AND
(pr_csnj=csn[j]))
{Pj log m-1 } Pi has taken its tentative checkpoint
 // before sending m while Pj has not.

2.4.4 Algorithm executed at any MSS (say MSSs)
1. Wait for Response
2. Upon receiving message c_req (Pin, MSSin,
p_csni, m_vect) from MSSin
 2.1 For any Pi such that mss_plists[i]=1∧
m_vect[i]=1; send c_req toPi
 2.2 ++pr_csni; mss_chk_request[i]=1, chkpt_sti=1
 2.3 Compute m_vect1, m_vect2, m_vect3 //Refer
Section 4.1

 2.4 If such that m_vect1[i]=1;
 send c_req to Pi. //m_vect1 contains the new
processes found for the //minimum set
3. On receiving c_req from some other MSS say
MSSp

i such that((mssp. m_vect1[i] = 1)

(mss_p_mss[i]= 1) (mss_chk_req=1))
{ send c_req to Pi; compute m_vect1, m_vect2,
m_vect3}

If j such that m_vect1[j]=1;
send c_req to Pj;

i, m_vect1[i]=0;
4. On receiving response to checkpointing from Pj
 4.1 If (Pj has taken the mutable checkpoint
successfully the mss_chk_taken[j]=1 else mss_set
fail_bit.)

 4.2 If (mss_fail_bit) (j
mss_chk_taken[j]=mss_chk_request[j];

Send response (Pin, MSSin,msss, mss_chk_taken,
mss_fail_bit, m_vect2) to MSSin;
5. On receiving tantative checkpoint request from
MSSin tent_req(Pin, _MSSin ,pr_csn, m_vect[])
a) Send tentative checkpoint request to all process
in its all which are in m_vect[] and store such
processor in MSS_Chk_request2[]
For(k=0;k<n;n++)
{
If (m_vent[u]==s and MSS_plist[h]==1
Then(send tentative checkpoint report 2[h]=1);
b) on receiving positives response to checkpoint
from Pj
if (Pj has taken its tentative checkpoint
successfully, MSS_chk_taken2{j]=1
else
set MSS_fail_bit
if((mss_fail_bit)OR(for all j
mss_chk_taken2[j]=mss_chk_request2[j])
send response (pin, mssin,msss,mss_chk_taken2,
mss_fail_bit) to mssin)
6. On receiving commit().
Convert the tentative checkpoints in to permanent
ones and discard old permanent checkpoints.if any.

j such that m_vect[j]=1, csn[j]++;
Initialize relevant data structures.
7. On receiving abort().
Discard the tentative checkpoints, if any.
Update relevant variables.

2.4. 5 Algorithm executed at any process Pi
On receiving tentative/mutable checkpoint request;
Take tentative/mutable checkpoint and inform local
MSS.

2.8 Handling Node Mobility and Disconnections

MHs are typically powered by battery. From time
to time, MHs may turn to doze mode or get
disconnected with the network to save battery
power. The duration of disconnection can be
arbitrarily long and if a disconnected MH is
involved in the checkpointing operation, then the
checkpointing operation may have to wait for a
long time or the operation must be aborted. To
seamlessly execute the coordinated checkpoint
collection algorithm, these situations needs to be
taken care efficiently.
We, hereby, propose the following strategy to
handle the above undesirable situations in the
mobile systems during checkpointing operation.
When a MH is disconnected from the cell of its
MSS then it takes a local checkpoint and saves it
with the MSS. This local checkpoint is saved in the
same manner as it saves in normal situations on

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

7

receiving the checkpointing request from the
initiator process. All the concerned data structures
related with the MH are also saved on the MSS.
During the disconnection, if a checkpoint request
arrives for the MH then the MSS will execute the
algorithm for the disconnected MH and will convert
its local checkpoint (which was saved on MSS by
MH before disconnection) in to tentative
checkpoint and on getting the commit request will
convert this tentative checkpoint into permanent
checkpoint. If the messages are received for the
disconnected MHs then the MSS will buffer all the
messages in FIFO queue.
On reconnection, if the MH is not connected with
the original MSS, then it first contact the original
MSS and downloads all the data structures which
were sent by this MH before disconnection. It also
downloads all the messages which were buffered by
the original MSS during the period of
disconnection. The MH then processes these
buffered messages in the same order in which they
were received by the original MSS.

2.9 Handling Failures during checkpointing

An MH may fail during checkpointing process. If
an MH fails after taking its tentative checkpoint or
if it is not a member of minimum set, then the
checkpointing procedure can be completed
uninterruptedly. If a process fails during
checkpointing, then our straight forward approach
is to discard the whole checkpointing operation .
The failed process will not be able to respond to the
initiator’s request and the initiator will detect the
failure by timeout and will discard the complete
checkpointing operation. If the initiator fails after
sending commit, the checkpointing process can be
considered complete. If the initiator fails during
checkpointing, then some processes, waiting for
commit will time out and will issue abort on his
own.
 Kim and Park [6] proposed that a process commits
its tentative checkpoints if none of the processes, on
which it transitively depends, fails; and the
consistent recovery line is advanced for those
processes that committed their checkpoints. The
initiator and other processes, which transitively
depend on the failed process, have to abort their
tentative checkpoints. Thus, in case of a node
failure during checkpointing, total abort of the
checkpointing is avoided.

3. PERFORMANCE EVALUATION

3.1General Comparison with existing minimum
process algorithms:

In [13], initiator process/MSS collects dependency
vectors for all the processes and computes the
minimum set and sends the checkpointing request
to all the processes with minimum set. The
algorithm is non-blocking; the message received
during checkpointing may add processes to the
minimum set. It suffers from additional message
overhead of sending request to all processes to send
their dependency vectors and all processes send
dependency vectors to the initiator process. But in
our algorithm, no such overhead is imposed. The
Cao-Singhal [5] suffers from the formation of
checkpointing tree as shown in basic idea. In our
algorithm, theoretically, we can say that the length
of the checkpointing tree will be considerably low
as compared to algorithm [5], as most of the
transitive dependencies are captured during the
normal processing. We do not compare our
algorithm with Prakash-Singhal [15], as Cao-
Singhal proved that there no such algorithm exists
[4].
Furthermore, in [5] algorithm, transitive
dependencies are captured by direct dependencies.
Hence the average number of useless checkpoints
requests will be significantly higher than the
proposed algorithm. In [5], huge data structure are
piggybacked along with checkpointing request,
because they are unable to maintain exact
dependencies among processes. Incorrect
dependencies are solved by these huge data
structures. In our case, no such data structures are
piggybacked on checkpointing request and no such
useless checkpoint requests are sent., because we
are able to maintain exact dependencies among
processes and furthermore, are able to capture
transitive dependencies during normal computation
at the cost of piggybacking bit vector of length n
for n processes.

3.2 Comparison with other Algorithms:

We use following notations to compare our
algorithm with other algorithms:
Nmss: number of MSSs.
Nmh: number of MHs.
Cpp: cost of sending a message from one process to
another
Cst: cost of sending a message between any two
MSSs.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

8

Cwl: cost of sending a message from an MH to its
local MSS (or vice versa).
Cbst: cost of broadcasting a message over static
network.
Csearch: cost incurred to locate an MH and forward
a message to its current local MSS, from a
source MSS.
Tst: average message delay in static network.
Twl: average message delay in the wireless network.
Tch: average delay to save a checkpoint on the
stable storage. It also includes the time to transfer
the checkpoint from an MH to its local MSS.
N: total number of processes
Nmin: number of minimum processes required to
take checkpoints.
Nmut: number of useless mutable checkpoints [5].
Tsearch: average delay incurred to locate an MH
and forward a message to its current local MSS.
Nucr: average number of useless checkpoint requests
in [5].
Ndep: average number of processes on which a
process depends.
h1: height of the checkpointing tree in Koo-Toueg
algorithm [11].
h2: height of the checkpointing tree in the proposed
algorithm.
In the algorithm [11], [5] and in the proposed one,
the checkpoint initiator process, say Pin sends the
checkpoint request to any process Pi if Pin is
causally dependent upon Pi. Similarly, Pi sends the
checkpoint request to any process Pj if Pi is causally
dependent upon Pj. In this way, a checkpointing tree
is formed.

3.2.1 Performance of our algorithm
The Synchronization message overhead:

Initiator process sends request and response to its
local MSS: 2Cwl
Initiator MSS broadcasts mutable |tentative |commit
request over static network: 3Cbst
Every process in the minimum set receives
mutable checkpoint request, tentative checkpoint
request from the local MSS and it also sends
responses to these requests to local MSS:
4*Nmin*Cwl
Every MSS sends mutable checkpoint and tentative
checkpoint response to initiator MSS : 2*Nmss*Cst
Total Average overhead = 2Cwl+3 bst +4*Nmin*Cwl
+ 2*Nmss*Cst
In our algorithm, anti-messages of very few
processes are blocked during checkpointing at
receiver end. The loss of checkpointing effect is
reduced in case of abort in the first phase.

 Number of processes taking checkpoints: In our
algorithm, only minimum numbers of processes are
required to take their checkpoints.
The blocking time of the Koo-Toueg [11] protocol
is highest, followed by Cao-Singhal [4] algorithm.
In the algorithms proposed in [5], [19], [20], no
blocking of processes takes place, but some useless
checkpoints are taken, which are discarded on
commit. In Elnozahy et al [8] algorithm, all
processes take checkpoints. In the protocols [4],
[11], and in the proposed one, only minimum
numbers of processes record their checkpoints. In
algorithm [5], concurrent executions of the
algorithm are allowed, but it may lead to
inconsistencies in doing so [20]. We avoid the
concurrent executions of the proposed algorithm.
We store anti-messages of very few messages at
receiver end only during the checkpointing period.
The message overhead in our algorithm is larger
than two-phase algorithms as our algorithm is a
three phase algorithm. In the first phase imitator

 Cao-Singhal

[4]
Cao-
Singhal
[5]

Koo-
Toeg
[11]

Elnozahy
et al [8]

Propos-
ed
Algorit-
hm

Avg. block
 Time

2Tst 0 h1*Tch 0 0

Avg No. of
checkpoints

Nmin Nmin+
Nmut

Nmin N Nmin

Avg
Messa-ge
Over-head

3Cbst+
2Cwireless
+2Nmss*Cst
+3Nmh
* Cwl

2Nmin
*Cpp
+Cbst+
Nucr*
Cpp

3*Nmin
*Cpp
* Ndep

2Cbst +
N *Cpp

2Cwl
+3 bst +
4Nmin
*Cwe +
2Nmss
*Cst

Table 1 A Comparison of System Performance

broadcast tentative minimum set over the static
network and all processes in the minimum set send
their response to the initiator. In this way extra
message overhead as compared to other two phase
algorithms is Cbst + 2*Nmin * Cwl. By increasing this
message overhead, we try to reduce the loss of
checkpointing overhead due to abort of
checkkpointing protocol in the first phase. Because,
in case of an abort of checkpointing algorithm in
the first phase all processes need to abort their
tentative checkpoints in two phase algorithms. But,
in our algorithm processes need to abort their
mutable checkpoints only. The effort of taking a
mutable checkpoint is negligibly small as compared
to tentative checkpoint[5].
In Cao-Singhal algorithm[5], some useless
checkpoints are taken or some blocking of
processes takes place, we avoid both by logging
anti-messages of very few message at the receiver
end only during the checkpoint process. The
drawback of our algorithm is that it is not

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

9

applicable for non deterministic systems while the
CS[5] algorithm is designed for non deterministic
systems. Our algorithm is distributed in nature that
any process can initiate checkpointing. We do not
allow concurrent executions of the protocol. If we
allow, concurrent executions then our goal of
minimizing checkpointing efforts will be defeated,
many processes will start taking checkpoint quite
frequently without advancing their recovery line
significantly.

4.9 4. CONCLUSION

In this paper, we have proposed a minimum-
process non-intrusive checkpointing protocol for
deterministic mobile distributed systems, where no
useless checkpoints are taken. The number of
processes that take checkpoints is minimized to 1)
avoid awakening of MHs in doze mode of
operation, 2) minimize thrashing of MHs with
checkpointing activity, 3) save limited battery life
of MHs and low bandwidth of wireless channels. In
minimum-process checkpointing protocols, some
useless checkpoints are taken or blocking of
processes takes place; we eliminate both by logging
anti-messages of very few selective messages at the
receiver end only during the checkpointing period.
The overheads of logging a few anti-messages may
be negligible as compared to taking some useless
checkpoints or blocking the processes during
checkpointing. We try to reduce the checkpointing
time by avoiding checkpointing tree which may be
formed in Cao-Singhal [5] algorithm. We captured
the transitive dependencies during the normal
execution by piggybacking dependency vectors
onto computation messages. The Z-dependencies
are well taken care of in this protocol. We also
avoided collecting dependency vectors of all
processes to find the minimum set as in [4], [13].

REFRENCES:

[1]. Acharya A. and Badrinath B. R.,

“Checkpointing Distributed Applications on
Mobile Computers,” Proceedings of the 3rd
International Conference on Parallel and
Distributed Information

Systems, pp. 73-80, September 1994.
[2]. Baldoni R., Hélary J-M., Mostefaoui A. and

Raynal M., “A Communication-Induced
Checkpointing Protocol that Ensures Rollback-
Dependency Trackability,” Proceedings of the
International Symposium on Fault-Tolerant-
Computing Systems, pp. 68-77, June 1997.

[3]. Cao G. and Singhal M., “On coordinated
checkpointing in Distributed Systems”, IEEE
Transactions on Parallel and Distributed
Systems, vol. 9, no.12, pp. 1213-1225, Dec
1998.

[4]. Cao G. and Singhal M., “On the Impossibility
of Min-process Non-blocking Checkpointing
and an Efficient Checkpointing Algorithm for
Mobile Computing Systems,” Proceedings of
International Conference on Parallel
Processing, pp. 37-44, August 1998.

[5]. Cao G. and Singhal M., “Mutable Checkpoints:
A New Checkpointing Approach for Mobile
Computing systems,” IEEE International
Journal of Computer Applications (0975 –
8887)Volume 3 – No.1, June 2010 27
Transaction On Parallel and Distributed
Systems, vol. 12, no. 2,pp. 157-172, February
2001.

[6]. Chandy K. M. and Lamport L., “Distributed
Snapshots: Determining Global State of
Distributed Systems,” ACM Transaction on
Computing Systems, vol. 3, No. 1, pp. 63-75,
February 1985.

[7]. Elnozahy E.N., Alvisi L., Wang Y.M. and
Johnson D.B., “A Survey of Rollback-
Recovery Protocols in Message-Passing
Systems,” ACM Computing Surveys, vol. 34,
no. 3, pp. 375-408,

2002.
[8]. Elnozahy E.N., Johnson D.B. and Zwaenepoel

W., “The Performance of Consistent
Checkpointing,” Proceedings of the 11th
Symposium on Reliable Distributed Systems,
pp. 39-47, October 1992.

[9]. Hélary J. M., Mostefaoui A. and Raynal M.,
“Communication-Induced Determination of

Consistent Snapshots,” Proceedings of the 28th
International Symposium on Fault-Tolerant
Computing, pp. 208-217, June 1998.

[10]. Higaki H. and Takizawa M., “Checkpoint-
recovery Protocol for Reliable Mobile
Systems,” Trans. of Information processing
Japan, vol. 40, no.1, pp. 236-244, Jan. 1999.

[11]. Koo R. and Toueg S., “Checkpointing and
Roll-Back Recovery for Distributed Systems,”
IEEE Trans. on Software Engineering, vol. 13,
no. 1, pp. 23-31, January 1987.

[12]. Neves N. and Fuchs W. K., “Adaptive
Recovery for Mobile Environments,”
Communications of the ACM, vol. 40, no. 1,
pp. 68-74, January 1997.

[13] Parveen Kumar, Lalit Kumar, R K Chauhan, V
K Gupta “A Non-Intrusive Minimum Process
Synchronous Checkpointing Protocol for

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT& LLS. All rights reserved.

www.jatit.org

10

Mobile Distributed Systems” Proceedings of
IEEE ICPWC-2005, pp 491-95, January 2005.

[14]. Pradhan D.K., Krishana P.P. and Vaidya
N.H., “Recovery in Mobile Wireless
Environment: Design and Trade-off Analysis,”
Proceedings 26th International Symposium on
Fault-Tolerant Computing, pp. 16-25, 1996.

[15]. Prakash R. and Singhal M., “Low-Cost
Checkpointing and Failure Recovery in Mobile
Computing Systems,” IEEE Transaction On
Parallel and Distributed Systems, vol. 7, no.
10, pp. 1035-1048, October1996.

[16]. Ssu K.F., Yao B., Fuchs W.K. and Neves N.
F., “Adaptive Checkpointing with Storage
Management for Mobile Environments,” IEEE
Transactions on Reliability, vol. 48, no. 4, pp.
315-324, December 1999.

[17]. J.L. Kim, T. Park, “An efficient Protocol for
checkpointing Recovery in Distributed
Systems,” IEEE Trans. Parallel and Distributed
Systems, pp. 955-960, Aug. 1993.

[18]. L. Kumar, M. Misra, R.C. Joshi,
“Checkpointing in Distributed Computing
Systems” Book Chapter “Concurrency in
Dependable Computing”, pp. 273-92, 2002.

[19]. L. Kumar, M. Misra, R.C. Joshi, “Low
overhead optimal checkpointing for mobile
distributed systems” Proceedings. 19th IEEE
International Conference on Data Engineering,
pp 686 – 88, 2003.

[20]. Ni, W., S. Vrbsky and S. Ray, “Pitfalls in
Distributed Nonblocking Checkpointing”,
Journal of Interconnection Networks, Vol. 1
No. 5, pp. 47-78, March 2004.

[21]. L. Lamport, “Time, clocks and ordering of
events in a distributed system” Comm. ACM,
vol.21, no.7, pp. 558-565, July 1978.

[22]. Silva, L.M. and J.G. Silva, “Global
checkpointing for distributed programs”, Proc.
11th

symp. Reliable Distributed Systems, pp. 155-62,
Oct. 1992.

[23]. Parveen Kumar, Lalit Kumar, R K Chauhan,
“A Nonintrusive Hybrid Synchronous
Checkpointing Protocol for Mobile Systems”,
IETE Journal of Research, Vol. 52 No. 2&3,
2006.

[24]. Parveen Kumar, “A Low-Cost Hybrid
Coordinated Checkpointing Protocol for
mobile distributed systems”, Mobile
Information Systems. pp 13-32, Vol. 4, No. 1,
2007.

[25]. Lalit Kumar Awasthi, P.Kumar, “A
Synchronous Checkpointing Protocol for
Mobile Distributed Systems: Probabilistic

Approach” International Journal of Information
and Computer Security, Vol.1, No.3 pp 298-
314.

[26]. Johnson, D.B., Zwaenepoel, W., “ Sender-
based message logging”, In Proceedingss of
17th international Symposium on Fault-
Tolerant Computing, pp 14-19, 1987.

[27]. Johnson, D.B., Zwaenepoel, W., “Recovery in
Distributed Systems using optimistic message
logging and checkpointing. Pp 171-181, 1988.

[28] Pushpendra Singh, Gilbert Cabillic, “A
Checkpointing Algorithm for Mobile
Computing Environment”, LNCS, No. 2775,
pp 65-74, 2003.

[29] David R. Jefferson, “Virtual Time”, ACM
Transactions on Programming Languages and
Systems, Vol. 7, NO.3, pp 404-425, July 1985.

[30] Sunil Kumar, R K Chauhan, Parveen Kumar,
“A Minimumprocess Coordinated
Checkpointing Protocol for Mobile Computing
Systems”, International Journal of
Foundations of Computer science, Vol 19, No.
4, pp 1015-1038 (2008)

