
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

129

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
29
 –
 1
34
]

MODEL OBJECT OF RM-ODP STANDARD IN DYNAMIC
DISTRIBUTED DATABASES

1JALAL LAASSIRI, SAID EL HAJJI, YOUSSEF BALOUKI, GHIZLANE ORHANOU,
MOHAMED BOUHDADI

Department of Mathematics and Computer Science, University Mohammed V Faculty of Sciences,

BP 1014, Rabat Morocco

ABSTRACT

Distributed databases have invested considerable effort and system resources in the development and
adoption of dynamic distributed databases services. In order to sustain the quality of their services,
Business process management need to solve the problem of efficient and secure electronic exchange and
processing of system database. A major difficulty in this distributed deployment is the fact that these
interconnected systems are heterogeneous and they may operate in multiple organizational domains. This
paper demonstrates how the ISO/RM-ODP standard offers a general framework to design and develop an
open distributed system attuned to dynamic distributed databases environments.

The purpose of the RM-ODP is to define such a framework. The Reference Model for Open Distributed
Processing (RM-ODP) provides a framework within which support of distribution, inter-working and
portability can be integrated. It defines: an object model, architectural concepts and architecture for the
development of ODP systems in terms of five viewpoints. However, RM-ODP is a meta-norm, and several
ODP standards have to be defined. In this paper, we report on the definition and address of the syntax and
semantics for a fragment of ODP object concepts defined in the RM-ODP foundations part and in the
information language. These concepts are suitable for describing and constraining dynamic distributed
databases information specifications.

Keywords: RM-ODP, dynamic distributed database (DDB), Meta-modeling Semantics, UML/OCL.

1. OVERVIEW OF THE RM-ODP

STANDARD

Distributed systems are an important
development in computing technology which is
concerned with the delivery of constantly
expanding data to points of query. Collections of
data in the forms of partitions or fragments can be
distributed or replicated over multiple physical
locations. Local autonomy, synchronous and
asynchronous data distributions are examples of
distributed database design schemas which can be
implemented depending on business needs and data
Sensitivity/confidentiality.

Data reliability and availability are basic
requirements for system design. Reliability is the
possibility that a system is running at a certain point
in time while availability is the probability that the
system is continuously available during a time
interval. Both data reliability and availability can be
enhanced by distributing data and DDB software
over several sites. The database administrator

carries the responsibility of ensuring that the
distributed nature of the system is transparent.

The rapid growth of distributed processing has
led to a need of coordinating framework for the
standardization of Open Distributed Processing
(ODP).

The open distributed processing (ODP)
computational viewpoint describes the functionality
of a system and its environment, in terms of a
configuration of interacting objects at system
interfaces, independently of their distribution. In
addition, Quality of service (QoS) contracts and
service level agreements are an integral part of any
computational specification, which is specified in
ODP in terms of environment contracts.

The Reference Model for ODP (RM-ODP) is a
framework for the construction of open distributed
systems [1]-[4]. It creates an architecture supporting
distribution, networking and portability.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

130

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
29
 –
 1
34
]

The foundations part [2] contains the definition
of concepts and analytical framework for
normalized description of (arbitrary) distributed
processing systems. These concepts are gathered in
several categories including basic modeling
concepts, specification concepts, organizational
concepts, and structuring concepts.

The architecture part [3] contains specifications
of the required characteristics that qualify
distributed processing to be open. It defines a
framework containing:

Five viewpoints called: enterprise, information,
computation, engineering and technology; which
provide a basis for the ODP systems specification.

A viewpoint language for each viewpoint,
defining concepts and rules for specifying ODP
systems from the corresponding viewpoint.

The ODP functions are required to support ODP
systems. The transparency prescriptions show how
to use the ODP functions to achieve distribution
transparency.

In other words, the first three viewpoints points
do not take into account neither distribution nor
heterogeneity inherent problems. This principle
corresponds closely to the concepts of PIM
(Platform Independent Model) and PSM (Platform
Specific Model) models in MDA (Model Driven
Architecture) architecture [5]. However, RM-ODP
is a meta-norm [6] and cannot be directly applied.
Indeed, for instance, the viewpoint languages are
abstract in sense that they define what concepts
should be supported, not how these concepts should
be represented [7]. It is important that RM-ODP
does not use the term language in its largest sense: a
set of terms and rules for the construction of
statements from terms; it does not propose any
notation for supporting viewpoint languages.

This approach provides a formalization of well-
established design practices of abstraction and
encapsulation. We define the meta-models for
concepts DDB. Figure 1 defines the context free
syntax for the core of DDB object concepts.

Figure 1. Dynamic Distributed databases model

Using the Unified Modeling Language
(UML)/OCL (Object Constraints Language) [9],
[10] we defined and explain the semantics of the
generic model DDB Object more clearly, the Alloy
[28], formalism was used. Alloy is a simple
modeling language that allows a modeler to
describe the conceptual space of a problem domain.
Using Alloy, specifying the RM-ODP semantic
domain can be obtained.

A part of UML meta-model itself has a precise
semantic [12], [13] defined using denotational
meta-modeling approach. A denotational approach
[14] is realized by a definition of the form of an
instance of every language element and a set of
rules which determine which instances are denoted
or not by a particular language element. For testing
ODP systems [2], [3], the current testing techniques
[15], [16] are not widely accepted. A new approach
for testing, named agile programming [17] or test
first approach [19], is being increasingly adopted.
The principle is the integration of the system model
and the testing model using UML meta-modeling
approach [20], [21]. This approach [26].is based on
the executable UML [27, 25].

RM-ODP conceptual elements from the semantic
domain can be partitioned in the following way:

Model RM-ODP {

Domain {ODP_Concepts}

State {partition … BasicModellingConcepts,
SpecificationConcepts : static ODP_Concepts

 }

Code Fragment 1. RM-ODP model Object

2. DISTRIBUTED DATABASES SYNTAX

Basic DDB objects are modeled by atomic DDB
objects. More complex information is modeled as
composite DDB objects which, as any other ODP
object, behavior, state, identity and encapsulation.
Its type is a predicate characterizing a collection of
DDB objects, which their class is the set of all DDB
objects satisfying a given type.

DDB objects template specifies the common
features of a DDB objects collection in sufficient
detail that a DDB objects can be instantiated using
it. It may reference static, invariant and dynamic
schema.

An invariant schema is a set of predicates on
one or more DDB objects which must always be
true. The predicates constrain the possible states
and state changes of the objects on which they

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

131

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
29
 –
 1
34
]

apply. ODP also notes that an invariant schema can
specify the types of one or more DDB objects; that
will always be satisfied by whatever behavior the
objects might exhibit.

 A static schema defines the state of one or more
DDB objects, at some point in time, subject to the
constraints of any invariant schema.

A dynamic schema is a requirement of the
allowable state changes of one or more DDB
objects, subject to the constraints of any invariant
schema. A dynamic schema specifies how the
information can evolve as the system operates. In
addition to describing state changes, dynamic
schema can also create and delete DDB objects, and
allow reclassifications of instances from one type to
another. Besides, in the DBDB challenges, a state
change involving a set of objects can be seen as an
interaction between those objects. Not all the
objects involved in the interaction need to change
state; some of the objects may be involved in a
read-only manner [29].

Figure 2 defines the context free syntax for the
information language of DDB object.

Figure2. DDB Information concepts

3. SEMANTICS DOMAIN

The semantics of a UML/OCL model is given by
constraining the relationship between a model and
possible instances of that model (see Figure 3). It
means constraining the relationship between
expressions of the UML abstract syntax for models
and expressions of the UML abstract syntax for
instances. We define a model to specify the ODP
information viewpoint. That is, a set of DDB
objects, their relationships and behaviors. This
model defines Semantic Domain (figure 3).

Figure3. Semantic Domain

A system can only be an instance of a single
system model, because it is self contained and
disjoint from other models. On the other side,
objects are instances of one or more object
templates; they may be of one or several types.
With no further constraints, it is possible for an
object to change the templates of which it is an
instance; thus this meta-model supports dynamic
types.

There is one well-formedness rule for instances,
which are given bellow:

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

132

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
29
 –
 1
34
]

Context Time inv:

For all (o: DDBObject, t: Time | t.instant ->
notEmpty implies o.state -> notEmpty)

Context Precondition inv:

For all (prec: Dynamic schema.Precondition , o :
DDBObject |exists (s : State) | o.mappedTo = prec
and o.state_start = s)

Context Postcondition inv:

For all (postc: dynamic schema.Postcondition, o:
DDBObject | exists(s: State) | o.mappedTo = postc
and a.state_end = s)

4. MEANING FUNCTION

Other invariants are required to constraint the
relationships between models and instances. These
constitute the semantics which are the subject of
this section. The semantics for the UML/OCL based
language defined by the relationship between a
system model and its possible instances (systems).
The constraints are relatively simple, but they
demonstrate the general principle. Firstly there are
two constraints related to DDB information objects
and links, respectively. The first shows how
inheritance relationships can force a DDB
information object to be of many DDB Information
Object Template.

Context o: object inv:

The templates of o must be a single template and
all the parents of that template

o.of->exists (t | o.of=t->union (t.parents))

The second ensures that a link connects objects
of templates as dictated by its role.

Context l: link inv:

DDB Information Objects which are the
source/target of link have templates which are the
source/target of the corresponding roles.

(l.of.source)->intersection (l.source.of)->
notEmpty and (l.of.target)->intersection(l.target.of)-
>notEmpty

5. FUNCTION TRADER AND ACTIVITY

DIAGRAM FOR THE DDB PROCESS

The use of RM-ODP as a standard for designing
a distributed system enables and supports the

development of systems with certain desired
characteristics.

The DDB behavior of the class is described using
an activity graph [8]. The activity graph for the
DDB process is shown in figure 4. The activities,
such as invoke, are shown as the rectangles with
rounded corners. The actions to be performed are
shown as Entry conditions to the activity [30]. For
example, action constraint (a variable) is set to the
result of the check service. The partners with which
the process communicates are represented by the
UML partitions (also known as swimlanes): Trader,
Client and Server. The activities that involve a
message send or receive operation to a partner
appear in the corresponding partition. The arrows
indicate the order in which the process performs the
activities. Note that the assignment activity is not in
a swimlane; it depicts an action that takes place
within the process itself.

Figure4. Activity Diagram for the DDB Process

The reply activity returns a response back to the
client, completing the execution of the process.
Each activity has a descriptive name and an entry
action detailing the work performed by the activity.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

133

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
29
 –
 1
34
]

6. CONCLUSION

The Reference Model for Open Distributed
Processing (RM-ODP) provides a framework which
supports distribution, inter-working and portability
can be integrated. However, the ODP viewpoint
languages define what concepts should be
supported, not how these concepts should be
represented. We have applied RM-ODP concepts
specifications in order to design a dynamic
distributed databases platform. In addition, the
UML standard has adopted a meta-modeling
approach to define the abstract syntax and semantic
domain of DDB. One approach to define the formal
semantics of a language is denotational: essentially
elaborating the value or instance denoted by an
expression of the language in a particular context.
However, when we use the denotational meta-
modeling approach in this paper, we defined the
UML/OCL based syntax and semantics of a
language for a fragment of ODP object concepts
described in the foundations part and in the
information viewpoint language. Indeed, these
concepts are suitable to define and constrain DDB
information specifications. In parallel, we are
applying the same approach to define a language of
concepts characterizing dynamic behavior of
dynamic distributed database.

REFRENCES:

[1]. ISO/IEC, Basic Reference Model of Open
Distributed Processing-Part1: Overview and
Guide to Use, ISO/IEC CD 10746-1, July
1994.

[2]. ISO/IEC, RM-ODP-Part2: Descriptive Model,
ISO/IEC DIS 10746-2, February 1994.

[3]. ISO/IEC, RM-ODP-Part3: Prescriptive
Model, ISO/IEC DIS 10746-3, February 1994.

[4]. ISO/IEC, RM-ODP-Part4: Architectural
Semantics, ISO/IEC DIS 10746-4, July 1994.

[5]. OMG, the Object Management Architecture,
OMG, 1991. http://www.omg.org

[6]. M. Bouhdadi et al. A Methodology for the
Development of Open Distributed Systems,
Proc. JDIR'98, Paris France October 1998, pp.
200-208

[7]. ISO/IEC, ODP Type Repository Function,
ISO/IEC JTC1/SC7 N2057, January 1999.

[8]. ISO/IEC, the ODP Trading Function, ISO/IEC
JTC1/SC21, June 1995.

[9]. J.M. Spivey, The Z Reference manual,
Prentice Hall, 1992.

[10]. IUT, SDL: Specification and Description
Language, IUT-T-Rec. Z.100, 1992.

[11]. ISO and IUT-T, LOTOS: A Formal
Description Technique Based on the Temporal
Ordering of Observational Behavior, ISO/IEC
8807, August 1998.

[12]. H. Bowman et al. FDTs for ODP,
Computer Standards & Interfaces Journal,
Elsevier Science Publishers, Vol.17, No.5-6,
1995, pp. 457-479.

[13]. J. Rumbaugh et al., The Unified Modeling
Language, Addison Wesley, 1999.

[14]. B. Rumpe, A Note on Semantics with an
Emphasis on UML, Second ECOOP Workshop
on Precise Behavioral Semantics, Technische
Universitaty unchen publisher, 1998.

[15]. A. Evans et al., Making UML precise,
OOPSLA'98, October 1998,Evans et al. The
UML as a formal notation, UML'98, France
June 1998, LNCS 1618, Springer Berlin, 1999,
pp. 336-348.

[16]. J. Warner and A. Kleppe, the Object
Constraint Language: Precise Modeling with
UML, Addison Wesley, 1998.

[17]. M. Bouhdadi et al, An UML-based Meta-
language for the QoS-aware Enterprise
Specification of Open Distributed Systems,
IFIP TC5/WG5.5 Third Working Conference
on Infrastructures for Virtual Enterprises
(PRO-VE'02), May 1-3 Sesimbra Portugal,
Kluwer Vol. 213 (IFIP Conference Proceeding
series), 2002. Collaborative Business
Ecosystems & Virtual Enterprises IFIP Series
Vol. 85 Springer Boston 2002.

[18]. S. Kent, S. Gaito, N. Ross. A meta-model
semantics for structural constraints in UML,, In
H. Kilov, B. Rumpe, and I. Simmonds, editors,
Behavioral specifications for businesses and
systems, chapter 9, pages 123-141. Kluwer
Academic Publishers, Norwell, MA,
September 1999.

[19]. D.A. Schmidt, Denotational semantics: A
Methodology for Language Development,
Allyn and Bacon, Massachusetts, 1986.

[20]. Myers, G. The art of Software Testing,
John Wiley &Sons, New York, 1979

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

134

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
29
 –
 1
34
]

[21]. Binder, R. Testing Object Oriented
Systems. Models. Patterns, and Tools,
Addison-Wesley, 1999

[22]. Cockburn, A. Agile Software
Development. Addison-Wesley, 2002.

[23]. Bernhard Rumpe. Agile Modeling with
UML. Habilitation Thesis, Germany, 2003.

[24]. Beck K. Column on Test-First Approach.
IEEE Software, 18(5):87-89, 2001

[25]. Wegmann, A. and A. Naumenko.
Conceptual Modeling of Complex Systems
Using an RM-ODP Based Ontology. in 5th
IEEE International Enterprise Distributed
Object Computing Conference - EDOC 2001.
2001.

[26]. Bernhard Rumpe, Executable Modeling
with UML. A vision or a Nightmare? In Issues
& Trends of Information Technology
Management in Contemporary Associations,
Seattle. Idea group Publishing, Hershey,
London, pp. 697-7001. 2002 Author, Title of
the Book, Publishing House, 200X.

[27]. A.Naumenko, A.Wegmann, “Proposal for
a formal foundation of RM-ODP concepts »
conference woodpecker 2001.

[28]. ISO/IEC, Basic Reference Model of Open
Distributed Processing-Use of UML for ODP
system specifications, May 2006.

[29]. Naumenko, A., et al. A Viewpoint on
Formal Foundation of RM-ODP Conceptual
Framework, Technical report No.
DSC/2001/040, July 2001, EPFL-DSC ICA.

[30]. Briand L. and Labiche Y. A UML-based
Approach to System testing. In M. Gogolla and
C. Kobryn (eds): “UML” – The Unified
Modeling Language, 4th Intl. Conference,
LNCS 2185. Springer, 2001 pp. 194-208.

