
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

110

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
10
 –
 1
15
]

TASKS ALLOCATION PROBLEM AS A NON -
COOPERATIVE GAME

1MOSTAPHA ZBAKH, 2SAID EL HAJJI

1Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes-ENSIAS, Avenue Mohammed Ben

Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc
2Faculté des Sciences de Rabat, Avenue Ibn Batouta, Rabat, Maroc

ABSTRACT

We present the problem of tasks allocation in its general form as a non-cooperative game between players.
For this game, we give the Nash equilibrium structure and on the basis of this structure, we draw a
distributed tasks allocation algorithm that can find this equilibrium.

Keywords: Tasks Allocation, Game Theory, Non-Cooperative Game, Nash Equilibrium, Distributed

Algorithm.

I. INTRODUCTION AND RELATED
WORKS

 In recent years, heterogeneous systems have
become the key platform for the execution of
heterogeneous applications. The major problem
encountered when programming such a system is
the problem of tasks allocation. A good
allocation of tasks leads to a good load balancing
of the system. Several articles deal with the
problem of load balancing and routing taking
into account the characteristics of
communication links of the machines. For
example, in [3], the authors address the problem
of load balancing on the linear platforms and in
[4, 7, 8] the authors address the problem of
routing in a network of several parallel links with
an origin and a destination machine. In [5, 12],
the authors seek a routing strategy that allows the
balancing of the heterogeneous system.

 The general formulation of such a problem is
as follow. We assume that we have a set of any
m machines and n tasks (selfish) of sizes T1, T2...
Tn. We suppose that the jobs are divisible and
each one can be processed by all the machines
Mi (i = 1... m). The load Li of a machine i is
defined as the sum of execution times of tasks
which it treats and the cost of a task as the sum
of loads of the machines that treats it. The

general problem of tasks allocation is to find an
allocation that minimize the costs of tasks

 To clarify the idea of allocation of tasks on
homogeneous machines, consider the simple
following example where the jobs are not
divisible and each one is processed only by one
machine. We consider two identical machines
(M1 and M2) and five tasks with execution times
1U, 2U, 3U, 4U, and 1U (U = unit of time).

 We consider the allocation shown in Figure 1
and in Table 1 we presented the cost of each task
obtained by

Task Task1 Task2 Task3 Task4 Task5
Cost 4 7 4 7 7

Figure1: First allocation

M1

M2
time

Table 1: Cost of tasks achieved by the first allocation

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

111

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
10
 –
 1
15
]

this assignment. It is clear that a task can
improve its cost by choosing the following
assignment:

 Several studies exist in the literature that show
the existence of such allocations on
homogeneous machines (identical) without
specifying the nature of this balance [4, 13]. Our
goal here is to generalize this problem to any
machines (homogeneous and heterogeneous) on
the one hand and find a structure of such an
assignment on the other hand. To do this, we
formalize this problem as a non-cooperative
tasks allocation game.

 This article is structured as follows. In section
2, we formalize this problem as a non-
cooperative game and we derive a distributed
algorithm for our tasks allocation in section 3. In
section 4, we draw a conclusion and perspectives
for this work.

II. PROBLEM OF TASKS ALLOCATION
AS A NON–COOPERATIVE GAME

 Given n tasks of sizes T1, T2... Tn and m
machines of speed V1, V2... Vm; each task should
be handled by at least one of m machines. The
load of a machine is defined as the sum of the
execution times of these tasks and the cost of a
task as the sum of the loads of the machines that
handle it. Our goal is to find an allocation of
these tasks that minimizes the cost of all tasks.

 Let Sji be a real between 0 and 1 which
represents the portion of the job j processed by
machine i. We call the vector sj = (sj1, Sj2…Sjm)
the allocation strategy of the task j (j = 1... n) and
the vector s=(s1, s2... sn) the strategy profile for
this tasks allocation game.

 In order to modelize the response time of each
machine, we assume that a scheduling exists and
modelize each machine as a M/M/1 queuing
system.

We also assume that tasks are distributed with a
rate µ.

The response time of machine i is given as

ti(s)=
µ∑

=
−

n

j
jjii Tsv

1

1 . The cost of a job j is

therefore given as : cj(s)=

∑
∑

∑
=

=

= −
=

m

i
n

j
jjii

jim

i
iji

Tsv

ssts
1

1

1
)(

µ
.

 Our goal is to find a feasible tasks allocation
strategy (s1, s2… sj ... sn) which minimizes all
cj(s). The decision of each job j depends on the
decisions of other tasks since cj is a function of s.
Therefore, this strategy will lead to a good load
balancing of machines.

Definition 1: A feasible strategy profile of
tasks allocation is a strategy profile that verifies
the following conditions:

1) Positivity: sji ≥ 0, i =1,…,m; j
=1,…,n

2) Conservation: njs
m

i
ji ...1,1

1
==∑

=

3) Stability : ∑
=

n

j
ijji vTs

1
pµ , i =

1…m
Definition 2: The non-cooperative game of
tasks allocation is a set of players, a set of
strategies and preferences between the profiles of
strategies. The players are the n tasks. Each task
Tj has its set of feasible strategies for the
allocation of tasks sj, and the task j prefer the
profile of strategies s than the profile s' if and
only if cj(s) <cj(s').

 The solution to this problem is to find the Nash
equilibrium [1, 2] for this allocation game.

Definition 3: The Nash equilibrium for this
tasks allocation game [1,2,5] is a profile of
strategies s such that for each task j (j=1 ... n):

Task Task1 Task2 Task3 Task4 Task5
Cost 5 6 5 6 5

 M2

M1

Figure2: Second allocation

 Table2: Cost of tasks achieved by the 2nd assignment
time

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

112

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
10
 –
 1
15
]

Sj is such that
() ()njjnjj sssscssssc ,...,...,min,...,,...,, ^

2,1s21
j

^=

.
 In other words, Nash equilibrium is a profile
of strategies such that no player can improve its
cost by choosing another allocation strategy.

 For this game of tasks allocation there is a
unique Nash equilibrium because the response
times functions of the machines are continuous,
convex and increasing [6].

 To determine a solution to our game of tasks
allocation we consider an alternative definition
of the Nash equilibrium: "Nash equilibrium can
be defined as the profile of strategies for which
the allocation strategy of each task is a best
response to strategies of other tasks [5]". The
best response of a task provides a minimum
response time, assuming that the strategies of the
other tasks are kept fixed. This definition gives
us a method for determining the structure of the
Nash equilibrium.

 First, we determine the strategies of the best
responses sj for each task j, and then we find a
profile of strategies s=(s1,s2...sn) where sj is the
best response of the task j, for j = 1, 2...n.
We begin by determining the best response of the
task j, for j = 1, 2 ... n, assuming that the
strategies of other users are always kept fixed.

 Let ∑
≠=

−=
m

jkk
kkii

j
i Tsvv

,1
µ be the available

processing rate of the processor i as seen by the
task j. The problem of calculating the best
response strategy of the task j (j = 1 ...n) is
reduced to the problem of allocating a single job
on m machines having j

iv as processing rates,
that is to say, calculating the optimal allocation
strategy for this task. This can be translated into
the following optimization problem
(Best_Responsej):

)(min sc jjs

 under constraints:
sji ∈ [0, 1], i = 1, . . . , m,

 ∑
=

=
m

i
jis

1
1

 mivTs
n

k

j
ikki ,...,1,

1
=∑

=
pµ

 There are several algorithms for solving similar
optimization problems of our case which are
based on the Lagrange parameters. In [5.11], the
authors have addressed the problem of
optimization with the same objective function
but with different constraints. We draw on this
work to solve our optimization problem.

Theorem: Assuming that the machines are
ranked in decreasing order of their available
processing rates ()j

n
jj vvv ≥≥≥ ...21 , the solution

sj of the optimization problem Best_Responsej is
given by:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

∑

∑

=

=

jc

i

j
i

jc
i j

j
ij

i
j

i
j

v

Tv
vv

T

1

11 µ
 if

1≤i< cj
 0 if cj ≤ i ≤ m

where cj is the minimum index that verifies the

inequality:

∑

∑

=

=
−

≤
jc

k

j
k

jc

k
j

j
k

j
jc

v

Tv
v

1

1
µ

.

Proof:

From the formula Cj(s), we find that

0
)(
≥

∂

∂

ji

j

s
sc

 and 0
)(

)(
2

2

≥
∂

∂

ji

j

s
sc

 for i=1 …n.

This shows that the function cj(s) is convex in sj.
This optimization problem should minimize the
convex function and the Kuhn-Tucker conditions
of first order are necessary and sufficient for
optimization [9].

Let α ≥ 0 and ηi ≥ 0, i=1,…,m, be the Lagrange
multipliers [9]. The Lagrangian is:

()

∑ ∑∑
= ==

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−

=

m

i

m

i
jii

m

i
ji

jji
j

i

ji

mjmj

ss
Ts

s

ssL

1 11

11

1

,...,,,,...,

ηα
µν

ηηα

sji =

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

113

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
10
 –
 1
15
]

The Kuhn-Tucker conditions imply that sji ,
i=1…, m, is the optimal solution if and only if
there exist α ≥ 0 and ηi ≥ 0, i=1,…,m such that :

0=
∂
∂

jis
L

 and 0=
∂
∂
α
L

and

miss jiijii ...1,0,0,0 =≥≥= ηη
These three conditions become:

mi
Ts

i
jji

j
i

j
i ...1,0

)(2
==−−

−
ηα

µν

ν
 and

0
1

=∑
=

m

i
jis and

miss jiijii ...1,0,0,0 =≥≥= ηη
ie :

2)(µν

ν
α

jji
j

i

j
i

Ts−
= , if

mis ji ≤≤1,0f (*)

2)(µν

ν
α

jji
j

i

j
i

Ts−
≤ , if mis ji ≤≤= 1,0

(**)

 miss jiji

m

i
...1,0,0

1
=≥=∑

=

Since the machines are ordered according
their j

iν , (j
1ν ≥ j

2ν ≥…≥ j
mν), we have the same

thing for jis (1js ≥ jis ≥ …≥ jms). This implies
that there exist some situations where low power
machines have no tasks to treat. In other word,
there exist an index ()mcc jj p≤1, such that

,0=jis for mci j ...= .
According to the formula (*), we obtain the
equality:

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑ ∑∑

−

=

−

=

−

=
µναν

1

1

1

1

1

1

j jj c

i

c

i
jji

j
i

c

i

j
i Ts

and according to (**):

jj j

j

c
i

c

i

c

i
jji

j
i

c

i

j
i

Ts νµν

ν
α 1

1

1

1

1

1

1 ≤

−

=

∑ ∑

∑
−

=

−

=

−

=

i.e:

µννν j

c

i

j
i

c

i

j
i

c
i T

jj
j −≤ ∑∑

== 11

The parameter cj is the minimum index that
satisfies the above equation, and

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

≤

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
∑

∑

=

=

micif

ciif

v

Tv
vv

Ts

j

jjc

i

j
i

jc
i j

j
ij

i
j

i
jji

:,0

1:,1

1

1 p
µ

III. A DISTRIBUTED ALGORITHM FOR
TASKS ALLOCATION

 Based on the work presented in the articles
[5,11], we describe a distributed algorithm to
compute the Nash equilibrium. For this and to
characterize this equilibrium, we proceed with a
generalization of this problem in the following
way. Instead of considering a task j, there will be
a generation source of tasks j. The source j will
produce the same tasks with the same size Tj.

 The idea of the algorithm is as follows. The
sources generate tasks in parallel for several
iterations. In each iteration, we measure the

standard L1 norm as∑
=

− −
m

j

l
j

l
j cc

1

)1(, which is the

sum of differences between the costs of source j
in iteration l and iteration l-1. We stop when we
obtain a difference less than a predefined error
threshold.

 The computation of the Nash equilibrium may
require some coordination between sources
(sources must coordinate among themselves to
obtain information on the load of each machine).
We use the following notations in addition to
those of the previous section:

←j the number of the source j;
←l the iteration number;

←)(l
js the strategy of the source j computed in

the iteration l;
←)(l

jc execution time of the source j at iteration
l;
←ε the threshold error;

←norm the norm L1 at iteration l defined

as∑
=

− −
n

j

l
j

l
j cc

1

)1(;

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

114

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
10
 –
 1
15
]

()←msgjsend , sends the message msg to
source j;

()←msgjreceive , receives the message msg
from the source j;

 Each source j executes the following algorithm:

1- Initialisation :

;1
;0

;0

;0
)0(

)0(

←
←

←

←

norm
l

c

s

j

j

[]
[] ;1mod

;1mod)2(
;

;0

+=
+−←

←
←

njright
njleft

CONTINUEstate
sum

2- While (1) do

if (j=1) {source 1}
 if (0≠l)
 receive(left,(norm,l,state)) ;
 if (εpnorm)
 send(right,(norm,l,STOP)) ;
 exit;

;1
;0

+←
←
ll

sum

 else {others sources}
 receive(left,(sum,l,state)) ;
 if (state=STOP) of each machine

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−← ∑

≠=
µ

m

jkk
kkii

j
i Tsvv

,1

 if ()nj ≠ receive(right,(sum,l,STOP)) ;
 exit ;

 For mi ,...,1:= do

 Obtain j
iv by examining the queue

 ()j
j

m
j

j
l
j Tvvs ,,...,1

)(nseBest_Respo← ;

 Compute of)(l
jc ;

)()1(l
j

l
j ccsumsum −+← − ;

 send(right,(sum,l,CONTINUE)) ;
 endwhile

IV. CONCLUSION AND PERSPICTIVES

 We have formulated the general problem of
allocating tasks as non-cooperative game
between several players. For this game, the Nash
equilibrium provides a good allocation of tasks
for our system. We propose the structure of the
Nash equilibrium and on the basis of this
structure; we have described a distributed
algorithm to discover it. Several adjustments and
extensions are possible for this work on the
Internet, distributed systems and computing
grids.
In this work, we have neglected the
communication between tasks; our next step will
take into account this constraint on the one hand
and implement the above algorithm on the other
hand.

V. REFERENCES

[1]. M. Osborne, “An Introduction to Game

Theory”, Oxford University Press, New
York, 2004

[2]. J. Nash, “Non-cooperative games”, Ann.
Math. 54 (2) 286-295, 1951

[3]. A. Czumaj, B.Vöcking, ”Tight Bounds for
Worst-Case Equilibrium”, ACM
Transactions on Algorithms, Vol. 3, N. 1,
Article 4, 2007

[4]. A. Legrand, H. Renard, Y. Robert et F.
Vivien "Mapping and load-balancing
iterative computations on heterogenous
clusters with shared links", IEEE Trans.
Parallel and Distributed Systems, Vol. 15, N
6, 546-558, 2004

[5]. D. Grosu, A.T. Chronopoulos,
“Noncooperative load balancing in
distributed systems”, J. of Parallel Distrib.
Comput. 65, 1022-1034, 2005

[6]. A. Orda, R. Rom, N. Shimkin, "Competitive
routing in multiuser communication
networks", IEEE/ACM Trans. Networking 1
(5), 510-521, 1993

[7]. E. Altman, T. Bassar, T. Jimenez, N
Shimkin, "Routing in two parallel links:
game-theoric distributed algorithms", J.
Parallel Distributed Comput. 61 (9), 1367-
1381,

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

115

ISSN: 1817-3195 / E-ISSN: 1992-8615

Vo
l.
16
 N
o.
2
 Ju
ne
 , 2
01
0
 p
p
[1
10
 –
 1
15
]

[8]. T. Boulonge, E. Altman, O. Pourtallier, "On
the convergence to Nash equilibrium in
problems of distributed computing", Ann.
Oper. Res. 109 (1), 279-291, 2002

[9]. D. G. Luenberger, "Linear and Nonlinear
Programming, Addison-Wesly", Reading,
MA, 1984

[10]. T. Basar, G.L. Olsder, "Dynamic
noncooperative game Theory", SIAM,
Philadelphia, PA, 1998

[11]. X. Tang, S. T. Shanson, "Optimizing
Static job scheduling in a network of
heterogeneous computers", in Proceeding of
the International Conference on Parallel
Processing, 373-382, 2000

[12]. M. Zbakh, "Equilibrage de Nash dans le
problème d’allocation des tâches", in
Proceeding of RenPar’2009, Toulouse,
France, 2009

[13]. O. Beaumont, H. Casanova, A. Legrand,
Y. Robert, Y. Yang, “Scheduling divisible
loads on star and tree networks :results and
open problems“, in IEEE Trans. Parallel and
Distributed System, 16(3): 207-218, 2005

