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ABSTRACT 
 

We present the problem of tasks allocation in its general form as a non-cooperative game between players. 
For this game, we give the Nash equilibrium structure and on the basis of this structure, we draw a 
distributed tasks allocation algorithm that can find this equilibrium.  
 
Keywords:   Tasks Allocation, Game Theory, Non-Cooperative Game, Nash Equilibrium, Distributed 

Algorithm. 
 
 

I. INTRODUCTION AND RELATED 
WORKS 

 
    In recent years, heterogeneous systems have 
become the key platform for the execution of 
heterogeneous applications. The major problem 
encountered when programming such a system is 
the problem of tasks allocation. A good 
allocation of tasks leads to a good load balancing 
of the system. Several articles deal with the 
problem of load balancing and routing taking 
into account the characteristics of 
communication links of the machines. For 
example, in [3], the authors address the problem 
of load balancing on the linear platforms and in 
[4, 7, 8] the authors address the problem of 
routing in a network of several parallel links with 
an origin and a destination machine. In [5, 12], 
the authors seek a routing strategy that allows the 
balancing of the heterogeneous system. 

 
    The general formulation of such a problem is 
as follow. We assume that we have a set of any 
m machines and n tasks (selfish) of sizes T1, T2... 
Tn. We suppose that the jobs are divisible and 
each one can be processed by all the machines 
Mi (i = 1... m). The load Li of a machine i is 
defined as the sum of execution times of tasks 
which it treats and the cost of a task as the sum 
of loads of the machines that treats it. The 

general problem of tasks allocation is to find an 
allocation that minimize the costs of tasks  
 
    To clarify the idea of allocation of tasks on 
homogeneous machines, consider the simple 
following example where the jobs are not 
divisible and each one is processed only by one 
machine. We consider two identical machines 
(M1 and M2) and five tasks with execution times 
1U, 2U, 3U, 4U, and 1U (U = unit of time).  
 
     We consider the allocation shown in Figure 1 
and in Table 1 we presented the cost of each task 
obtained by  

 

                                                                                                                   

 
 
 
 

Task  Task1  Task2  Task3  Task4  Task5
Cost      4     7      4      7      7 

Figure1: First allocation 

M1 

M2 
time

Table 1: Cost of tasks achieved by the first  allocation 
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this assignment. It is clear that a task can 
improve its cost by choosing the following 
assignment: 
 

 

 
 
   Several studies exist in the literature that show 
the existence of such allocations on 
homogeneous machines (identical) without 
specifying the nature of this balance [4, 13]. Our 
goal here is to generalize this problem to any 
machines (homogeneous and heterogeneous) on 
the one hand and find a structure of such an 
assignment on the   other hand. To do this, we 
formalize this problem as a non-cooperative 
tasks allocation game. 
 
  This article is structured as follows. In section 
2, we formalize this problem as a non-
cooperative game and we derive a distributed 
algorithm for our tasks allocation in section 3. In 
section 4, we draw a conclusion and perspectives 
for this work.  
 

II. PROBLEM OF TASKS ALLOCATION 
AS A NON–COOPERATIVE GAME 

 
    Given n tasks of sizes T1, T2... Tn and m 
machines of speed V1, V2... Vm; each task should 
be handled by at least one of m machines. The 
load of a machine is defined as the sum of the 
execution times of these tasks and the cost of a 
task as the sum of the loads of the machines that 
handle it. Our goal is to find an allocation of 
these tasks that minimizes the cost of all tasks. 
 
   Let Sji be a real between 0 and 1 which 
represents the portion of the job j processed by 
machine i. We call the vector sj = (sj1, Sj2…Sjm) 
the allocation strategy of the task j (j = 1... n) and 
the vector s=(s1, s2... sn) the strategy profile for 
this tasks allocation game. 
 
    In order to modelize the response time of each 
machine, we assume that a scheduling  exists and  
modelize each   machine as a M/M/1 queuing 
system.   
 

We also assume that tasks are distributed with a 
rate µ.  
 
The response time of machine i is given as    
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µ∑
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therefore given as : cj(s)= 
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    Our goal is to find a feasible tasks allocation 
strategy (s1, s2… sj ... sn) which minimizes all 
cj(s). The decision of each job j depends on the 
decisions of other tasks since cj is a function of s. 
Therefore, this strategy will lead to a good load 
balancing of machines.  
 
Definition 1:    A feasible strategy profile of 
tasks allocation is a strategy profile that verifies 
the following conditions: 
 

1) Positivity:         sji ≥ 0, i =1,…,m; j 
=1,…,n  

2)  Conservation:   njs
m

i
ji ...1,1

1
==∑

=
 

3) Stability :            ∑
=

n

j
ijji vTs

1
pµ , i = 

1…m 
Definition 2:   The non-cooperative game of 
tasks allocation is a set of players, a set of 
strategies and preferences between the profiles of 
strategies. The players are the n tasks. Each task 
Tj has its set of feasible strategies for the 
allocation of tasks sj, and the  task j prefer the 
profile of strategies s than the profile s' if and 
only if cj(s) <cj(s'). 
 
   The solution to this problem is to find the Nash 
equilibrium [1, 2] for this allocation game.  
 
Definition 3:   The Nash equilibrium for this 
tasks allocation game [1,2,5] is a profile of 
strategies s such that for each task j (j=1 ... n): 
 

Task  Task1  Task2  Task3  Task4  Task5
Cost      5      6      5      6     5 

 M2 

M1 

Figure2: Second allocation 

   Table2: Cost of tasks achieved by the 2nd assignment 
time
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Sj is such that 
( ) ( )njjnjj sssscssssc ,...,...,min,...,,...,, ^

2,1s21
j

^=

. 
    In other words, Nash equilibrium is a profile 
of strategies such that no player can improve its 
cost by choosing another allocation strategy.  
 
    For this game of tasks allocation there is a 
unique Nash equilibrium because the response 
times functions of the machines are continuous, 
convex and increasing [6].  
 
   To determine a solution to our game of tasks 
allocation we consider an alternative definition 
of the Nash equilibrium: "Nash equilibrium can 
be defined as the profile of strategies for which 
the allocation strategy of each task is a best 
response to strategies of other tasks [5]". The 
best response of a task provides a minimum 
response time, assuming that the strategies of the 
other tasks are kept fixed. This definition gives 
us a method for determining the structure of the 
Nash equilibrium.  
 
   First, we determine the strategies of the best 
responses sj for each task j, and then we find  a 
profile of strategies s=(s1,s2...sn) where sj is the 
best response of the task j, for j = 1, 2...n. 
We begin by determining the best response of the 
task j, for j = 1, 2 ... n, assuming that the 
strategies of other users are always kept fixed.  

     Let ∑
≠=

−=
m

jkk
kkii

j
i Tsvv

,1
µ  be the available 

processing rate of the processor i as seen by the 
task j. The problem of calculating the best 
response strategy of the task j (j = 1 ...n) is 
reduced to the problem of allocating a single job 
on m machines having j

iv  as processing rates, 
that is to say, calculating the optimal allocation 
strategy for this task. This can be translated into 
the following optimization problem 
(Best_Responsej): 
 
     )(min sc jjs  

     under constraints: 
sji ∈ [0, 1], i = 1, . . . , m, 

 ∑
=

=
m

i
jis

1
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   mivTs
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j
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   There are several algorithms for solving similar 
optimization problems of our case which are 
based on the Lagrange parameters. In [5.11], the 
authors have addressed the problem of 
optimization with the same objective function 
but with different constraints. We draw on  this 
work to solve our optimization problem. 
 
Theorem:     Assuming that the machines are 
ranked in decreasing order of their available 
processing rates ( )j

n
jj vvv ≥≥≥ ...21 , the solution 

sj of the optimization problem Best_Responsej is 
given by: 
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                      0      if cj ≤ i ≤ m 
 
 
 
where cj is the minimum index that verifies the 

inequality: 
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Proof: 
 
From the formula Cj(s), we find that 

0
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s
sc

 for i=1 …n. 

This shows that the function cj(s) is convex in sj. 
This optimization problem should minimize the 
convex function and the Kuhn-Tucker conditions 
of first order are necessary and sufficient for 
optimization [9]. 
 
Let  α ≥ 0 and ηi ≥ 0, i=1,…,m, be the Lagrange 
multipliers [9]. The Lagrangian is: 
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sji = 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
113 

ISSN: 1817-3195 / E-ISSN: 1992-8615 

Vo
l. 
16
 N
o.
2 
 Ju
ne
 , 2
01
0 
 p
p 
[1
10
 –
 1
15
] 

The Kuhn-Tucker conditions imply that sji , 
i=1…, m, is the optimal solution if and only if 
there exist α ≥ 0 and ηi ≥ 0, i=1,…,m such that : 

0=
∂
∂

jis
L

  and  0=
∂
∂
α
L

and  

miss jiijii ...1,0,0,0 =≥≥= ηη  
These three conditions become: 
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Since the machines are ordered according 
their j

iν , ( j
1ν ≥ j

2ν ≥…≥ j
mν ), we have the same 

thing for  jis  ( 1js ≥ jis ≥ …≥ jms ). This implies 
that there exist some situations where low power 
machines have no tasks to treat. In other word, 
there exist an index ( )mcc jj p≤1,   such that 

,0=jis for mci j ...= .  
According to the formula (*), we obtain the 
equality: 
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The parameter cj  is the minimum index that 
satisfies the above equation, and 
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III. A DISTRIBUTED ALGORITHM FOR 
TASKS  ALLOCATION  

 
    Based on the work presented in the articles 
[5,11], we describe a distributed algorithm to 
compute the Nash equilibrium. For this and to 
characterize this equilibrium, we proceed with a 
generalization of this problem in the following 
way. Instead of considering a task j, there will be 
a generation source of tasks j. The source j will 
produce the same tasks with the same size Tj.  
 
   The idea of the algorithm is as follows. The 
sources generate tasks in parallel for several 
iterations. In each iteration, we measure the 

standard L1 norm as∑
=

− −
m

j

l
j

l
j cc

1

)1( , which is the 

sum of differences between the costs of source j 
in iteration l and iteration l-1. We stop when we 
obtain a difference less than a predefined error 
threshold. 
 
   The computation of the Nash equilibrium may 
require some coordination between sources 
(sources must coordinate among themselves to 
obtain information on the load of each machine). 
We use the following notations in addition to 
those of the previous section: 
 
←j  the number of the source j; 
←l  the iteration number;  

←)(l
js  the strategy of the source j computed in 

the iteration l; 
←)(l

jc  execution time of the source j at iteration 
l; 
←ε    the threshold error; 

←norm the norm L1 at iteration l defined 

as∑
=

− −
n

j

l
j

l
j cc

1

)1(  ; 
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( )←msgjsend ,  sends the message msg to 
source j; 

( )←msgjreceive ,  receives the message msg 
from the source j; 
 
 Each source j executes the following algorithm: 
 
1- Initialisation : 

;1
;0

;0

;0
)0(

)0(

←
←

←

←

norm
l

c

s

j

j

 

[ ]
[ ] ;1mod

;1mod)2(
;

;0

+=
+−←

←
←

njright
njleft

CONTINUEstate
sum

 

2- While (1) do 

if (j=1) {source 1} 
         if ( 0≠l ) 
           receive(left,(norm,l,state)) ; 
           if ( εpnorm ) 
               send(right,(norm,l,STOP)) ; 
 exit;  

;1
;0

+←
←
ll

sum
 

      else {others sources} 
        receive(left,(sum,l,state)) ; 
        if (state=STOP) of each machine 

 ⎟
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     if  ( )nj ≠  receive(right,(sum,l,STOP)) ; 
         exit ; 
 
        For mi ,...,1:=  do 

           Obtain j
iv by examining the queue 

          ( )j
j

m
j

j
l
j Tvvs ,,...,1

)( nseBest_Respo←  ; 

            Compute of  )(l
jc  ; 

           )()1( l
j

l
j ccsumsum −+← −  ; 

             send(right,(sum,l,CONTINUE)) ; 
           endwhile 
 
 

IV. CONCLUSION AND PERSPICTIVES 
 

   We have formulated the general problem of 
allocating tasks as non-cooperative game 
between several players. For this game, the Nash 
equilibrium provides a good allocation of tasks 
for our system. We propose the structure of the 
Nash equilibrium and on the basis of this 
structure; we have described a distributed 
algorithm to discover it. Several adjustments and 
extensions are possible for this work on the 
Internet, distributed systems and computing 
grids. 
In this work, we have neglected the 
communication between tasks; our next step will 
take into account this constraint on the one hand 
and implement the above algorithm on the other 
hand. 
 
V. REFERENCES 
 
[1]. M. Osborne, “An Introduction to Game 

Theory”,   Oxford University Press, New 
York, 2004 

[2]. J. Nash, “Non-cooperative games”, Ann. 
Math. 54 (2)  286-295, 1951 

[3]. A. Czumaj, B.Vöcking, ”Tight Bounds for 
Worst-Case Equilibrium”, ACM 
Transactions on Algorithms, Vol. 3, N. 1, 
Article 4,  2007 

[4]. A. Legrand, H. Renard, Y. Robert et F. 
Vivien "Mapping and load-balancing 
iterative computations on heterogenous 
clusters with shared links", IEEE Trans. 
Parallel and Distributed Systems, Vol. 15, N 
6, 546-558,  2004 

[5]. D. Grosu, A.T. Chronopoulos, 
“Noncooperative load balancing in 
distributed systems”, J. of Parallel Distrib. 
Comput. 65, 1022-1034, 2005  

[6]. A. Orda, R. Rom, N. Shimkin, "Competitive 
routing in multiuser communication 
networks", IEEE/ACM Trans. Networking 1 
(5), 510-521, 1993  

[7]. E. Altman, T. Bassar, T. Jimenez, N 
Shimkin, "Routing in two parallel  links: 
game-theoric distributed algorithms", J. 
Parallel Distributed Comput. 61 (9), 1367-
1381, 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
115 

ISSN: 1817-3195 / E-ISSN: 1992-8615 

Vo
l. 
16
 N
o.
2 
 Ju
ne
 , 2
01
0 
 p
p 
[1
10
 –
 1
15
] 

[8]. T. Boulonge, E. Altman, O. Pourtallier, "On 
the convergence to Nash equilibrium in 
problems of distributed computing", Ann. 
Oper. Res. 109 (1), 279-291, 2002 

[9]. D. G. Luenberger, "Linear and Nonlinear 
Programming, Addison-Wesly", Reading, 
MA, 1984 

[10]. T. Basar, G.L. Olsder, "Dynamic 
noncooperative game Theory", SIAM, 
Philadelphia, PA, 1998 

[11]. X. Tang, S. T. Shanson, "Optimizing 
Static job scheduling in a network of 
heterogeneous computers", in Proceeding of 
the International Conference on Parallel 
Processing, 373-382, 2000 

[12]. M. Zbakh, "Equilibrage de Nash dans le 
problème d’allocation des tâches", in 
Proceeding of RenPar’2009, Toulouse, 
France, 2009 

[13]. O. Beaumont, H. Casanova, A. Legrand, 
Y. Robert, Y. Yang, “Scheduling divisible 
loads on star and tree networks :results and 
open problems“, in IEEE Trans. Parallel and 
Distributed System, 16(3): 207-218, 2005 

 


