
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

87

COHERENCY OF CLASSES TO MEASURE THE QUALITY
OF OBJECT ORIENTED DESIGN

AN EMPIRICAL ANALYSIS

M.V.VIJAYA SARADHI1, B.R.SASTRY2

1 Assoc.Prof &HOD, Dept. of CSE, ASTRA, Bandlaguda, Hyderabad, India

2 Director, ASTRA, Bandlaguda, Hyderabad, India

ABSTRACT

Software engineering is an expensive venture to undertake mainly due to not knowing exactly where to
focus the reengineering efforts. This is where coupling and cohesion play an important role. Both the
metrics, especially cohesion metric, are a potential identification tools that can also measure progress. The
current cohesion metrics for classes overlook the characteristics of indirect usage of the instance variables
that are so often applicable in a class. Therefore, they are not an ideal reflection of the cohesiveness of the
class. Nevertheless, when the variability factor is taking into consideration, the class cohesion factor has
not been quantitatively studied. In this paper, we will propose the updated cohesion metrics based on the
role of indirect usage of the instance variables. This updated version of cohesion and coupling relation can
be used as an indicator to measure changeability. In this paper, we present an approach for remodeling the
cohesion metrics by analyzing the characteristics of the indirect instance variable usage in an object-
oriented program that can be used as a quality indicator in terms of changeability.

Keywords: Cohesion metrics ; Instance Variable ; Changeability; LCOM; Co; Coh, TCC; LCC; CBMC

1. INTRODUCTION

The application of Object-Oriented Technology
for software development has become fairly
popular. Research conducted so far has shown
that Object Oriented practices guarantee a
superior quality of
software by way of maintainability, reusability
and flexibility. In order to evaluate the software
industrial buyers acquire, they want to ensure the
quality of product. This is where Object Oriented
measures come into play. One of the important
quality properties of Object Oriented designs is
cohesion. A number of metrics have been
suggested to quantify and measure this design
property. In this paper, we attempt to evaluate
cohesion as an indicator of changeability. In a few
earlier works, coupling has been corroborated as a
quality indicator. By establishing a link between
cohesion and coupling, we will be able to affirm
that cohesion is quality indicator, as well.

2. COHESION AND DESIGN QUALITY

One of the imperatives to building a quality
Object Oriented system is a good design. For this,

quantification of the design property is required.
Several software metrics have been developed to
assess and control the design phase and its
products. One of the most vital criteria in Object
Oriented design is cohesion. A module is said to
have a strong cohesion if it closely characterized
with one task of the problem domain, and all its
components contribute to this single task. Module
cohesion was introduced by Yourdon and
Constantine as “how tightly bound or related the
internal elements of a module are to one another”.
According to them, cohesion is an attribute, not of
any code, but of a design that can be utilized to
forecast reusability, maintainability, and
changeability. These assumptions, however, have
never been backed up by any experimentation.

2.1 Cohesion and Cohesion Metrics

There is unanimity in the literature on the theory
of class cohesion. A class is cohesive if it cannot
be partitioned into two or more sets defined as
follows. Each set contains instance variables and
methods. Methods of one set do not access
variables of another set either directly or
indirectly. By way of defining cohesion metrics,

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

88

many authors have effectually defined class
cohesion. So far as the Object Oriented model is
concerned, almost all of the cohesion metrics are
influenced by the LCOM metric that is defined by
Chidamber and Kemerer. According to them, “if
an object class has different methods performing
different operations on the same set of instance
variables, the class is cohesive”. The LCOM
(Lack of Cohesion in Methods) defined by them is
the result gained from deducting the number of
pairs of methods in a class having no common
attributes from the number of pairs of methods in
a class sharing at least one attribute. If the value
reached in this calculation is in the negative, the
metric is set to zero. This is one metric for
assessing cohesion.
Likewise, Li and Henry defined LCOM as the
number of disjoint sets of methods accessing
similar instance variables. Hitz and Montazeri
reaffirm Li’s definition of LCOM based on the
graph theory which defines LCOM as the number
of connected components of a graph. A graph
consists of vertices and edges. Vertices represent
methods. There is an edge between 2 vertices if
the corresponding methods access the same
instance variable. Hitz and Montazeri propose to
divide a class into smaller, more cohesive classes,
if LCOM > 1. However, Bieman and Kang
proposed TCC (Tight Class Cohesion) and LCC
(Loose Class Cohesion) as cohesion metrics,
based on Chidamber and Kemerer’s approach.
Although they too consider pairs of methods using
common instance variables, their way of defining
attribute usage is different. Instance variable can
be utilized directly or indirectly by methods. An
instance variable is said to be directly used by a
method M if it appears in the body of the method
M. Likewise, an instance variable is said to be
indirectly used, if it is directly used by another
method M’ which is called directly or indirectly
by M. Two methods are said to be directly
connected if they use a common attribute directly
or indirectly.

TCC is defined as the percentage of pairs of
methods that are directly connected. It measures
the ratio between the actual numbers of visible
directly connected methods in a class divided by
the number of maximal possible number of
connections between the visible methods of a
class. LCC counts the pairs of methods that are
directly or indirectly connected. Constructors and
destructors are not considered for computing LCC
and TCC. [0, 1] interval is the perpetual range of

TCC and LCC. Bieman and Kang also propose
three methods for calculating TCC and LCC:

1. Inclusion of inherited methods and inherited

instance variables in the analysis

2. Exclusion of inherited methods and inherited

instance variables from the analysis

3. Exclusion of inherited methods but inclusion of

inherited instance variables from the analysis

They did not, however, give any special
preference to any one of the three particular
method of calculating their metrics. We preferred
to opt for the first method i.e. considering
inheritance as an intrinsic facet of Object Oriented
systems, for evaluation. Because LCC is more
comprehensive extension of TCC, we selected
LCC in tandem with LCOM as the key cohesion
metrics of our trialing procedure.

3. EMPIRICAL VALIDATION of

COHESION and INSTANCE
VARIABLE INDIRECT
RELATIONSHIP

3.1 Objectives

A large number of software systems have
longevity. With the passage of time, these
software systems need improvisations vis-à-vis
performance, adaptation to the dynamics of
environment, and to address new requirements.
We stressed on carrying out our experiment with
regard to the changeability factor because our
industrial collaborator has a deep-rooted
awareness of software changeability. A good way
of evaluating the changeability of a software
system is to detect some design properties that can
be utilized as changeability indicators. In the
dominion of Object Oriented systems,
experiments have been carried out that show
coupling between classes as an indicator of
changeability.

Chaumun and others defined a model of software
changes and change impacts at the theoretical
level. They detected a close link between
changeability and some coupling metrics across
diversified industrial systems and across
diversified types of changes. Here again, no
quantitative studies of class cohesion have been
undertaken with respect to changeability. Weak
class cohesion results in high coupling with the

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

89

rest of the system which in turn leads to high
change impact. Poor changeability is thus, a result
of weak class cohesion. One technique for
investigating cohesion as a changeability indicator
is to establish if low cohesion is in fact correlated
to high coupling. Such a proof would substantiate
our perception that there is indeed a correlation
between cohesion and changeability. We are
aware that this second hypothesis would entail a
study in its own right, which is outside the
purview of this paper.

4. COHESION METRICS AND INSTANCE
VARIABLES INDIRECT USAGE

4.1 The Cohesion Metrics for Classes

Because of the increasing popularity of object-
oriented methodology in industrialized and
scholastic environs, much research has been
conducted on Object-Oriented cohesion metrics.
The most important existing cohesion metrics
were assessed in [5] and abbreviated definitions of
those metrics are presented in Table 1. Existing
cohesion metrics are categorized into three groups
according to the cohesion criterion espoused by its
definition. The cohesion criterion is an indicator
of what contributes to the cohesiveness of a class.
Briand et al. [5] recapitulated that the cohesion
criteria adopted by the existing cohesion metrics
are both instance variable usage and sharing of
instance variables. The criterion of instance
variable usage indicates that cohesion is
proportional to the number of instance variables in
a class that are referenced by methods in the class.
LCOM5 and Coh fall into this category. All other
metrics excluding CBMC adopt the criterion of
sharing of instance variables i.e. the bigger the
number of method pairs of a class sharing
instance variables is, the greater is the
cohesiveness of the class.
Chae et al. [12] observe that these two criteria
lead to a little discrepancy between the computed
cohesion value and the intuitively expected value.
To facilitate the resolution of these problems due
to those criteria, Chae et al introduced member
connectivity as a fresh criterion. According to this
new criterion of member connectivity, a class
with more robustly connected members is more
cohesive. In this paper, discussion on the effects
of dependent instance variables is concentrated on
the metrics in Table 1 because they have been
broadly acknowledged among the software
engineering community; they have been used in
many empirical studies for investigating the link

between metrics and quality factors such as
development/maintenance effort [1], [8], [15],
[20], [21], fault-proneness [2], [6], [7], [17], [22],
and testability [9]. Besides all these, their use is
steadily increasing in industrial settings.

4.2 Indirect Usage Instance Variables:

We capture the state information common to the
objects instantiated from the class from the
instance variables in a class. This paper classifies
instance variables into base instance variables and
dependent instance variables. The values of
dependent instance variables are calculated from
other instance variables. In contrast, base instance
variables values cannot be calculated from other
instance variables; their values can be allotted
only by the execution of methods in the class. As
a result, we can obtain the values of the dependent
instance variables from base instance variables
and other dependent instance variables.

In this respect, dependent instance variables are
redundant because they do not add any semantic
information. But they are still made use of as they
step up the understandability and performance of
an object-oriented program. Additionally, UML
presents data for describing attributes that can be
derived from others. Examine the class Emp in
Figure. 1. You can observe that class Emp has
seven instance variables, out of which three are
dependent instance variables. The value of gross
instance variable can be computed from instance
variables dow and ros. Likewise, the values of
instance variables tax and netsal can be computes
from instance variables gross and rot, and gross
and tax, correspondingly. The dependency
relation between the instance variables in class
Emp is depicted in Figure. 2. Consider the fact
that a method has using some instance variables
indirectly along with base instance variables that
can be clearly accessed. To put in simply, by
accessing a dependent variable, a method interacts
implicitly with its base instance variables in
addition to the dependent variable. For instance,
by referencing the dependent instance variable
gross, method getGrossSalary() also interacts
implicitly with its base instance variables dow and
ros as the value of gross depends on those of dow
and ros.

Also, when method getTaxAmount() interacts
with instance variable tax, getTaxAmount
interacts not only with instance variable tax but
also with the tax’s base instance variables gross

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

90

and rot. Figure. 3 depicts explicit and implicit
interactions amongst the members of class Emp.
A rectangle symbolizes a method and an ellipse
stands for an instance variable. A solid edge
flanked by a method and an instance variable
shows that an explicit interaction exists between
them because the method actually references the
instance variable. A dotted edge illustrates an
implicit interaction by means of dependency
relation. As shown in Figure. 3, class Emp has 11
implicit interactions and 20 explicit interactions.
According to us, in addition to explicit
interactions that can be directly identified in a
source code, implicit interactions also contribute
to the cohesiveness of a class and, therefore,
should be reflected in the definition of cohesion
metrics. For example, if method getGrossSalary()
references the instance variable gross, method.

Figure 1: Class Emp

getGrossSalary() has a hidden relation with dow
and ros because gross is computes from dow and
ros. Thus, implicit interactions via dependencies
between instance variables should be taking into

consideration in order to more accurately appraise
the cohesiveness of a class. Conversely, existing
cohesion metrics have no notion of dependent
instance variables and do not take into
consideration those implicit interactions via
dependent instance variables either. Because of
this, they fail to accurately evaluate the
cohesiveness of a class producing a cohesion
value lower than expected. More specifically,
metrics associated with the criterion of instance
variable usage such as Coh and LCOM5 count
explicit interactions but not implicit interactions.
Observe that method getTaxAmount() has implicit
interactions with dow, ros, and rot. However, their
cohesion values are usually lower than anticipated
because Coh and LCOM5 do not count those
implicit interactions. Similarly, the metrics linked
with the criterion of sharing of instance variables
such as LCOM1, LCOM2, LCOM3, LCOM4, Co,
LCC, and TCC do not consider the method pairs
with indirectly shared instance variables because
of implicit interactions.

For example, methods getGrossSalary() and
getNetSalary() seem to have no common instance
variables with respect to explicit interactions.
However, those methods indirectly share instance
variables dow, ros, and gross. Existing cohesion
metrics such as LCOM1, LCOM2, Co, LCC, and
TCC do not take account of indirect sharing of
instance variables, thus, leading to a lower
cohesion value. In the case of LCOM3 and
LCOM4, although they are not inclusive of the
effects of dependent instance variables, implicit
interactions among instance variables are
inadvertently reflected by their definitions. The
connectivity factor of CBMC is defined as the
ratio of the number of glue methods to the number
of normal methods. Implicit interactions are
ignored in computing glue methods i.e. a
reference graph that is connected by implicit
interactions is considered disjoint resulting in a
smaller cohesion value.

Figure 2: Indirect Usage Relation between
Instance Variables of Class Emp

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

91

4.3 Consideration of Indirect Instance
Variables Usage

In order to accurately evaluate the class
cohesiveness, dependent instance variables are to
be identified from the class, and implicit
interactions via dependent instance variables are
to be considered in calculating cohesion metrics.
To evaluate the cohesiveness of a class
considering dependent instance variables, our first
step is to identify a dependency relation between
instance variables. If the value of one variable is
at least partly defined by that of the other variable,
there is said to exist a dependency relation
between those two variables. We can identify a
dependency relation through investigating the
implementation of each method in the class.

4.3.1 Indirect Usage of Instance Variable:
Within the Method

Definition1: The dependency relation between
variables in statement s of a method, denoted by

SVIU (s) , is a set of pairs of variables and is
defined as follows: SVIU (s) < vi; vj >| vi= , is
a variable defined in s and vj is a variable used to
define the variable vi in s. For example, consider
class A shown in Figure. 4. Method Af1() has four
assignment statements and a dependency relation
occurs on each of them. That is,

S S

S

S

VIU (s1) {< v,av1 >}, VIU (s2) {< v,av2 >},
VIU (s3) {< v,av3 >< x,av3 >},
VIU (s4) { 4, 2 }.av av

= =
=
= < >

In the Object-Oriented literature, after a variable
is declared, the variable can be explicitly
initialized by means of an assignment statement.
In this paper, a dependency relation is presumed
to include initializations over and above the
assignments.

Figure 3a: Interactions among Instance variables
of method Print ()

Figure 3b: Interactions among Instance variables
of method getGrassSalary()

Figure 3c: Interactions among Instance variables
of method getTaxAmount()

Figure 3d: Interactions among Instance variables
of method Salary ()

Figure 3e: Interactions among Instance variables
of method getNetSalary()

Print()

netsal grsal name taxl

direct direct direct

direct

getGrossSalary()

rosdow grsal

Indire direcIndire

rosgrsaldow netsa
l

Indire
indirec

Indirec

Indirec

getTaxAmount(
)

tax

direct

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

92

Figure 3f: Interactions among Members of Class
Emp

Figure 4: Classes to analyze indirect usage of
instance variables

Definition 2: The relation based on instant
variable indirect usage in method m, denoted
by ()MVIU m , is defined to consist of all the
dependency relations in method m.

()MVIU m can be computed by transitively
collecting SVIU (s) for all the statements in the
method m. For example, dependency relations in
method1 of class A are
 VIUM(am1())={< v,aa1 >,< aa2, v >,< aa2, aa1
>,< aa4, aa2 >,< aa4, v >,< aa4, aa1 >,< aa3, v >,<
aa3, x >,< aa3, aa1 >}:

4.3.2 Indirect Usage of Instance Variable
Analysis: All Methods within a Class

Invocations of other methods contribute to
dependencies among variables in a class. For
instance, consider statement l1 of method cm() in
class C shown in Figure. 4. Instance variable ca1
in class C is passed as an argument to method
bm1 () of instance bob. A dependency relation
arises between instance variable ba of instance
bob and ca1 because of the assignment statement
in method bm1(). As a consequence of this,
instance bob depends on ca1. A method
invocation can be bound at runtime to a number of
methods in an object-oriented program due to
polymorphism and dynamic binding. In this
discussion, we have not concentrated on
polymorphism because we cannot verify the
method statically to which it will be bound.
However, the method described herein can be
extended by analyzing all the methods that can be
invoked in a polymorphic way.

Let statement s be r = t.cm(a1; a2; . . . ; an).
Assume variable t is an object of class T and
cm(f1; f2; . . . ; fn) is a prototype of the called
method cm. Let R(cm) be the set of variables that
appear on a return statement of method cm and
R`(m) the set of variables that can affect the return
value of method cm. That is,

(̀) () { | (). , ()}MR m R m v w R cm v w VIU cm= ∃ ∈ < >∈U
.
We study three kinds of indirect instance variable
usage approaches with respect to method
invocations:
• A target object indirectly using actual

arguments or vice versa

A target object indirectly using actual arguments
if a formal argument fa corresponding to actual
argument aa is used to change any instance
variable of target object t, then the target object t
depends on the actual argument aa.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

93

(). , ()
() () { , }

M

S S

v V T v aa VIU cm
VIU s VIU s t aa
∃ ∈ < >∈ →

= < >U
.

For instance, for statement l1 of method cm(), the
value of ba of target object bob is changed by
actual argument ca1. Thus, VIUS (l1) = {<bob;
ca1 >}.

• An actual argument indirectly using a target

object.
 If fa as formal parameter corresponding to

actual parameter aa is modified by any
instance variable of target object tob, then the
actual parameter aa depends on the target
object tob.

(). , ()
() () { , }

M

S S

v V T aa v VIU cm
VIU s VIU s aa tob

∃ ∈ < >∈
→ = < >U

For instance, for statement l2 of function cm(),
actual parameter ca2 is changed by instance
variable ba of target object bob. Therefore, ca2
indirectly using bob. Thus, VUIS (s2) = {<ca2;
bob >}. The return value of a called method is
assigned. If any instance variable of target object
tob affects the return value of method cm and the
return value is assigned to r, then r depends on t.

(), `(). , ()
() () { , }

M

S S

v V T w R cm v w VIU cm
VIU s VIU s r tob
∃ ∈ ∈ < >∈ →

= < >U

For instance, for statement l3 of function cm(),
instance variable ba of instance bob affects the
return value of function bm3() and the return
value of bm3() is assigned to ca1. Thus, ca1
indirectly using bob. VIUS(l3) = {<ca1; bob >}.
The return value affected by actual parameter is
assigned. If a formal parameter fa corresponding
to actual parameter aa affects the return value of
method cm and the return value is assigned to r,
then r depends on aa

`(). , ()
() () { , }.

M

S S

w R cm ai w VIU cm
VIU s VIU s r aa
∃ ∈ < >∈ →

= < >U

For instance, for statement l3 in function cm(),
actual parameter ca0 affects the return value of
function bm3() and the return value is assigned to
ca1. Thus, ca1 indirectly using ca0. VIUS(l3) =
{<ca1; bob >;< ca1; ca0 >}.

4.3.3 Instance Variables and their relations for
Indirect Usage

Combining the indirect usage levels between
instance variables in each method of the class will
result in computing the indirect usage relation
between instance variables in a class. The indirect
usage relation also displays the following
properties:

• The indirect usage relation is not true for
reflexive: No instance variable indirectly
using itself.

• The indirect usage relation is lopsided. If
v using w indirectly, then w should not
use v indirectly.

• The indirect usage relation is transitive.
If v indirectly using w and w indirectly
using x, then v by default using x
indirectly.

Definition 3: Let iv (cl) and f(cl) be the sets of
instance variables and methods in class cl,
respectively, then an indirect usage relation
between instance variables in class cl, denoted by
IVIU(cl), is defined as follows:

()

()

{ , | , ()
, () ()}

() ()

cl C

C

C M

m M cl

IVIU ai aj ai aj VIU cl i
j aj ai VIU cl aj V cl
whereVIU cl VIU m

∈

= < >< >∈ ∧ ≠
∧ < >∉ ∧ ∈

= U

That is, the indirect usage relation is determined
by removing reflexive and non lopsided tuples.
For instance, the indirect usage relation of class C
is
IVIU(c) = {<ca1; ca0 >;< ca2; bob >;< ca2; ca1
>;< ca2; ca0 >}

4.4 Empirical Model: A Case Study

Together with a Java class library, we carried out
an exhaustive case study to analyze the
importance of instance variables that are
involving indirectly on cohesion measurement of
object-oriented programs and show how we can
deal with indirectly using instance variables in
measuring cohesion values. We have also devised
a cohesion measurement tool to computerize the
method of measuring both the original cohesion
metrics and the improved cohesion metrics that
integrated the characteristics of dependent
instance variables. The tool that we developed
and used to measure the cohesion accepts a java

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

94

source program as input and extracts the class
level information such as instance variables,
methods, and interactions among them. The tool
measures range of cohesion values by even
considering the indirect usage instance variables.
To perform this process initially it builds a data
flow graph. An empirical study had been
conducted on popular open source application
freeCS. It was found out that most of classes have
a rather small number of instance variables. These
data mean that dependent instance variables are
repeatedly used in a real system.

Figure. 7a shows the number of classes that are
affected when we take into account dependent
instance variables for each measure that we have
studied. With the exception of LCOM3 and
LCOM4, there exist one or more classes whose
cohesion values are altered due to the action of
dependent instance variables. Consideration of
implicit interactions via dependent instance
variables has no effect on LCOM3 and LCOM4.
As earlier pointed out, although they did not mean
to consider the characteristics of dependent
instance variables, implicit interactions via
dependent instance variables are coincidentally
reflected by their definitions.

5. RESULTS ANALYSIS

Figure 5a: Percentage of Variable Distribution
(Bar Chart)

Figure 5b : Percentage of variable Disribution
(Pie Chart)

5.1: Case 1: Inter class level indirect usage
Metric Value
Lcom1 0.514523

iviulcom1 0.526151
Lcom2 0.52034

iviulcom2 0.522629
Lcom3 0.571424

iviulcom3 0.571424
Lcom4 0.562356

iviulcom4 0.562356
 Co 0.587945
 iviuCo 0.598763
 Lcom5 0.6934

iviulcom5 0.720512
Metric Value

 Coh 0.59462
Iviucoh 0.609307

 L cc 7.04
 Iviulcc 7.121664
 Tcc 5.31
 Iviutcc 5.468238
 Cbmc 8.01

Iviucbmc 9.752976
Table 1: The Increases of the Cohesion
Measurement: interclass level

Figure 6a: shows the cohesion values for the
cohesion measures for all classes in inter class
state.

Figure 6b: shows the cohesion values for the
cohesion measures for all classes in inter class
state.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

95

Table 1, Figure 6a and Figure 6b shows the
cohesion values for the cohesion measures for all
classes in inter class state. The more the relative
increase, greater is the effect of the dependent
instance variables to cohesion and describes the
relative change in cohesion values for all classes
in the Interviews. Barring CBMC, all the metrics
have a small change because the percentage of
classes whose cohesion values are affected by
dependent instance variables is rather minute.

5.2: Case 2: Cohesion values of classes with
multiple instance variables indirect usage:

Metric Value
Lcom1 0.514523
iviulcom1 0.536082
Lcom2 0.52034
iviulcom2 0.52534323
Lcom3 0.571424
iviulcom3 0.571424
Lcom4 0.562356
Iviulcom4 0.562356
Co 0.587945
Iviuco 0.6316293135
Lcom5 0.6934
iviulcom5 0.7953731968
Coh 0.59462
Iviucoh 0.669720506
Lcc 7.04
Iviulcc 1.009536
Tcc 5.31
Iviutcc 5.944545
Cbmc 8.01
iviucbmc 8.744517

Table 2: The Increases of the Cohesion
Measurement: multiple IVIU

Figure 7a: freeCS Cohesion values of classes with
multiple instance Variables indirect usage

Figure 7b: freeCS Cohesion values of classes with
multiple instance Variables indirect usage

This case specifies the relative change in cohesion
values of classes which have multiple dependent
instance variables. Except for CBMC, the changes
in this case are larger than that in inter class
model. This shows how many effects the
dependent instance variables have on cohesion
measurement since classes with no dependent
instance variables are excluded.

5.3: Case 3: Cohesion values: Affected by
indirect usage of instance variables

Metric Value
 Lcom1 0.514523
 iviulcom1 0.6767006496
 Lcom2 0.52034
 iviulcom2 1.04068
 Lcom3 0.571424
 iviulcom3 0.571424
 Lcom4 0.562356
 iviulcom4 0.562356
 Co 0.587945
 Iviuco 0.683662446
 Lcom5 0.6934
 iviulcom5 0.953425
 Coh 0.59462
 Iviucoh 0.774433088
 Lcc 7.04

Metric Value
 Iviulcc 42.24
 Tcc 5.31
 Iviutcc 5.944545
 Cbmc 8.01
 iviucbmc 10.791072

Table 3: Cohesion values: Affected by indirect
usage of instance variables

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

96

Figure 8a: freeCS Cohesion values: Affected by
indirect usage of instance variables

Figure 8b: freeCS Cohesion values: Affected by
indirect usage of instance variables

This case concludes the relative change for classes
whose cohesion values are affected by
considering dependent instance variables. As seen
in the Table 3, there is a sizable increase in
cohesion values. The values for LCOM2 and LCC
do not seem to be meaningful because, in the case
of LCOM2 and LCC, a very small number of
classes are influenced by dependent instance
variables. Nonetheless, along with Case 2, Case 3
illustrates that dependent instance variables can
have major outcomes on cohesion measurement.
The case study was conducted by us with only one
class library. Via this case study, however, we
determined that dependent instance variables are
usually encountered and, accordingly, the
characteristics of dependent instance variables can
to a great extent influence the cohesion
measurement.

6. CONCLUSION & FUTUREWORK

In this paper, we scrutinized the effects of indirect
instance variable usage on cohesion metrics for
Object-Oriented programs and suggested a way to

identify the dependency relations among instance
variables. By way of performing a case study
where many dependent instance variables were
found and the cohesion values of many classes
were clearly affected by considering dependent
instance variables, we were able to show the
importance of our approach. As part of the future
endeavor, it is essential to probe empirically if
advancement to cohesion metrics by considering
dependent instance variables would yield
improvements to the quality of classes. We will
also need to explore the effects of dependent
instance variables on coupling metrics.

REFERENCES

[1]. M. Alshayeb and W. Li, “An Empirical

Validation of Object-Oriented Metrics in
Two Different Iterative Software
Processes,” IEEE Trans. Software Eng., vol.
29, no. 11, pp. 1043-1049, Nov. 2003.

[2]. V.R. Basili, L.C. Briand, and W. Melo, “A

Validation of Object Oriented Design
Metrics as Quality Indicators,” IEEE Trans.
Software Eng., vol. 22, no. 10, pp. 751-761,
Oct. 1996.

[3]. J.M. Bieman and B.-K. Kang, “Cohesion and

Reuse in an Object-Oriented System,” Proc.
Symp. Software Reusability, pp. 259-262,
1995.

[4]. G. Booch et al., The Unified Modeling

Language User Guide. Addison-Wesley,
1999.

[5]. L.C. Briand, J.W. Daly, and J.K. Wu¨ st, “A

Unified Framework for Cohesion
Measurement in Object-Oriented Systems,”
Empirical Software Eng., vol. 1, no. 1, pp.
65-117, 1998.

[6] .L.C. Briand, J.K. Wu¨ st, S. Ikonomovski, and

H. Lounis, “Investigation of Quality Factors
in Object-Oriented Designs: An Industrial
Case Study,” Proc. Int’l Conf. Software Eng.,
pp. 345-354, 1999.

[7]. L.C. Briand, J.K. Wu¨ st, J.W. Daly, and D.V.

Porter, “Exploring the Relationship between
Design Measures and Software Quality in
Object- Oriented Systems,” J. Systems and
Software, vol. 51, no. 3, pp. 245-273, 2000.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

97

[8]. L.C. Briand and J.K. Wu¨ st, “Modeling
Development Effort in Object-Oriented
Systems Using Design Properties,” IEEE
Trans. Software Eng., vol. 27, no. 11, pp.
963-986, Nov. 2001.

[9]. M. Bruntink and A. Deursen, “Predicting

Class Testability Using Object-Oriented
Metrics,” Proc. Fourth Int’l Workshop
Source Code Analysis and Manipulation,
2004.

[10].N.N. Card, G.T. Page, and F.E. McGarry,

“Criteria for Software Modularization,” Proc.
Eighth Int’t Conf. Software Eng., pp. 372-
377, 1985.

[11]. N.N. Card, V.E. Chruch, and W.W. Agresti,

“An Empirical Study of Software Design
Practices,” IEEE Trans. Software Eng., vol.
12, no. 2, pp. 264- 271, Feb. 1986.

[12]. H.-S. Chae, Y.-R. Kwon, and D.-H. Bae, “A

Cohesion Measure for Object- Oriented
Classes,” Software Practice and Experience,
vol. 30, no. 12, pp. 1405-1431, 2000.

[13].S.R. Chidamber and C.F. Kemerer, “Towards

a Metrics Suite for Object- Oriented
Design,” Proc. Sixth ACM Conf. Object-
Oriented Systems, Languages and
Applications, pp. 197-211, 1991.

[14]. S.R. Chidamber and C.F. Kemerer, “A

Metrics Suite for Object-Oriented Design,”
IEEE Trans. Software Eng., vol. 20, no. 6,
pp. 476-493, June 1994.

[15]. S.R. Chidamber, D.P. Darcy, and C.F.

Kemerer, “Managerial Use of Metrics for
Object Oriented Software: An Explorary
Analysis,” IEEE Trans. Software Eng., vol.
24, no. 8, pp. 629- 39, Aug. 1998.

[16]. P. Devanbu, “GENOA a Customizable,

Language and Front-End Independent Code
Analyzer,” Proc. Conf. Software Eng., pp.
307-317, 1992.

[17]. K. El Emam, S. Benlarbi, N. Goel, and S.N.

Rai, “The Confounding Effect of Class Size
on the Validity of Object-Oriented Metrics,”
IEEE Trans. Software Eng., vol. 27, no. 7,
pp. 630-650, July 2001.

[18]. B. Henderson-Sellers, Software Metrics.
Prentice Hall, 1996.

[19]. M. Hitz and B. Montazeri, “Measuring

Coupling and Cohesion in Object- Oriented
Systems,” Proc. Symp. Applied Corporate
Computing, 1995.

[20]. H. Kabaili, R.K. Keller, F. Lustman, and G.

Saint-Denis, “Class Cohesion Revisited: An
Empirical Study on Industrial Systems,”
Proc. Fourth Int’l ECOOP Workshop
Quantitative Approaches in Object-Oriented
Software Eng., pp. 29-38, 2000.

[21].H. Kabaili, R.K. Keller, and F. Lustman,

“Cohesion as Changeability Indicator in
Object-Oriented Systems,” Proc. Fifth
European Conf. Software Maintenance and
Reeng., 2001.

[22]. W. Li and S. Henry, “Object-Oriented

Metrics that Predict Maintainability,” J.
Systems and Software, vol. 23, no. 2, pp.
111-122, 1993.

[23].M. Linton, P.R. Calder, and J.M. Vlissides,

“InterViews: A C++ Graphical Interface
Toolkit,” Technical Report CSL-TR-88-358,
Stanford Univ., 1988,
ftp://interviews.stanford.edu/pub.

[24]. J. Rumbaugh, M. Blaha, W. Premerlani, F.

Eddy, and W. Lorensen, Object-Oriented
Modeling and Design. Prentice Hall, 1991.

[25].W. Stevens, G. Myers, and L. Constantine,

“Structured Design,” IBM Systems J., vol.
12, no. 2, 1974.

[26]. R. Subramanyam and M.S. Krishnan,
“Empirical Analysis of CK Metrics for
Object-Oriented Design Complexity:
Implifications for Software Defects,” IEEE
Trans. Software Eng., vol. 29, no. 4, pp.
297-310, Apr. 2003.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

98

AUTHOR PROFILES

M.V.Vijaya Saradhi is
Currently Associated
Professor in the Department
of Computer Science and
Engineering (CSE) at
Aurora's Scientific,
Technological and Research

Academy, (ASTRA), Bandlaguda, Hyderabad,
India, where he teaches Several Courses in the
area of Computer Science. He is Currently
Pursuing the PhD degree in Computer Science at
Osmania University, Faculty of Engineering,
Hyderabad, India.. He is a life member of various
professional bodies like MIETE, MCSI, MIE,
MISTE.

Dr. B. R. Sastry is currently
working as Director, Astra,
Hyderabad, India. He earlier
worked for 12 years in
Industry that developed
indigenous computer
systems in India. His areas

of research includes Computer Architecture,
Network Security, Software Engineering, Data
Mining and Natural Language Processing, He is
currently concentrating on improving academic
standards and imparting quality engineering

