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ABSTRACT 
 

Building fault tolerance into a system cannot be an afterthought or add on approach. Design for fault 
tolerance needs to begin with the early stages of system conceptualization, requirement, specification 
and system design. The ultimate goals of a computer system affect its design philosophy and design 
tradeoffs. The cost of fault tolerance must be weighed against the cost of error or failure. This paper 
gives the design methodology for fault tolerant systems. Identify class of expected faults over the life 
time of the system.    
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1. INTRODUCTION        

 
Experimental implementation of the 

design method for embedding fault tolerance 
capabilities into high level digital systems is 
demonstrated. The method starts with 
standardized behavioral level system 
descriptions and systematically transforms it   
into high level synthesis description of 
VHDL based self checking digital models. 
The method starts with a standardized 
behavioral level system description and 
systematically transforms it into an 
implementation level circuit design with 
fault tolerant parts built in. The 
transformation process aims to keep the 
changes made in the model transparent from 
the view point of the designer, in order to 
maintain comp ability between the original 
system models and to minimize the manual 
interaction needed to implement fault 
tolerance. The method is intended to be 
easily incorporated into existing digital 
system design environments. 
 The implantation of the fault tolerant 
capabilities is performed by replacing 
common VHDL data types with alternate, 
self checking capable versions. This way the 
initial high level model needs only a 
minimal modification, and maintains comp 
ability with high level simulation and 
verification tools. The code parts 
implementing fault tolerance are 
implemented as a separate VHDL package 
of register transfer level descriptions, and  

 
they are included into the result of high level 
synthesis automatically, or within minimal 
user intervention. 
 
2. ERROR DETECTION ON 

BEHAVIOURAL LEVEL 
 

 On the behavioral; level of system 
modeling, the most common data types are 
members ( usually integers, floating point 
numbers). Both the correctness of the result 
produced by the system and the control flow 
of the algorithms themselves depend 
severely on the integrity of the numeric 
values. However, numbers are transformed 
to multi bit data lines at lower levels off 
abstraction, so physical level faults (stuck at, 
bridging etc. ) are represented as corrupt 
values at the behavioural level. Therefore the 
numeric values of the high level model need 
to be protected against unintentional value 
changes. 
 There are numerous methods for this 
purpose.[17 ]. The application of residue 
codes [2] have attractive advantages: 
relatively low calculation requirements and 
error detection capability. A simple residue 
code was implemented for integer numbers. 
Applying the mod 3 residue code involves 
the extension of all integer values by a 
separate residue value that contains its 
remainder modulo 3.  Additionally, the 
consistency between the numeric value and 
the residue must be held during the 
operations on the integers. This task can be 
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solved in every elegant way in VHDL, due 
to certain syntactic properties of the 
language. As all the VHDL operators are 
treated basically as functions, a feature 
called operator overloading is provided. The 
code is given below 
Package integer_rescode is  
  Subtype res_code is integer range 0 to 3 
; constant 
Invalid integer_rc is record 
 Value : integer; 
Rescpde : res_code; 
End record; 
Function “+”  (1, r : integer_rc )  return 
integer_rc ; function  “_” (1,r: integer_rc)  
return integer_rc  ; 
End integer_res_code; 
Package body integer_rescode is 
 Function rescode  ( arg : integer ) return 
res code is variable result; 
  Res_ code; 
  Begin  
   Result := arg mod 3 ; 
return result; 
 End res_code; 

Function   “+”   (1,r : integer_rc )  
return integer_rc is variable result ; 

Integer_rc; 
Begin 

  Result.value := 1.value + 
r.value ; if (rescode (1) /= 1.rescode) 

Or (rescode (r) /= r.rescode ) then 
result.rescode  := invalid_rc; 

Else 
Result.rescode := result.value; end 

if; 
Return result ; end “+”; 
End integer_rescode; 

  
Here a data type integer_rc is 

declared as a record ; its members are value ( 
that carries the numeric value of an integer ) 
and rescode ( that carries the residue 
code).Then the function implementing the 
standard operators  “+” ,  ”_” , etc are 
defined on integer_rc type operands in a way 
that they return the result of the same 
operator on integer in value, and the residue 
code of this result in residue code. The 
constant invalid_rc  is defined for error 
detection purposes , as it represents an 
illegal mod 3 remainder, rescode is set to 
invalid_rc if the residue code of any 
operands was incorrect. The illegal value of 
rescode is propagated in all subsequent 

operations, thus ensuring that as long as the 
effect of any value change caused by a fault 
is detectable by mod 3 residue codes, it will 
be observable on the affected outputs of the 
system as well. 
 Embedding residue code based fault 
tolerance into behavioural level VHDL 
circuit descriptions is most simple. It 
consists of including an alternate VHDL 
numeric package (that contains the 
declaration of the residue code protected 
integer_re type and the definitions of the 
standard VHDL operators on this type), and 
replacing all integer type definitions with 
integer_reo .  
 
3. TRANFORMATION INTO 

REGISTER TRANSFER LEVEL 

 Modern digital circuit design systems 
usually offer automatic silicon layout 
generation from low level circuit 
descriptions. Therefore behavioural level 
models must be transformed into a lower 
level. In this research, the Synplicity 
Synplify Pro [ 4 ] system has been chosen, 
due to its free availability and positive past 
experiences.[5]. 
 The embedded fault tolerant features of 
the behavioural models must also be 
transformed .As most high level synthesis 
systems transform behavioural level 
operations in a predefined low level 
functional units overload operators. 
Obviously, the high level synthesis tool must 
accept the modified integer_re type and 
convert it appropriately to a lower level data 
type. As this data type is usually the standard 
bit_vector or std_logic_vector type with 
globally defined size (which is user supplied 
design parameter), it can be easily extended 
with the two extra data lines needed by the 
mod 3 residue codes.  In the case of 
Synplicity Synplify Pro , a set of FU s is 
supplied in low level VHDL description 
format, so their modification is just as 
simple as the modification of the 
behavioural model. 
 
 4. SIMULATION AND RESULTS 
 
 The sample circuit used for 
demonstration of the embedding of fault 
tolerance was the GCD example supplied 
with Synplicity  Synplify Pro. The circuit 
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realises the traditional Euclidean Algorithm 
for calculating the greatest common divisor 
of two integer numbers as a sequential 
digital circuit. 
 Xilinx FPGA development tool was 
used to convert the RTL VHDL model into a 
Xilinx FPGA .The overhead in the number 
of equivalent gate inputs was 48% with a 8 
bit wide integers. These values are 
significantly higher than the expected values 
according to [  39  ]. The actual overhead is 
affected because of the following factors: 

• The most optimal implementation of the 
residue code checker  (it  was necessary to 
re-implement it almost completely due to the 
different VHDL subset used by the FPGA 
design environment) 

• The sample circuit was mostly data 
dominant, with a very simple control 
sequence. 

• The FPGA synthesis tool generated the 
checker as a combinational circuit, 
optimised for speed. A slightly slower, 
sequential implementation would have 
resulted in a smaller hardware overhead. 

• The target architecture applied in Synplicity 
Synplify Pro resulted in the gate level 
implementation of the residue checker in 
each functional unit. If the residue checker is 
implemented as a separate unit, and is shared 
between the FU s of the circuit, the overhead 
with respect to the whole circuit is obviously 
smaller. 
                                                           
5.  COMPARING DIFFERENT FAULT 
MODELS  
 
 Fault injection is widely used for 
evaluating dependable systems. In this 
research, various fault models used for fault 
injection are compared. The experiment has 
been performed by using the simulation 
based fault injector VERIFY  (VHDL based 
Evaluation of Reliability by Injecting Faults 
efficiently). 
 The technique implemented by 
VERIFY enables a completely automated 
evaluation of system dependability features. 
For starting an experiment, the user specifies 
the simulation time and the number of faults 
k which should be injected. Each experiment 
consists on fault free run (golden run) and k 
runs where for each run exactly one fault is 
injected. 

 Once the experiment has been started, 
the simulator injects the required number of 
faults without any user intervention. Each 
time a fault has to be injected, the simulator 
determines automatically the type, location, 
time of occurrence and duration of the fault 
according to the fault descriptions in the 
model. The dependability of the complete 
system can be evaluated by injecting several 
thousands of faults within a simulation time 
which is representative for the service the 
system has to provide. 
 During the fault injection experiments, 
a trace of all signal values is logged for the 
golden run and fpr the time after a fault has 
been injected. In order to speed up the 
simulation time, the experiments are carried 
out by a technique called multithreaded fault 
injection described by Guthoff and Siehin  
  
6.  EXPERIMENTAL STUDY 
 
 In order to compare the fault models, an 
experiment using VHDL model of the DP-
32 processor is set up. In the following two 
sub sections, a summary of the basic 
characteristics of the DP-32 processor and 
the fault model for which fault injection 
experiments have been performed are 
presented. A detailed description of DP -32 
processor model can be found in [8 ]. 
 
7.  THE  DP32 PROCESSOR 
 
 The DP 32 is a simple 32 bit RISC 
processor which has been chosen to compare 
the results with the fault injection 
experiments .A VHDL model of the 
processor presented  at RTL level and has 
been modified so that Synopsys Synthesis 
tool automatically generates a gate level 
VHDL model. 
 The A/D bus is used to fetch 
instructions and to transfer data between 
registers and memory. The actions of the 
DP-32 are controlled by a single finite state 
machine (FSM). The model used does not 
support instructions for multiplication and 
division. The register file of the original 
model supports 256 register has been 
reduced to 8 registers.  
 The fault injection experiments are 
performed with two different gate level 
models of the DP-32. The models are 
automatically generated by the synthesis tool 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
24 

using different cell libraries. The library for 
the simple model includes only the 
fundamental gates: an AND and OR gate 
with two inputs : inverter, tristate driver, D 
flipflop and D latch. Due to the simple 
library the generated gate level model of the 
DP-32 includes 32.4 5 more gates than the 
advanced gate level model generated with an 
advanced library. The advanced library does 
not include the additional cells for the 
NAND gates, NOR gates, XOR gates, 
Multiplexes and Full adder. The logic gates 
are available in versions with 2, 3 and 4 bit 
inputs. 
 During the simulation of both gate level 
models the test program given in Figure 9.1  
is processed . First, it resets register r0 to 
zero. Then, it increments r2 starting at 0 
until r2 is equal to 10, where it restarts at r2 
equal to zero. The simulation of one cycle 
(counting from 0 to 100) needs 6 µs at 20ns 
clock cycle length. 
 
 
   Initr0 
Start :   addq(r2,r0,0)      
 ; r2:=0 
Loop :   sta(r2, 
counter)  ;counter :=r2 
   Addq(r2, r2, 1) 
 ; increment r2 
   Subq (r1, r2,10) 
 ;if r2=10 then 
   Brzq(start) 
 ;restart 
   Braq(loop) 
 ;else next loop 
Counter :  data(0)  
  
 
         Test Program 
 

    8.  FAULT MODELS 
 

 Three different fault models have been 
chosen the well known stuck at x fault 
model at gate level, bit flips in registers of 
the register transfer level and stuck at x at 
pin level of the processor. 
• The stuck at x model  at gate level is 
widely used in conjunction with the test 
pattern generation .The customary approach 
of allowing stuck at 0 or stuck at 1 only at 
output signals of the components by adding 
the same possibility of fault for input 

signals. If the output of a gate drives one 
signal which will be used as an input for 
several other gates, allowing faults only at 
the output of the gate would always affect all 
components connected with the affected 
signal. This fault model has been presented 
which allows the extension of a NOT gate. 
• For the second fault model, the single 
bit flip model i the internal registers and 
latches of the DP-32 processor has been 
chosen. This model is used by nearly all 
tools which are based o the approach of 
software implemented fault injection .For 
the experiments the faults have been injected 
uniformly distributed over all bits of internal 
registers including the bits of the finite state 
machine of the processor. 
• The third fault model chosen is the 
injection of faults at the pin level of the DP-
32 processor. Like in the gate level stuck at 
fault model, which is the most detailed one, 
single stuck at faults uniformly distributed 
over all has been chosen. For this purpose 
the test bed for the experiments with a 
socket which connects the DP32 processor 
with the main memory via the address and 
data bus and its control lines was extended. 
The location of the faults to inject is 
restricted to the socket and, therefore, to the 
pins of the processor. With this fault model, 
all signals going to or from the processor can 
be corrupted. 
 

In all experiments the same 
frequency of occurrence and mean duration 
time is used. It would be easy to adjust these 
values if more realistic rates or duration 
times are known. Four experiments have 
been performed in order to evaluate the 
influence of different parameters on the 
results of the fault injection.  
• In the first model the simple gate level 
model of the DP32 was used and only 
internal stuck at faults were injected at the 
input and output ports of each gate. 
• The evaluation of the influence of 
different realisations on the behaviour of the 
system after fault injection were measured 
by comparing simple with the second 
experiment. For this purpose the advanced 
level gate model is used. The fault model 
which  has been used was the same as in the 
simple experiment i.e stuck at faults at the 
input and output of every gate inside the 
processor. 
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• For the third experiment, the advanced 
gate level model DP32 was used in 
conjunction with the bit flip faults at all 
internal registers. The advanced gate level 
model of the processor has been favored 
over the simple because of a shorter 
simulation time due to fewer gates. 
• In the last experiment stuck at faults 
were injected into the socket of the 
processor. As no faults have been injected 
inside the DP32 , any level of the description 
of the DP32 could be used as a model of the 
CPU. 
 
Every experiment consisted of 1000 
different test runs; where for each run one 
single fault has been injected. The behavior 
of the system was observed for 2µs after 
injecting the faults. The mean duration of the 
fault was observed to be 20 ns. All 
experiments have in common that no faults 
have been injected into the clock, reset and 
the RAM components of the test be 
observed. 
 
   9.  RESULTS AND DISCUSSION 
 

The description and specifications 
of the analog ore used in mixed signal 
circuits is presented. Three mixed signal 
chips are used.  

 
 

 
 

Three digital soc test benches have 
been used. Five analog cores have been 
added to the cores. These shall be referred as 
m1, m2 and m3 respectively. The analog 
core consist of a pair of base band transmit 
path with a bandwidth of 50 KHz. a base 
band down conversion path and a general 
purpose amplifier.  

These analog cores are taken from a 
commercial base band cellular phone chip. 
The test specifications is given in Table 9.1 
For the I-Q transmit path pair, six distinct 
specifications based tests are defined. These 
include the pass band gain, the cut off 
frequency, the attenuation levels at 1 and 2 
MHz , the  third order input intercept. 
 

10.  COMPARISON OF FAULT MODELS 
 The graphs indicate how the circuit 
reacts to the faults injected. The graph G(t) 
indicates the percentage of injected faults 
which caused faulty states in the circuit at a 
given time t after the fault has been 
deactivated. The function 1-G(t) is the 
recovery time distribution .In addition to the 
recovery time distribution , the diagrams 
show the probability that the system is not 
able to recover from an injected fault within 
the observable interval T. This probability is 
G(t). Each diagram on the right side is a 
manifestation of the first nano seconds of the 
graph on the left side. 
 

 
 
 

Figure 1 : RBF coverage and logic size as function of n(1%Xs) 
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Figure 2: Number of masked bits and logic size as function of m ( 3% Xs) 

Figure 3: RBF coverage and logic size as function of n (3%Xs) 
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It is observed that the reaction of the system 
heavily depends on the type of the injected 
fault and on the used gate level model e.g. 
faulty states induced by internal stuck at 
faults and external stuck at faults.  
  The results demonstrate that faults have 
to be injected at least at gate level in order to 
represent the correct timing behavior of the 
digital system after the fault has been 
injected and help the designer of a 
dependable system to find the weak 
components. 
 
11.  CONCLUSION 
 

The results summarized above 
indicate that reliability analysis can indeed 
be formalized so as to reflect the ability of 
the user to rely on the computations a 
computer performs (as opposed to the 
computer itself). It is also clear that the 
research performed to date is only a 
beginning in this direction, and there  
 
 
are a number of topics that deserve 
immediate investigation. The first of these is 
the further exploration of examples that 
illustrate-how the probability of 
computation-based) success can be 
evaluated , Secondly, other reliability 
measures such as "meantime- to-failure," 
"fault-tolerance," "availability" and  

 
 
 
 
 
"recoverability" should be given a 
computation-based formulation. In 
particular, recoverability (i.e.,"coverage"  ) 
should be focused on since it is inherently a 
computation-based measure.  Third, there is 
need to consider specific instances of the 
general model that are closer to particular 
applications problems. The purpose of the 
general model has been to formalize 
reliability measures along with the 
information required to evaluate the 
measures. However, to obtain a useful tool 
for assessing the reliability of a special class 
of systems (e.g., aircraft computers), the 
model must be specialized to permit 
practical methods of evaluation using 
practically available data. 
Fourth, the evaluation methods just referred 
to must be investigated. This includes 
simulation methods as well as analytic 
methods. When simulation methods are 
employed, the simulation should account not 
only for the probabilistic nature of faults but 
also for the probabilistic nature of the 
computational environment. The end product 
of this last investigation should be a set of 
algorithms which, given reasonable 
constraints on computer time, computer 
memory and cost, can evaluate a set of 
computation-based reliability measures     
 
 
 

Figure 4: Frequency spectrum of applied test.
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