
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

21

A METHODICAL APPROACH FOR SELF CHECKING
AND FAULT TOLERANT DESIGN

Y.RAJASREE AND DR.N.R.ALAMELU

Sridevi Women’s Engineering College Hyderabad, INDIA

ABSTRACT

Building fault tolerance into a system cannot be an afterthought or add on approach. Design for fault
tolerance needs to begin with the early stages of system conceptualization, requirement, specification
and system design. The ultimate goals of a computer system affect its design philosophy and design
tradeoffs. The cost of fault tolerance must be weighed against the cost of error or failure. This paper
gives the design methodology for fault tolerant systems. Identify class of expected faults over the life
time of the system.

Keywords: Res_Code, Circuit, FPGA, Fault, System, System, Clock, Model

1. INTRODUCTION

Experimental implementation of the

design method for embedding fault tolerance
capabilities into high level digital systems is
demonstrated. The method starts with
standardized behavioral level system
descriptions and systematically transforms it
into high level synthesis description of
VHDL based self checking digital models.
The method starts with a standardized
behavioral level system description and
systematically transforms it into an
implementation level circuit design with
fault tolerant parts built in. The
transformation process aims to keep the
changes made in the model transparent from
the view point of the designer, in order to
maintain comp ability between the original
system models and to minimize the manual
interaction needed to implement fault
tolerance. The method is intended to be
easily incorporated into existing digital
system design environments.
 The implantation of the fault tolerant
capabilities is performed by replacing
common VHDL data types with alternate,
self checking capable versions. This way the
initial high level model needs only a
minimal modification, and maintains comp
ability with high level simulation and
verification tools. The code parts
implementing fault tolerance are
implemented as a separate VHDL package
of register transfer level descriptions, and

they are included into the result of high level
synthesis automatically, or within minimal
user intervention.

2. ERROR DETECTION ON

BEHAVIOURAL LEVEL

 On the behavioral; level of system
modeling, the most common data types are
members (usually integers, floating point
numbers). Both the correctness of the result
produced by the system and the control flow
of the algorithms themselves depend
severely on the integrity of the numeric
values. However, numbers are transformed
to multi bit data lines at lower levels off
abstraction, so physical level faults (stuck at,
bridging etc.) are represented as corrupt
values at the behavioural level. Therefore the
numeric values of the high level model need
to be protected against unintentional value
changes.
 There are numerous methods for this
purpose.[17]. The application of residue
codes [2] have attractive advantages:
relatively low calculation requirements and
error detection capability. A simple residue
code was implemented for integer numbers.
Applying the mod 3 residue code involves
the extension of all integer values by a
separate residue value that contains its
remainder modulo 3. Additionally, the
consistency between the numeric value and
the residue must be held during the
operations on the integers. This task can be

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

22

solved in every elegant way in VHDL, due
to certain syntactic properties of the
language. As all the VHDL operators are
treated basically as functions, a feature
called operator overloading is provided. The
code is given below
Package integer_rescode is
 Subtype res_code is integer range 0 to 3
; constant
Invalid integer_rc is record
 Value : integer;
Rescpde : res_code;
End record;
Function “+” (1, r : integer_rc) return
integer_rc ; function “_” (1,r: integer_rc)
return integer_rc ;
End integer_res_code;
Package body integer_rescode is
 Function rescode (arg : integer) return
res code is variable result;
 Res_ code;
 Begin
 Result := arg mod 3 ;
return result;
 End res_code;

Function “+” (1,r : integer_rc)
return integer_rc is variable result ;

Integer_rc;
Begin

 Result.value := 1.value +
r.value ; if (rescode (1) /= 1.rescode)

Or (rescode (r) /= r.rescode) then
result.rescode := invalid_rc;

Else
Result.rescode := result.value; end

if;
Return result ; end “+”;
End integer_rescode;

Here a data type integer_rc is

declared as a record ; its members are value (
that carries the numeric value of an integer)
and rescode (that carries the residue
code).Then the function implementing the
standard operators “+” , ”_” , etc are
defined on integer_rc type operands in a way
that they return the result of the same
operator on integer in value, and the residue
code of this result in residue code. The
constant invalid_rc is defined for error
detection purposes , as it represents an
illegal mod 3 remainder, rescode is set to
invalid_rc if the residue code of any
operands was incorrect. The illegal value of
rescode is propagated in all subsequent

operations, thus ensuring that as long as the
effect of any value change caused by a fault
is detectable by mod 3 residue codes, it will
be observable on the affected outputs of the
system as well.
 Embedding residue code based fault
tolerance into behavioural level VHDL
circuit descriptions is most simple. It
consists of including an alternate VHDL
numeric package (that contains the
declaration of the residue code protected
integer_re type and the definitions of the
standard VHDL operators on this type), and
replacing all integer type definitions with
integer_reo .

3. TRANFORMATION INTO

REGISTER TRANSFER LEVEL

 Modern digital circuit design systems
usually offer automatic silicon layout
generation from low level circuit
descriptions. Therefore behavioural level
models must be transformed into a lower
level. In this research, the Synplicity
Synplify Pro [4] system has been chosen,
due to its free availability and positive past
experiences.[5].
 The embedded fault tolerant features of
the behavioural models must also be
transformed .As most high level synthesis
systems transform behavioural level
operations in a predefined low level
functional units overload operators.
Obviously, the high level synthesis tool must
accept the modified integer_re type and
convert it appropriately to a lower level data
type. As this data type is usually the standard
bit_vector or std_logic_vector type with
globally defined size (which is user supplied
design parameter), it can be easily extended
with the two extra data lines needed by the
mod 3 residue codes. In the case of
Synplicity Synplify Pro , a set of FU s is
supplied in low level VHDL description
format, so their modification is just as
simple as the modification of the
behavioural model.

 4. SIMULATION AND RESULTS

 The sample circuit used for
demonstration of the embedding of fault
tolerance was the GCD example supplied
with Synplicity Synplify Pro. The circuit

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

23

realises the traditional Euclidean Algorithm
for calculating the greatest common divisor
of two integer numbers as a sequential
digital circuit.
 Xilinx FPGA development tool was
used to convert the RTL VHDL model into a
Xilinx FPGA .The overhead in the number
of equivalent gate inputs was 48% with a 8
bit wide integers. These values are
significantly higher than the expected values
according to [39]. The actual overhead is
affected because of the following factors:

• The most optimal implementation of the
residue code checker (it was necessary to
re-implement it almost completely due to the
different VHDL subset used by the FPGA
design environment)

• The sample circuit was mostly data
dominant, with a very simple control
sequence.

• The FPGA synthesis tool generated the
checker as a combinational circuit,
optimised for speed. A slightly slower,
sequential implementation would have
resulted in a smaller hardware overhead.

• The target architecture applied in Synplicity
Synplify Pro resulted in the gate level
implementation of the residue checker in
each functional unit. If the residue checker is
implemented as a separate unit, and is shared
between the FU s of the circuit, the overhead
with respect to the whole circuit is obviously
smaller.

5. COMPARING DIFFERENT FAULT
MODELS

 Fault injection is widely used for
evaluating dependable systems. In this
research, various fault models used for fault
injection are compared. The experiment has
been performed by using the simulation
based fault injector VERIFY (VHDL based
Evaluation of Reliability by Injecting Faults
efficiently).
 The technique implemented by
VERIFY enables a completely automated
evaluation of system dependability features.
For starting an experiment, the user specifies
the simulation time and the number of faults
k which should be injected. Each experiment
consists on fault free run (golden run) and k
runs where for each run exactly one fault is
injected.

 Once the experiment has been started,
the simulator injects the required number of
faults without any user intervention. Each
time a fault has to be injected, the simulator
determines automatically the type, location,
time of occurrence and duration of the fault
according to the fault descriptions in the
model. The dependability of the complete
system can be evaluated by injecting several
thousands of faults within a simulation time
which is representative for the service the
system has to provide.
 During the fault injection experiments,
a trace of all signal values is logged for the
golden run and fpr the time after a fault has
been injected. In order to speed up the
simulation time, the experiments are carried
out by a technique called multithreaded fault
injection described by Guthoff and Siehin

6. EXPERIMENTAL STUDY

 In order to compare the fault models, an
experiment using VHDL model of the DP-
32 processor is set up. In the following two
sub sections, a summary of the basic
characteristics of the DP-32 processor and
the fault model for which fault injection
experiments have been performed are
presented. A detailed description of DP -32
processor model can be found in [8].

7. THE DP32 PROCESSOR

 The DP 32 is a simple 32 bit RISC
processor which has been chosen to compare
the results with the fault injection
experiments .A VHDL model of the
processor presented at RTL level and has
been modified so that Synopsys Synthesis
tool automatically generates a gate level
VHDL model.
 The A/D bus is used to fetch
instructions and to transfer data between
registers and memory. The actions of the
DP-32 are controlled by a single finite state
machine (FSM). The model used does not
support instructions for multiplication and
division. The register file of the original
model supports 256 register has been
reduced to 8 registers.
 The fault injection experiments are
performed with two different gate level
models of the DP-32. The models are
automatically generated by the synthesis tool

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

24

using different cell libraries. The library for
the simple model includes only the
fundamental gates: an AND and OR gate
with two inputs : inverter, tristate driver, D
flipflop and D latch. Due to the simple
library the generated gate level model of the
DP-32 includes 32.4 5 more gates than the
advanced gate level model generated with an
advanced library. The advanced library does
not include the additional cells for the
NAND gates, NOR gates, XOR gates,
Multiplexes and Full adder. The logic gates
are available in versions with 2, 3 and 4 bit
inputs.
 During the simulation of both gate level
models the test program given in Figure 9.1
is processed . First, it resets register r0 to
zero. Then, it increments r2 starting at 0
until r2 is equal to 10, where it restarts at r2
equal to zero. The simulation of one cycle
(counting from 0 to 100) needs 6 µs at 20ns
clock cycle length.

 Initr0
Start : addq(r2,r0,0)
 ; r2:=0
Loop : sta(r2,
counter) ;counter :=r2
 Addq(r2, r2, 1)
 ; increment r2
 Subq (r1, r2,10)
 ;if r2=10 then
 Brzq(start)
 ;restart
 Braq(loop)
 ;else next loop
Counter : data(0)

 Test Program

 8. FAULT MODELS

 Three different fault models have been
chosen the well known stuck at x fault
model at gate level, bit flips in registers of
the register transfer level and stuck at x at
pin level of the processor.
• The stuck at x model at gate level is
widely used in conjunction with the test
pattern generation .The customary approach
of allowing stuck at 0 or stuck at 1 only at
output signals of the components by adding
the same possibility of fault for input

signals. If the output of a gate drives one
signal which will be used as an input for
several other gates, allowing faults only at
the output of the gate would always affect all
components connected with the affected
signal. This fault model has been presented
which allows the extension of a NOT gate.
• For the second fault model, the single
bit flip model i the internal registers and
latches of the DP-32 processor has been
chosen. This model is used by nearly all
tools which are based o the approach of
software implemented fault injection .For
the experiments the faults have been injected
uniformly distributed over all bits of internal
registers including the bits of the finite state
machine of the processor.
• The third fault model chosen is the
injection of faults at the pin level of the DP-
32 processor. Like in the gate level stuck at
fault model, which is the most detailed one,
single stuck at faults uniformly distributed
over all has been chosen. For this purpose
the test bed for the experiments with a
socket which connects the DP32 processor
with the main memory via the address and
data bus and its control lines was extended.
The location of the faults to inject is
restricted to the socket and, therefore, to the
pins of the processor. With this fault model,
all signals going to or from the processor can
be corrupted.

In all experiments the same
frequency of occurrence and mean duration
time is used. It would be easy to adjust these
values if more realistic rates or duration
times are known. Four experiments have
been performed in order to evaluate the
influence of different parameters on the
results of the fault injection.
• In the first model the simple gate level
model of the DP32 was used and only
internal stuck at faults were injected at the
input and output ports of each gate.
• The evaluation of the influence of
different realisations on the behaviour of the
system after fault injection were measured
by comparing simple with the second
experiment. For this purpose the advanced
level gate model is used. The fault model
which has been used was the same as in the
simple experiment i.e stuck at faults at the
input and output of every gate inside the
processor.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

25

• For the third experiment, the advanced
gate level model DP32 was used in
conjunction with the bit flip faults at all
internal registers. The advanced gate level
model of the processor has been favored
over the simple because of a shorter
simulation time due to fewer gates.
• In the last experiment stuck at faults
were injected into the socket of the
processor. As no faults have been injected
inside the DP32 , any level of the description
of the DP32 could be used as a model of the
CPU.

Every experiment consisted of 1000
different test runs; where for each run one
single fault has been injected. The behavior
of the system was observed for 2µs after
injecting the faults. The mean duration of the
fault was observed to be 20 ns. All
experiments have in common that no faults
have been injected into the clock, reset and
the RAM components of the test be
observed.

 9. RESULTS AND DISCUSSION

The description and specifications
of the analog ore used in mixed signal
circuits is presented. Three mixed signal
chips are used.

Three digital soc test benches have
been used. Five analog cores have been
added to the cores. These shall be referred as
m1, m2 and m3 respectively. The analog
core consist of a pair of base band transmit
path with a bandwidth of 50 KHz. a base
band down conversion path and a general
purpose amplifier.

These analog cores are taken from a
commercial base band cellular phone chip.
The test specifications is given in Table 9.1
For the I-Q transmit path pair, six distinct
specifications based tests are defined. These
include the pass band gain, the cut off
frequency, the attenuation levels at 1 and 2
MHz , the third order input intercept.

10. COMPARISON OF FAULT MODELS
 The graphs indicate how the circuit
reacts to the faults injected. The graph G(t)
indicates the percentage of injected faults
which caused faulty states in the circuit at a
given time t after the fault has been
deactivated. The function 1-G(t) is the
recovery time distribution .In addition to the
recovery time distribution , the diagrams
show the probability that the system is not
able to recover from an injected fault within
the observable interval T. This probability is
G(t). Each diagram on the right side is a
manifestation of the first nano seconds of the
graph on the left side.

Figure 1 : RBF coverage and logic size as function of n(1%Xs)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

26

Figure 2: Number of masked bits and logic size as function of m (3% Xs)

Figure 3: RBF coverage and logic size as function of n (3%Xs)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

27

It is observed that the reaction of the system
heavily depends on the type of the injected
fault and on the used gate level model e.g.
faulty states induced by internal stuck at
faults and external stuck at faults.
 The results demonstrate that faults have
to be injected at least at gate level in order to
represent the correct timing behavior of the
digital system after the fault has been
injected and help the designer of a
dependable system to find the weak
components.

11. CONCLUSION

The results summarized above
indicate that reliability analysis can indeed
be formalized so as to reflect the ability of
the user to rely on the computations a
computer performs (as opposed to the
computer itself). It is also clear that the
research performed to date is only a
beginning in this direction, and there

are a number of topics that deserve
immediate investigation. The first of these is
the further exploration of examples that
illustrate-how the probability of
computation-based) success can be
evaluated , Secondly, other reliability
measures such as "meantime- to-failure,"
"fault-tolerance," "availability" and

"recoverability" should be given a
computation-based formulation. In
particular, recoverability (i.e.,"coverage")
should be focused on since it is inherently a
computation-based measure. Third, there is
need to consider specific instances of the
general model that are closer to particular
applications problems. The purpose of the
general model has been to formalize
reliability measures along with the
information required to evaluate the
measures. However, to obtain a useful tool
for assessing the reliability of a special class
of systems (e.g., aircraft computers), the
model must be specialized to permit
practical methods of evaluation using
practically available data.
Fourth, the evaluation methods just referred
to must be investigated. This includes
simulation methods as well as analytic
methods. When simulation methods are
employed, the simulation should account not
only for the probabilistic nature of faults but
also for the probabilistic nature of the
computational environment. The end product
of this last investigation should be a set of
algorithms which, given reasonable
constraints on computer time, computer
memory and cost, can evaluate a set of
computation-based reliability measures

Figure 4: Frequency spectrum of applied test.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

28

REFERENCES

[1]. A.Cron ,“ IEEE P1149.4-Almost a
standard ” ,in Proc. IEEE Int. Test Conf.
(ITC) ,1997, pp. 174-182

[2]. Bavuso .S.J (1984), “An user Guide of
CARE III ’’, IEEE Proceedings Annual
Reliability and Maintainability
Symposium , pp. 382-389.

[3]. Barbe ,D.F (1983),Very Large Scale
Integration-Fundamentals and
Applications, Springer-Verlag,
European Simulation , pp. 365-369.

[4]. A.Lu and G.W.Roberts. (1994) , “ An
oversampling based analog multi tone
signal generator ’’ , IEEE Trans.
Circuits Syst. II, Exp. Briefs , vol. 45,
no. 3, pp. 391-39.

[5]. A.Lu, G.W.Roberts and D.J.Johns.
(1994), “A high quality analog
oscillator using oversampling D/A
conversion techniques ’’, IEEE Trans.
Circuits Syst. II Exp. Briefs, vol 41, no.
7, pp. 437-444

[6]. B.Koupal, T.Lee and B.Gravens,
“Bluetooth single chip S------------------
radios: Holy grail or white elephant
[online].Available : http://
www.signiatech.com/pdf/paper_two_ch
ip.pdf

[7]. B.Dufort and G.W.Roberts.(1999), “ On

chip analog signal generation for mixed
signal built in self test ’’, IEEE J. Solid
State Circuits, vol. 45, no. 3, pp. 391-
394.

[8]. 8.C.Metra, M.Favalli and

B.Ricco.(1999) “ On line Detection of
Logic Errors due to cross talk, Delay
and Transient Faults ”, Proceedings of
ITC , pp. 524-533.

[9]. 9.C.S.Wallace. (1964), “A Suggestion

for a Fast Multipliers”, IEEE
Transactions on Electronic Computers,
pp. 14-17.

[10]. 10.C.Su and Y.T.Chen . (2000),

“Intrinisic response extraction for the
removal of the parasitic effects in
analog test buses ’’, vol. 19, no. 4, pp.
437-445.

[11]. 11. C.Y.Pan and K.T.Cheng. (1997)

,“Pseudorandom testing for mixed
signal circuits ’’ , IEEE Trans. Compt.
Aided Des. Integrated. Circuits
Systems, vol.16, no. 10, pp. 1173-1189.

[12]. 12.D.A.Johns and K.Martin. (1997) ,

Analog Integrated Circuit Design , New
York; Wiley.

[13]. 13.D.Gizopoulos, A.Paschalis and

Y.Zorian. (1999), “An Effective Built in
Self Test Scheme for Array
Multipliers”, IEEE Transactions on
Computers, vol. 48, pp. 936-950.

[14]. 14. D.K.Pradhan, ed al. (1986), Fault

Tolerant Computer System Design,
Prentice Hall, Englewood , New Jersey.

