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ABSTRACT 
 

This paper proposes general and specific modeling and simulation for Schott ASE-300-DGF PV panel for 
Smart Grid applications. This is done, with the aid of MATLAB environment and Artificial Neural 
Network (ANN). First modeling of PV cell module at nominal conditions at 25°C, and 1KW/m2 with I-V 
curves at (0°C, 25°C, 50°C, 75°C), also power and irradiance. Then, we propose general modeling and 
simulation at more probable situations for variable values of temperature and irradiance. The simulation 
results at each irradiance value with various temperature values and corresponding characteristics are well 
depicted in 3-D figures. Later, the ANN model for the proposed range of irradiance and temperature as 
model inputs, with the corresponding values of voltages, currents, and power as outputs is presented. 
Finally, algebraic equations for the ANN model are deduced. 
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1. INTRODUCTION  
 
      Due to the importance of PV cell especially in 
Smart Grid Energy Systems (SGES) this paper is 
proposed. Smart Grid Energy Systems (SGES) is 
recently increasing, particularly onsite generation. 
This interest is because larger power plants are 
economically unfeasible in many regions due to 
increasing system and fuel costs, and more strict 
environmental regulations. In addition, recent 
technological advances in small generators, Power 
Electronics, and energy storage devices have 
provided a new opportunity for distributed energy 
resources at the distribution level [1-3]. Photo-
voltaic systems have become increasingly popular 
and are ideally suited for distributed systems. Many 
governments have provided the much needed 
incentives to promote the utilization of renewable 
energies, encouraging a more decentralized 
approach to power delivery systems. In spite of 
their relatively high cost, there has been very 
remarkable growth in installed Photovoltaic 
systems. Recent studies show an exponential 
increase in the worldwide installed photovoltaic 
power capacity. There is ongoing research aimed at 
reducing the cost and achieving higher efficiency. 
Furthermore, new regulatory laws mandating the 
use of renewable energy have expanded this market 

around the world. Currently, photovoltaic 
generation systems are actively being promoted in 
order to mitigate environmental issues such as the 
green house effect and air pollution. Solar energy is 
the world's major renewable energy source and is 
available everywhere in different quantities. 
Photovoltaic panels do not have any moving parts, 
operate silently and generate no emissions. Another 
advantage is that solar technology is highly 
modular and can be easily scaled to provide the 
required power for different loads [4], [5]. The fuel 
cell was invented by Sir William Grove in 1839, 
but was not used in a practical application until 
proton-exchange membrane fuel cells (PEMFCs), 
made by General Electric, were employed in the 
National Aeronautics and Space Administration 
(NASA) Gemini missions in the early 1960s.  As a 
result, the Alkaline Fuel Cell (AFC) was used for a 
time by NASA, and the use of PEMFCs became 
almost non-existent. In the 1990s, the PEMFC 
regained its status as the dominant fuel cell type, 
and fuel cells in general have received considerable 
attention as an alternative to fossil fuel combustion. 
Much of the credit for the revitalization of the 
PEMFC must be given to Ballard Power Systems 
and to the Los Alamos National Laboratory. The 
PEMFC is now seen by many researchers and 
companies as the only fuel cell type suitable for 
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vehicular applications, due to a relatively high 
power density, low operating temperature and solid 
electrolyte. A significant amount of fuel cell 
research focuses on fundamental issues of 
performance and cost [6-9]. And finally, some of 
recent research advances examples about this topic 
are introduced in [10-12]. This paper introduces 
general and specific modeling and simulation for 
Schott ASE-300-DGF PV panel [13] for Smart Grid 
(SG) applications as shown in figure [1].    

  

 Figure 1: Simple Smart Grid System with PV 
Generating Station [1]. 

 
2. PV CELL 
 
     A commercial PV panel is constructed from a 
number of PV cells. A PV cell is constructed from a 
p-n homo – junction material. The homo – junction 
is a semiconductor interface that occurs between 
layers of similar semiconductor material. These 
materials have equal band gaps and they typically 
have different doping (semiconductor) which there 
is a built in electric field. The absorption of photons 
of energy generates DC power. 
 

{

{
 Figure 2: DC Power Generation in a PV cell. 

      The cross – section of a PV cell is shown in 
figure 2. The most common material used in PV 

cell manufacture is mono – crystalline or poly – 
crystalline silicon. Each cell is typically made of 
square or rectangular wafers of dimensions 
measuring about 10 cm × 10 cm × 0.3 mm. In the 
dark, the PV cell’s behavior is similar to that of a 
diode and the well known Shockley-Read equation 
can be [1], [14]. 
 
3. ASE-300-DGF PV MODULE 
 
    The ASE-300-DGF/50 is an industrial-grade 
solar power module built to the highest standards. 
Extremely powerful and reliable, the module 
delivers maximum performance in large systems 
that require higher voltages, including the most 
challenging conditions of military, utility and 
commercial installations. For superior performance, 
quality and peace of mind, the ASE-300-DGF/50 is 
renowned as the first choice among those who 
recognize that not all solar modules are created 
equal [13]. 
 

 
 

Figure3: Picture of PV module [13] 
 

 
 

Figure 4: ASE-300-DGF/50 diode housing with 
bypass diodes [13]. 
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Figure 5: Full square semi-crystalline EFG cells. 
The electrical data applies to standard test 
conditions (STC): Irradiance at the module level of 
1,000 W/m2 with spectrum AM 1.5 and a cell 
temperature of 25°C. 

 
Table 1: Electrical data[13] 

 

 
 

Table 2: Dimensions and weights [13] 
 

 
 

Table 3: Characteristic data [13] 
 

 
 
4. MODELING A PV CELL 
 
      The use of equivalent electric circuits makes it 
possible to model characteristics of a PV cell. The 
method used here is implemented in MATLAB 
programs for simulations. The same modeling 
technique is also applicable for modeling a PV 
module. There are two key parameters frequently 
used to characterize a PV cell. Shorting together the 
terminals of the cell, the photon generated current 
will follow out of the cell as a short-circuit current 
(Isc). Thus, Iph = Isc, when there is no connection to 
the PV cell (open-circuit), the photon generated 
current is shunted internally by the intrinsic p-n 
junction diode. This gives the open circuit voltage 
(Voc). The PV module or cell manufacturers usually 
provide the values of these parameters in their 
datasheets [14]. 

      The simplest model of a PV cell equivalent 
circuit consists of an ideal current source in parallel 
with an ideal diode. The current source represents 
the current generated by photons (often denoted as 
Iph or IL), and its output is constant under constant 
temperature and constant incident radiation of light. 
       The PV panel is usually represented by the 
single exponential model or the double exponential 
model. The single exponential model is shown in 
fig. 6. The current is expressed in terms of voltage, 
current and temperature as shown in equation 1 [1].  

Figure 6: Single exponential model of a PV Cell. 
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 Figure 7: Double exponential model of PV Cell. 
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Where Iph: the photo generated current; Io: the dark 
saturation current; Is1: saturation current due to 
diffusion; Is2: is the saturation current due to 
recombination in the space charge layer;                
IRp: current flowing in the shunt resistance;                
Rs: cell series resistance; Rp: the cell (shunt) 
resistance; A: the diode quality factor; q: the 
electronic charge, 1.6 × 10 – 19 C; k: the 
Boltzmann’s constant, 1.38 × 10 – 23 J/K; and                
T: the ambient temperature, in Kelvin. 
 
      Eq.1 and Eq.2 are both nonlinear. Furthermore, 
the parameters (Iph, Is1, Is2, Rs, Rsh and A) vary with 
temperature, irradiance and depend on 
manufacturing tolerance as shown in figure 8. 
Numerical methods and curve fitting can be used to 
estimate [1], [14].  
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Figure 8: Modeling of a PV Panel[1] 

 
      There are three key operating points on the IV 
curve of a photovoltaic cell. They are the short 
circuit point, maximum power point and the open 
circuit point. At the open – circuit point on the IV 
curve, V = Voc and I = 0. After substituting these 
values in the single exponential equation (1) the 
equation can be obtained [1]. 
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At the short – circuit point on the IV curve, I = Isc 
and V = 0. Similarly, using equation (1), we can 
obtain. 
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At the maximum – power point of the IV curve, we 
have I = Impp and V = Vmpp. We can use these values 
to obtain the following: 
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The power transferred to the load can be expressed 
as             

                        P = IV                                  (6)         
 
We can estimate the diode quality factor as: 
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      As a very good approximation, the photon 
generated current, which is equal to Isc, is directly 
proportional to the irradiance, the intensity of 
illumination, to PV cell [15]. Thus, if the value, Isc, 
is known from the datasheet, under the standard test 
condition, Go=1000W/m2at the air mass (AM) = 
1.5, then the photon generated current at any other 
irradiance, G (W/m2), is given by: 

0
0

)( GscGSC I
G
GI =

                   (12)        
      It should be notified that, in a practical PV cell, 
there is a series of resistance in a current path 
through the semiconductor material, the metal grid, 
contacts, and current collecting bus [16]. These 
resistive losses are lumped together as a series 
resister (Rs). Its effect becomes very conspicuous in 
a PV module that consists of many series-connected 
cells, and the value of resistance is multiplied by 
the number of cells. Shunt resistance is a loss 
associated with a small leakage of current through a 
resistive path in parallel with the intrinsic device 
[16]. This can be represented by a parallel resister 
(Rp). Its effect is much less conspicuous in a PV 
module compared to the series resistance so it may 
be ignored [16] [17]. The ideality factor denoted as 
A and takes the value between one and two (as to 
reach the nominated characteristics) [17]. 

 
5. PHOTOVOLTAIC MODULE MODELING 
 
      A single PV cell produces an output voltage 
less than 1V, thus a number of PV cells are 
connected in series to achieve a desired output 
voltage. When series-connected cells are placed in a 
frame, it is called as a module. When the PV cells 
are wired together in series, the current output is the 
same as the single cell, but the voltage output is the 
sum of each cell voltage. Also, multiple modules 
can be wired together in series or parallel to deliver 
the voltage and current level needed. The group of 
modules is called an array. The panel construction 
provides protection for individual cells from water, 
dust etc, as the solar cells are placed into an 
encapsulation of flat glass. Our case here depicts a 
typical connection of 216 cells that are connected in 
series [13]. The strategy of modeling a PV module 
is no different from modeling a PV cell. It uses the 
same PV cell model. The parameters are the all 
same, but only a voltage parameter (such as the 
open-circuit voltage) is different and must be 
divided by the number of cells. An electric model 
with moderate complexity [18] is shown in figure 9, 
and provides fairly accurate results. The model 
consists of a current source (Isc), a diode (D), and a 
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series resistance (Rs). The effect of parallel 
resistance (Rp) is very small in a single module, 
thus the model does not include it. To make a better 
model, it also includes temperature effects on the 
short-circuit current (Isc) and the reverse saturation 
current of diode (Io). It uses a single diode with the 
diode ideality factor set to achieve the best I-V 
curve match. 

 
 
Figure9: Equivalent circuit used in the simulations 
The equation (13) describes the current-voltage 
relationship of the PV cell. 
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Where: I is the cell current (the same as the module 
current); V is the cell voltage = {module voltage} ÷ 
{No. of cells in series}; T is the cell temperature in 
Kelvin (K). 
      First, calculate the short-circuit current (Isc) at a 
given cell temperature (T): 
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Where: Isc at Tref is given in the datasheet (measured 
under irradiance of 1000W/m2), Tref is the reference 
temperature of PV cell in Kelvin (K), usually 298K 
(25oC), a is the temperature coefficient of Isc in 
percent change per degree temperature also given in 
the datasheet. 
     The short-circuit current (Isc) is proportional to 
the intensity of irradiance, thus Isc at a given 
irradiance (G) is introduced by Eq. 12.   
The reverse saturation current of diode (Io) at the 
reference temperature (Tref) is given by the equation 
(15) with the diode ideality factor added: 
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     The reverse saturation current (Io) is temperature 
dependant and the Io at a given temperature (T) is 
calculated by the following equation [18]. 
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     The diode ideality factor (A) is unknown and 
must be estimated. It takes a value between one and 
two; however, the more accurate value is estimated 
by curve fitting [18] also, it can be estimated by try 

and error until accurate value achieved. Eg is the 
Band gap energy (1.12 V (Si); 1.42 (GaAs); 1.5 
(CdTe); 1.75 (amorphous Si)). 
     The series resistance (Rs) of the PV module has 
a large impact on the slope of the I-V curve near the 
open-circuit voltage (Voc), hence the value of Rs is 
calculated by evaluating the slope dI/dV of the I-V 
curve at the Voc [18]. The equation for Rs is derived 
by differentiating the I-V equation and then 
rearranging it in terms of Rs as introduced in 
equation (17). 
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Where: 
ocVdI

dV is the slope of the I-V curve at the 

Voc (using the I-V curve in the datasheet then divide 
it by the number of cells in series); Voc is the open-
circuit voltage of cell (Dividing Voc in the datasheet 
by the number of cells in series). 
     Finally, the equation of I-V characteristics is 
solved using the Newton’s method for rapid 
convergence of the answer, because the solution of 
current is recursive by inclusion of a series 
resistance in the model [18]. The Newton’s method 
is described as: 
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Where: f’(x) is the derivative of the function, f(x) = 
0, xn is a present value, and xn+1 is a next value.  
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By using the above equations the following output 
current (I) is computed iteratively. 
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6. SIMULATION RESULTS  
 
      The figures of I-V characteristics at various 
module temperatures are simulated with the 
MATLAB model for our PV module are shown. 
Also, the P-V relations at various module 
temperatures are presented. All of these are done at 
various irradiance values are introduced.  
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Figure 10: I‐V curves at (1KW/m2; 0, 25, 50, 75oC) 
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Figure 11: I‐V curves (0.75 KW/m2; 0, 25, 50, 75oC) 
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Figure 12: I‐V curves (0.50 KW/m2; 0, 25, 50, 75oC) 
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Figure 13: I‐V curves (0.25 KW/m2; 0, 25, 50, 75oC) 
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Figure 14: P‐V curves at (1KW/m2; 0, 25, 50, 75oC) 
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Figure 15: P‐V curves (0.75KW/m2; 0, 25, 50, 75oC) 
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Figure 16: P‐V curves (0.50KW/m2; 0, 25, 50, 75oC) 
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Figure 17: P‐V curves (0.25KW/m2; 0, 25, 50, 75oC) 
 
     Finally, a set of 3 D figures are proposed to 
cover the most probable situations at various 
irradiance, various temperature with the current, the 
voltage, and the power. These surface faces 
relations will be considered later as the learning or 
training data for the general neural network 
simulation.      
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Figure 18: Voltage & Temp.&(1KW/m2) Irradiance 
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Figure 19: Power & Temp.&(1KW/m2) Irradiance 
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Figure 20: Current & Temp.&(1KW/m2) Irradiance 
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Figure 21: Voltage & Temperature&(0.75KW/m2)  
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Figure 22: Power & Temperature&(0.75KW/m2)  
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Figure 23: Current & Temperature&(0.75KW/m2)  
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Figure 24: Voltage & Temperature&(0.50KW/m2)  
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Figure 25: Power & Temperature&(0.50KW/m2)  
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Figure 26: Current & Temperature&(0.50KW/m2)  
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Figure 27: Voltage & Temperature&(0.25KW/m2)  
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Figure 28: Power & Temperature&(0.25KW/m2) 
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Figure 29: Current & Temperature&(0.25KW/m2) 

 
      The neural network has the ability to deal with 
all previous relations as surface or mapping face, 
due to this technique ability for interpolation 
between points with each other and also curves.  

 
7. ARTIFICIAL NEURAL NETWORKS   
        (ANNS) TECHNIQUE 
 
      An ANN consists of very simple and highly 
interconnected processors called neurons. The 
neurons are connected to each other by weighted 
links over which signals can pass. Each neuron 
receives multiple inputs from other neurons in 
proportion to their connection weights and 
generates a single output which may propagate to 
several other neurons [19]. Among the various 
kinds of ANNs that exist, the Back-propagation 
learning algorithm has become the most popular 
used method in engineering application. It can be 
applied to any feed-forward network with 
differentiable activation functions [20], and it is the 
type of network used in this paper.  
 

A. Fundamentals of Neural Network 
 

      The ANN modeling is carried out in two steps; 
the first step is to train the network, whereas the 
second step is to test the network with data, which 
were not used for training. It is important that all 
the information the network needs to learn is 
supplied to the network as a data set. When each 
pattern is read, the network uses the input data to 

produce an output, which is then compared to the 
training pattern. If there is a difference, the 
connection weights are altered in such a direction 
that the error is decreased. After the network has 
run through all the input patterns, if the error is still 
greater than the maximum desired tolerance, the 
ANN runs through all the input patterns repeatedly 
until all the errors are within the required tolerance 
[21], [22].  
 

B. Data Collection, Analysis and Processing 
 

      Quality, availability, reliability, repeatability, 
and relevance of the data used to develop and run 
the system is critical to its success. Data processing 
starts from the data collections and analysis 
followed by pre-processing and then feeds to the 
neural network.  
 

C. Network Structure Design 
 

      Though theoretically there exists a network that 
can simulate a problem to any accuracy, there is no 
easy way to find it. To define an exact network 
architecture such as how many hidden layers should 
be used, how many units should there be within a 
hidden layer for a certain problem is a painful job.  
 

1) Number of Hidden Layers 
 

      Because networks with two hidden layers can 
represent functions with any kind of shapes, there is 
no theoretical reason to use networks with more 
than two hidden layers. In general, it is strongly 
recommended that one hidden layer be the first 
choice for any feed-forward network design [19-
22]. 

2) Number of Hidden Units (node) 
 

      Another important issue in designing a network 
is how many units to place in each layer. Using too 
few units can fail to detect the signals fully in a 
complicated data set, leading to under fitting. Using 
too many units will increase the training time, 
perhaps so much that it becomes impossible to train 
it adequately in a reasonable period of time. The 
best number of hidden units depends on many 
factors – the numbers of input and output units, the 
number of training cases, the amount of noise in the 
targets, the complexity of the error function, the 
network architecture, and the training algorithm. 
The best approach to find the optimal number of 
hidden units is trial and error. 
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3) Initializing Back-Propagation feed-
forward network  
 

      Back-propagation is the most commonly used 
method for training multi-layer feed-forward 
networks. For most networks, the learning process 
is based on a suitable error function, which is then 
minimized with respect to the weights and bias. The 
algorithm for evaluating the derivative of the error 
function is known as back-propagation, because it 
propagates the errors backward through the 
network. 
  

4) Training the network 
 

      Training occurs according to any training 
function as previous and we must decide the 
training parameters with their default values: The 
order used for training is for example 
[net, tr] = train (net, pn, tn) 
where pn, tn is the input and output which are 
normalized 
 

5) Network simulation 
 

      To obtain the output of the network, we must 
simulate it the order, which can be used, is 
an = sim (net, pn); where an:  is the network but 
normalized so if we want to un - normalize it we 
use this order a = poststd (an, meant, stdt). To 
Performs a linear regression between the network 
response the target, and computes the correlation 
coefficient use the order (R value between the 
network response and the target). [m, b, r] = postreg 
(a, t) [Matlab\ toolbox]; where a, t are the network 
output and desired or actual output and returns, M - 
Slope of the linear regression; B - Y intercept of the 
linear regression; R - Regression R-value.  R=1 
means perfect correlation. 
 
 

6) Weights and Bias  
      The weights and bias, can be obtained from 
training data by the orders; Net.iw {1, 1}…for the 
weight from input layer to hidden layer; Net. {b1} 
……bias to a hidden layer 
Net.lw {2, 1}…for the weight from hidden layer to 
output layer; Net. {b2}… bias to output layer from 
a hidden layer 
 

7) Testing the network 
 

      At first the data for testing mainly the input and 
the output from the network is prepared and then is 
compared with the desired or actual output to test 

the ability of the network by using the   same 
initialized network. 
[p1n, meanp1, stdp1, t1n, meant1, stdt1] = prestd 
(p1, t1) 
net = train (net, p1n) ; an1 = sim (net, p1); [a1] = 
poststd (an1, meant1, stdt1); [m, b, r]=postreg (a1, 
t1) 
where: p1, t1 are testing data, an1: is normalized 
output, a1: un- normalized output  
 

8) Derived mathematical equations  
 

      Finally mathematical equations can be derived 
[23], in order to be used in future to calculate the 
output from the input data without needing to 
construct a neural network by using the weights and 
bias according to activation and transfer functions 
as when using {logsig 'purelin} as in this paper, the 
next sequences have to be followed  
1- Normalize the input data as shown previous . 
2- Calculate sum of   xi*w {i, j} +b {i} = hi for 
each node in hidden layer     
    where: xi: is the input variable, hi: is a hidden 
layer input from input layer w {i, j} ,b {i}  are  
     obtained before,  Net.iw{1,1} Net.b{1} 
3- Calculate the output from each node in hidden 
layer to output layer (Fi) according to transfer   
     function here is logsig so Fi =1/(1+exp(-hi)      
4- Calculate the sum of output from hidden layer to 
output layer hi =Fi *Net.lw{2,1}+Net.b{2}    
5- Calculate the required output according to 
transfer fun. here is purelin [Matlab/toolbox] so 
output  
     (yi) = hi according to number of the required 
outputs 
6- Un normalized y to obtain the output = y*stdt + 
meant   ...to obtain the actual values 

 
 
 

8. ANN PV MODULE MODEL WITH ITS 
        REGRESSION FUNCTION 
 
      This model uses the previous technique which 
used and verified before in the field of renewable 
energy like in [24-27]. This model uses the 
previous 3D graphs illustrated before as training or 
learning data for input and desired target. The 
inputs in this model are the Irradiance and 
Temperature; the outputs are: Module Voltage, 
Current, and Power. This model with its hidden and 
output layers’ suitable neurons numbers is depicted 
in figure 30. Also, the general neural network, and 
training state are presented in figures 31, and 32 
respectively.     
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Figure 30: ANN PV Cell Module Model  
 

 
Figure 31: Neural Network 

 

 
Figure 32: Training State 

 
The normalized inputs Gn: (Normalized Irradiance); 
Tn : ( Normalized Temperature) are as follow:  
 

(0.2797) / 0.6250) -(G  G n =            (21) 
)9683270007 - (T  T .( / ).53=n         (22) 

Equations (21) and (22) present the normalized 
inputs for irradiance and temperature, also the 
following equations lead to the required derived 
outputs equations. 
 

E1)) (- exp  (1 / 1F1
2.8411  T 0.8968  G 0.3884 - E1 nn

+=
+−=

       (23) 

E2)) (- exp  (1 / 1F2
4.7062  T 0.1120  G 0.8336 1 E2 nn

+=
−−=

      (24) 

E3)) (- exp  (1 / 1F3
7.2495  T 9.6071  G 0.3773 - E3 nn

+=
+−=

       (25) 

E4)) (- exp  (1 / 1F4
5.0369  T 9.4705  G 0.0696 - E4 nn

+=
−−=

      (26) 

E5)) (- exp  (1 / 1F5
4.6963  T 0.3523  G 6.3252 E5 nn

+=
++=

         (27) 

E6)) (- exp  (1 / 1F6
8.7149  T 3.4660  G 0.1062 - E6 nn

+=
++=

      (28) 

E7)) (- exp  (1 / 1F7
3.7157  T 4.0327  G 0.1802  E7 nn

+=
++=

       (29) 

E8)) (- exp  (1 / 1F8
11.1433  T 1.1094  G 11.6503 E8 nn

+=
+−=

      (30) 

E9)) (- exp  (1 / 1F9
0.7613  T 0.8735  G 0.2372  E9 nn

+=
+−=

        (31) 

 
The normalized outputs are: 
 
Vn = .0466 F1 + .0080 F2 + .0661 F3 –  .2311 F4 –  
        .0071 F5 + 2.5608 F6 + 0.0771 F7 + 0.0091  
         F8 - 0.0217 F9 - 2.7656                             (32) 
In = 6.2907 F1 + 1.5501 F2 + 0.2881 F3 +  
       1.8330 F4 - 1.1986 F5 - 0.6123 F6 - 1.2526 F7  
       + 1.6547 F8 - 2.6831 F9 - 6.1682                (33) 
Pn = 7.2249 F1 + 1.7820 F2 + 1.0262 F3 +  
        5.1377 F4 - 1.3507 F5 - 0.9574 F6 + 3.4515  
        F7 + 1.8830 F8 - 6.9036 F9 - 7.3615          (34)            
 

The un- normalized out puts 

V = 25.2226 Vn + 42.6563                                  (35) 
I = 2.1788 In + 2.3181                                         (36) 
P = 57.5303 Pn + 81.4030                                   (37)            
 
9. CONCLUSIONS 
 
  This paper presents a simple but efficient 
photovoltaic modeling trial for both specific and 
general one. It models each component and 
simulates them using MATLAB. The result shows 
that the PV model using the equivalent circuit in 
moderate complexity provides good matching with 
the real PV module. Simulations are based on 
Schott ASE-300-DGF PV panel as a practical one. 
A non-specific modeling and simulation at more 
probable situations for variable values of 
temperature and irradiance are presented. The 
simulation results at each irradiance value with 
various temperature values and corresponding 
characteristics are well depicted in 3-D figures. 
ANN is used for the proposed range of irradiance 
and temperature as model inputs, with the 
corresponding values of voltages, currents, and 
power as outputs with its algebraic equations. This 
neural network unit is implemented, using the back 
propagation (BP) learning algorithm due to its 
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benefits to have the ability to predict values in – 
between learning values, also make interpolation 
between learning curves data. This is done with 
suitable number of network layers and neurons at 
minimum error and precise manner.  
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