

144

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

A METHODOLOGY FOR ESTIMATION OF PERFORMANCE
IN REAL TIME DISTRIBUTED EMBEDDED SYSTEMS

1RAMESH BABU NIMMATOORI, 2Dr. VINAY BABU A, 3SRILATHA C

1 Assoc Prof., Department of CSE, ASTRA, Hyderabad, India-500008
2Professor, Department of CSE, JNTUH, Hyderabad, India-500085

3 Assoc Prof., Department of ECE, ASTRA, Hyderabad, India-500008

ABSTRACT

As embedded systems become increasingly networked, and interact with the physical world, Real Time
Distributed Embedded Systems are emerging. This research work mainly focuses on the performance
estimation and analysis of Real Time Distributed embedded systems. Performance evaluation is one of the
key challenge in the system analysis. Major design parameters that influence the performance includes real-
time properties, such as ask execution times, communication delays, the degree of parallelism in
computations, and the throughput of the communication architecture. Here the performance estimation is
done by discrete event simulation methodology which is based on repetitive simulations of the model, and
therefore does not suffer from memory consumption limits. Moreover, it can provide partial results in case
the models are too large for exhaustive analysis. They provide the platform for the implementation of
cyber-physical systems that run in open environments, in less predictable conditions by providing a highly
adaptive infrastructure for reusable resource management services than previous generations of real-time
embedded systems that are specialized for specific application domains. The proposed algorithm is scalable
for large-scale systems as well, and performs well for finding task mappings that satisfy real-time
constraints. Obtaining a feasible mapping for a model of this size will be in the order of seconds. The
proposed algorithm is implemented and the results are compared with that of Random Simulations.

Keywords: Embedded Systems, Real Time, Distributed Systems, Performance, Task, Event.

1. INTRODUCTION

Distributed system is one where data are
located on several computers that are linked
together by a heterogeneous network. The
advantages of such system are increased
availability of resources, increased reliability, and
increased execution speed in less time. The
coordination of activities among computers is a
complex task. If a transaction runs across two sites,
it may commit at one site and may failure at
another site, leading to an inconsistent transaction.

A distributed real-time system is an
integrated system comprising a set of dedicated
hardware that monitors real-world phenomena, acts
and reacts on events within specified time period. A
real-time system is application driven: its
requirements are dictated by the outside
environment not by the computer. The rapidly
expanding application area poses a constant
pressure to the computing community to improve

skills and techniques used for the design and
development of such systems. Real-time
technology has always been considered as one of
the most complex areas of computer science. Time-
constraint information processing is not only about
efficiency, it involves timely response, correctness,
concurrency, distribution, modelling, assessment
and analysis.

In several domains, such as military,
industrial automation, and financial markets,
message latency plays a critical role. Since it is
technically hard and in most cases costly to
guarantee that each and every message is delivered
within a predefined period of time (hard-real time),
many applications impose weaker requirements by
allowing a small portion of messages to exceed
their deadline (soft real-time). Still, as a
consequence of application complexity and the
volatile nature of the distributed environment, even
compliance with these weaker constraints is a
challenging task. Unexpected activity bursts,

145

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

message loss due to unreliable communication
medium, network buffer overflow, network
congestion, resource sharing and many other
unpredictable factors may result in significant
increase in the end-to-end message delay. While, in
the automotive domain, the modern active-safety
applications consist of complex end to-end
computations that collect data from 360o sensors
around the vehicle to understand the positioning of
surrounding objects and detect hazardous
conditions. On hazard detection, active safety
functions attempt to inform the driver or provide
control overlays to reduce the risk. Most of these
functions are high-level controls which drive low-
level actuation loops, but they are nevertheless
subject to timing constraints. Such active-safety
applications are typically run on distributed
architectures. Distributed architectures supporting
the execution of hard real-time applications are
common not only for automotive, but also for
avionics and industrial control systems. As
embedded systems become increasingly networked,
and interact with the physical world, Real-time
Distributed Embedded systems emerge. They
systems range from small-scale Multi-processor
Systems-on-Chip operating in resource constrained
environments such as cell phone platforms, medical
devices and sensor networks all the way to large-
scale software-intensive systems of systems used in
avionics, ship computing environments, and in
supervisory control and data acquisition systems
managing regional power grids.

2. RELATED WORK

A generic, component-based formal
framework for the scheduling analysis and formal
performance evaluation of platform-based
embedded systems was proposed in [1]. The
authors utilize event streams to model
communication characteristics of tasks. SymTA/S
[2] is a formal analysis tool that applies methods
from scheduling theory and symbolic simulations
for the performance analysis of complex
heterogeneous Multi-processor System-on-Chip.
This approach can provide bounds on end-to-end
latencies, bus and processor utilization, and worst-
case scheduling scenarios. Modular Performance
Analysis [3] is an approach to characterize
Distributed Embedded systems merely by
describing incoming and outgoing event rates,
message sizes, and execution times. Resources and
the distributed execution platform is defined in
similar terms, and Real-Time Calculus is then used

to compute upper and lower bounds of the system
performance.
Although all static analysis methods provide
scalable solutions for performance evaluation they
cannot model dynamic effects, such as varying
delays and race conditions, as they do not capture
the flow of data, and are less accurate than dynamic
estimation methods. Communication in embedded
systems is often non-deterministic, data-dependent,
and hard to model as well-formed event streams.

In contrast, the analysis methods in this
research work explicitly capture dependencies, and
the asynchronous event-based communication of
asynchronous event-driven Distributed Real-time
Embedded systems. This approach captures
dynamic effects, such as varying delays and race
conditions in distributed systems, and results in
more accurate performance analysis at the price of
being computationally more intensive.

Simulations are the preferred and widely
accepted way to evaluate the performance of
Distributed Real-time Embedded system designs in
the industry today. A simulation based design space
exploration method, however, has several
disadvantages. Developing the models for a design
alternative may take weeks or months therefore
only a handful of alternatives may be practically
analyzed given the short product development
cycles. Moreover, designers typically notice
performance issues late in the design cycle
therefore addressing changes can be rather time-
consuming and costly. Register-Transfer Level
(RTL) languages such as VHDL [4] and Verilog [5]
are classic hardware description languages that
target hardware specification at low-level
abstractions providing a high precision,
synthesizable platform for hardware development.
The low-level abstraction, however, results in slow
simulation speeds unsuitable for the analysis of
complex Multi-processor System-on-Chip. Due to
the increase in Multi-processor System-on-Chip
design complexity as well as the decrease in the
time to market window, today's designers are
turning to transaction-level modelling languages
such as SystemC [6] and SystemVerilog [7] to
perform early design exploration and hardware-
software co-design in order to shorten the design
cycle. Transaction-level modeling focuses on the
interactions between systems components, such as
bus transfers, interrupts or signals, rather than on
gates or registers. Transaction-level languages
employ higher-level abstractions than RTL
languages and are often not synthesizable. A semi-

146

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

formal simulation-based performance evaluation
method for Multi-processor System-on-Chips was
proposed in [8]. The authors represent execution
traces as symbolic graphs for performance analysis,
annotated with execution times obtained by
simulating individual components of the system.
Although the approaches described in [8] improves
simulation speed by utilizing symbolic
representations of execution traces, the quality of
results depends on the ad-hoc selection of test
vectors.

This research work considers the problem
of combining simulations and formal methods for
real-time analysis. Simulations in our approach are
used to obtain execution intervals that we use to
annotate the formal models for design space
exploration. The symbolic model introduced
captures all possible execution traces of the system,
not just one execution trace. This is a more accurate
model for Real Time Distributed Embedded
systems, where execution times are rarely constant.
Moreover, the proposed methodology is formalized
for obtaining test vectors based on the discrete
event model, that provide better coverage than
random simulations.

A generic method for protocol verification
using synchronous protocol automata is presented
in [9]. Synchronous protocol automata can be
mapped to the Finite State Machine (FSM) Model
of Computation, and a main contribution of the
paper is to show how protocols can be translated to
a formal language for functional verification. A
method for the functional verification of the
Peripheral Component Interconnect (PCI) protocol
is described in [10]. The authors model the PCI
protocol by the FSM Model of Computation, and
use the Cadence SMV tool for functional
verification. A similar approach is used to verify
the IBM Core Connect arbiter in [11]. An early
work on applying model checking methods to the
ARM Advanced Microcontroller Bus Architecture
Advanced High-speed Bus protocol was presented
in [12], where the authors used FSM models and
the SMV tool to uncover an unspecified condition.
The described case study is due to awed
implementation rather than the protocol itself. A
verification platform for Advanced Microcontroller
Bus Architecture ARM7 is presented in [13]. The
authors use the SMV tool to prove the functional
correctness of the protocol by checking various
properties. The authors do not describe any
ambiguities, rather they focus on properties that
have turned out to be valid. A verification platform

for Advanced Microcontroller Bus Architecture
Advanced High-speed Bus protocol using a
combination of model checking and theorem
proving is described in [14]. The author extends
earlier approaches by considering both control and
data properties, and describes properties that have
proven to be true.

3. APPROACH

Discrete event based simulation
methodology is proposed for the performance
evaluation of Real Time Distributed embedded
systems. This methodology employs fixed priority
scheduling. The concept of logical executing time
and the event order tree are introduced in this
methodology. The proposed methodology explicitly
captures the flow of data and communication
effects (such as non-deterministic delays etc.). This
approach represents real-time properties in
continuous time leading to a minimal memory
requirements.

The main advantage of the proposed
methodology is that it gradually increases coverage
over time. Random simulation-based methods do
not have this property. Random simulations assign
execution times following a uniform distribution
from the intervals of tasks. However, in the actual
system the execution times rarely follow a uniform
distribution; it is quite probable that some execution
times are more frequent than others, and that the
real system encounters execution traces that were
not considered during the simulation-based
evaluation process. Since these traces are not
simulated, designers will also fail to recognize how
the system performance/ schedulability might
change due to dynamic effects such as race
conditions. Therefore, we conclude that random
simulations may be useful for the first steps of
performance evaluation. The preliminary results
show that the proposed methodology allows better
simulation performance compared to the actual
simulations with comparable accuracy, providing
an efficient method for design space exploration.

Discrete event based simulation:

This involves the Analysis Language for
the formal performance analysis of Real-time
Distributed Embedded systems. This method is
applicable to non-preemptive systems only, but can
be composed with the real-time verification of
preemptive systems. We introduce a formal model

147

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

based on discrete event scheduling using the
concept of logical execution time, and the Event
Order Tree. Nodes in the EOT represent events, and
edges represent causality between the events. As
events may arise non-deterministically, the tree
may branch when different event orderings are
possible. The proposed model explicitly captures
the flow of data and communication effects (such
as non-deterministic delays etc.) in event-driven
systems for dynamic performance evaluation.

Figure 1: Example model of a Real-time Distributed
Embedded system

Figure 1 shows an example of Real-time

Distributed Embedded systems. Timers are
represented by the timer icon, tasks by the T icon,
channels by C, threads by the thread icon, and
machines by the processor icon. The solid arrows
show the dependencies (set D) in the model. The
mapping of tasks and timers to threads (the function
thread(tk) : T →TH) and the mapping of threads to
machines (the function machine(tk) : TH→M) are
shown by the dashed arrows. Channels are not
mapped to any threads as they are executed non
concurrently. Since there is only one thread
assigned to each processor, the model utilizes non-
preemptive scheduling.

The following notation is employed:

The sequence of input events of a task tk as:

 Ik = { ik0, ik1,……}
The sequence of output events of a task tk as:
 Ok = { ok0, ok1,……},

where. t € T,
 ik0, ik1,… € E,
 ok0, ok1,.. € E.
 E is the set of all (infinite) events
generated by the system.

End-to-end computation time problem formulation:

We define the end-to-end computation
time between an input event ijn of task tj and an
output event okm of task tk as the maximum possible
difference between the events' timestamps along all
the possible runs of the model.

end-to-end(okm, ijn) = max[time(okm)-time(ijn)]

If task tk does not depend on task tj then
end-to-end(okm, ijn = ∞

It is a fact that the product of local worst
case execution times does not necessarily result in
worst case end to-end computation times.

The following is the algorithm developed based on
Discrete events:

Step 1. Run simulation during which each task

stores its start time as startk

Step 2: During the simulation all tasks tk observe

events ei that are raised in the [startk
+ bcetk, startk + exec_timek] interval

Step 3: If startk + next timek < time(ei) then

// a branching point encountered
in the (bcetk, wcetk) interval//

 store the value of time(ei) - startk
in the next timek variable
else
do nothing, event will be considered in
subsequent simulations
end if

step 4: // find all race conditions with the current

exec_timek assignments//

for all race conditions detected between
events ei; ej,… ek during the simulation
do
search for the set containing events ei;
ej,… ek in superset R
if the set is found then
do nothing
else
add the set S = {ei; ej,… ek} to the superset
R
end if
end for

148

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

4. RESULTS

We now demonstrate this problem in non-
preemptive systems to motivate our approach for
formal performance evaluation using the simple
example shown in Figure1. We define the period of
each timer to be 100 time units, and the delay of
each channel to be 0. Figure 2 illustrates the first
period of model execution traces shown in Figure 1
using the parameters in Table 1. In this example,
for most tasks the Best Case Execution Time bcetk
time equals the Worst Case Execution Time wcetk
time to reduce complexity, for easier illustration.
We utilize fixed-priority scheduling in machine 1
between tasks tA, tB, tC and tD. Tasks tE and tF are
executed concurrently and have their own
schedulers. Note that Earliest Deadline First (EDF)
scheduling would result in a deadline miss by task
tB, as it scheduled the sequence tA, tC, tB.

This illustrates that EDF is not optimal in
the non-preemptive systems. The execution trace in
the left of Figure 2 demonstrates that the system is
schedulable if all tasks execute using their Worst
Case Execution Time (WCET). The trace in the
middle of Figure 2 shows that the system is
schedulable when Best Case Execution Time
(BCET) are considered during the execution trace.
However, the trace in the right of Figure 2 shows
that task tC might miss its deadline if task tE
executes for 71 time units. This example shows that
the performance evaluation of event driven non-
preemptive DRE systems has to consider execution
intervals rather than worst case execution times,
and justifies the need for formal performance
analysis.

Figure 2: execution of traces of the example shown.

Task tA tB tc tD tE tF
bcet 10 10 10 10 50 70
Wcet 10 10 10 10 90 70
deadline 22 25 12 32 100 100

Table 1: timing details for the model shown.

In a Real-time Distributed Embedded
systems semantic domain, tasks receive a
potentially infinite sequence of events
(timestamped values as event labels) in
chronological order. The task then outputs a
timestamped event for each input event. The order
of events in the output sequence of each task is the
same as the order of events in the input sequence of
the task. The timestamps of input events must be
smaller than or equal to their corresponding output
events. Note that the discrete event simulation is
completely deterministic if timestamps are unique
constants.

Comparison with Random Simulations:

The main advantage of the Discrete event
based simulation method is that it gradually
increases coverage over time. Random simulation-
based methods do not have this property. Random
simulations assign execution times following a
uniform distribution from the [bcetk, wcetk]
intervals of tasks.

Let's denote the two endpoints of a
branching interval as lki,hki , where lki refers to the
lower bound on the branching interval, and hki
refers to the higher bound on the branching interval
and bcetk< lki < hki <wcetk. Then the probability that
the random execution time is within the branching
interval can be formalized as follows:

Therefore the probability that an exact
number is chosen randomly from a continuous-time
interval is close to 0, even if infinite number of
simulations are executed. Also, the smaller the
branching interval, the less chance that we actually
consider it during simulation. Since there is a
higher chance that the execution time is picked

149

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

from larger branching intervals, repetitive
simulations will pick execution times from
branching intervals that have already been chosen
for simulation. However, in the actual system the
execution times rarely follow a uniform
distribution; it is quite probable that some execution
times are more frequent than others, and that the
real system encounters execution traces that were
not considered during the simulation-based
evaluation process. Since these traces are not
simulated, designers will also fail to recognize how
the system performance/ schedulability might
change due to dynamic effects such as race
conditions or congestions. Therefore, it can be
conclude that random simulations may be useful for
the first steps of performance evaluation, but can
achieve only partial coverage of the possible
execution traces over time.

In contrast, the method presented
gradually increases coverage over time. Moreover,
each branching interval is considered only once,
and the worst case times are checked directly,
rather than a random number from the branching
interval. Therefore, the proposed method can
discover significantly more corner cases than
random simulation-based performance estimation
techniques.

TOOLS EMPLOYED

To check whether the observations are
relevant in large-scale systems, the experiments to
compare random simulations and the Discrete event
based simulation method are run on an Intel Core i7
920 processor running at 4GHz using 6GB of three-
channel RAM. On this test configuration, an open
source analysis tool, Dream 0.7 Beta version is
used for simulation.

5. CONCLUSIONS

The proposed method explicitly captures
the data flow, and models the communication and
execution intervals using a non-preemptive
scheduling model. This leads to a formal executable
model allowing to bridge the gap between
simulations and formal verification. Our
benchmarks based on a real time model case study
show that the methodology employed for
performance evaluation can achieve better coverage
than alternative methods, and provides a way for
the systematic measurement of coverage. The
proposed approach allows to efficiently exploring
large design spaces early in the design flow,

provides formal guarantees on real-time constraints,
and can produce counter-examples when real-time
properties are violated.

REFERENCES:

[1] K. Richter, M. Jersak, and R. Ernst, “A Formal

Approach to MpSoC Performance
Verification”, IEEE Computer, 36:60-67, April
2003.

[2] R Henia and Arne Hamann and Marek Jersak

and Razvan Racu and Kai Richter and Rolf
Ernst, “System Level Performance Analysis -
the SymTA/S Approach”. IEEE Proceedings
on Computers and Digital Techniques,
152:148-166, 2005.

[3] Ernesto Wandeler and Lothar Thiele and

Marcel Verhoef and Paul Lieverse, “System
architecture evaluation using modular
performance analysis - a case study”, Software
Tools for Technology Transfer (STTT),
8(6):649-667, Oct. 2006.

[4] IEEE. VHDL (IEEE 1076 Standard), 2000.

[5] IEEE. Verilog (IEEE 1364 Standard), 2001.

[6] OSCI. SystemC ver 2.1 (IEEE 1666 Standard),

2005.

[7] IEEE. SystemVerilog (IEEE 1800 Standard),

2005.

[8] K. Lahiri, A. Raghunathan, and S. Dey,

“System-Level Performance Analysis for
Designing On-Chip Communication
Architectures” IEEE Transactions on
Computer Aided-Design of Integrated Circuits
and Systems, 20:768-783, 2001.

[9] V. D'silva, S. Ramesh, and A. Sowmya,

“Synchronous protocol automata: a framework
for modelling and verification of SoC
communication architectures”, In IEEE
Proceedings of Computers and Digital
Techniques, volume 152, pages 20-27, January
2005.

[10] P. Chauhan, E. M. Clarke, Y. Lu, and D.

Wang, “Verifying IP-Core based System-On-
Chip Designs” In Proceedings of IEEE ASIC
SOC Conference, pages 27 - 31, 1999.

150

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

[11] A. Goel and W. R. Lee, “Formal Verification
of an IBM CoreConnect Processor Local Bus
Arbiter Core” In Proceedings of the 37th
Design Automation Conference (DAC), pages
196-200, 2000.

[12] A. Roychoudhury, T. Mitra, and S. R. Karri,

“Using Formal Techniques to Debug the
AMBA System-on-Chip Bus Protocol”, In
Design, Automation and Test in Europe
(DATE), pages 828-833, 2003.

[13] K. W. Susanto and T. F. Melham, “An
AMBA-ARM7 Formal Verification Platform”,
In International Conference of Formal
Engineering Methods (ICFEM), pages 48-67,
2003.

[14] H. Amjad, “Verification of AMBA Using a
Combination of Model Checking and Theorem
Proving”, Electronic Notes in Theoretical
Computer Science, Proceed- ings of the 5th
International Workshop on Automated
Verification of Critical Systems (AVoCS
2005), 145:45-61, 2006.

