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ABSTRACT 
 
As embedded systems become increasingly networked, and interact with the physical world, Real Time 
Distributed Embedded Systems are emerging. This research work mainly focuses on the performance 
estimation and analysis of Real Time Distributed embedded systems. Performance evaluation is one of the 
key challenge in the system analysis. Major design parameters that influence the performance includes real-
time properties, such as ask execution times, communication delays, the degree of parallelism in 
computations, and the throughput of the communication architecture. Here the performance estimation is 
done by discrete event simulation methodology which is based on repetitive simulations of the model, and 
therefore does not suffer from memory consumption limits. Moreover, it can provide partial results in case 
the models are too large for exhaustive analysis. They provide the platform for the implementation of 
cyber-physical systems that run in open environments, in less predictable conditions by providing a highly 
adaptive infrastructure for reusable resource management services than previous generations of real-time 
embedded systems that are specialized for specific application domains. The proposed algorithm is scalable 
for large-scale systems as well, and performs well for finding task mappings that satisfy real-time 
constraints. Obtaining a feasible mapping for a model of this size will be in the order of seconds. The 
proposed algorithm is implemented and the results are compared with that of Random Simulations.  
 
Keywords: Embedded Systems, Real Time, Distributed Systems, Performance, Task, Event.  
 
1. INTRODUCTION  
 

Distributed system is one where data are 
located on several computers that are linked 
together by a heterogeneous network. The 
advantages of such system are increased 
availability of resources, increased reliability, and 
increased execution speed in less time. The 
coordination of activities among computers is a 
complex task. If a transaction runs across two sites, 
it may commit at one site and may failure at 
another site, leading to an inconsistent transaction.  
 

A distributed real-time system is an 
integrated system comprising a set of dedicated 
hardware that monitors real-world phenomena, acts 
and reacts on events within specified time period. A 
real-time system is application driven: its 
requirements are dictated by the outside 
environment not by the computer. The rapidly 
expanding application area poses a constant 
pressure to the computing community to improve 

skills and techniques used for the design and 
development of such systems. Real-time 
technology has always been considered as one of 
the most complex areas of computer science. Time-
constraint information processing is not only about 
efficiency, it involves timely response, correctness, 
concurrency, distribution, modelling, assessment 
and analysis. 
 

In several domains, such as military, 
industrial automation, and financial markets, 
message latency plays a critical role. Since it is 
technically hard and in most cases costly to 
guarantee that each and every message is delivered 
within a predefined period of time (hard-real time), 
many applications impose weaker requirements by 
allowing a small portion of messages to exceed 
their deadline (soft real-time). Still, as a 
consequence of application complexity and the 
volatile nature of the distributed environment, even 
compliance with these weaker constraints is a 
challenging task. Unexpected activity bursts, 
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message loss due to unreliable communication 
medium, network buffer overflow, network 
congestion, resource sharing and many other 
unpredictable factors may result in significant 
increase in the end-to-end message delay. While, in 
the automotive domain, the modern active-safety 
applications consist of complex end to-end 
computations that collect data from 360o sensors 
around the vehicle to understand the positioning of 
surrounding objects and detect hazardous 
conditions. On hazard detection, active safety 
functions attempt to inform the driver or provide 
control overlays to reduce the risk. Most of these 
functions are high-level controls which drive low-
level actuation loops, but they are nevertheless 
subject to timing constraints. Such active-safety 
applications are typically run on distributed 
architectures. Distributed architectures supporting 
the execution of hard real-time applications are 
common not only for automotive, but also for 
avionics and industrial control systems. As 
embedded systems become increasingly networked, 
and interact with the physical world, Real-time 
Distributed Embedded systems emerge. They 
systems range from small-scale Multi-processor 
Systems-on-Chip operating in resource constrained 
environments such as cell phone platforms, medical 
devices and sensor networks all the way to large-
scale software-intensive systems of systems used in 
avionics, ship computing environments, and in 
supervisory control and data acquisition systems 
managing regional power grids.  
 
2. RELATED WORK 
 

A generic, component-based formal 
framework for the scheduling analysis and formal 
performance evaluation of platform-based 
embedded systems was proposed in [1]. The 
authors utilize event streams to model 
communication characteristics of tasks. SymTA/S 
[2] is a formal analysis tool that applies methods 
from scheduling theory and symbolic simulations 
for the performance analysis of complex 
heterogeneous Multi-processor System-on-Chip. 
This approach can provide bounds on end-to-end 
latencies, bus and processor utilization, and worst-
case scheduling scenarios. Modular Performance 
Analysis [3] is an approach to characterize 
Distributed Embedded systems merely by 
describing incoming and outgoing event rates, 
message sizes, and execution times. Resources and 
the distributed execution platform is defined in 
similar terms, and Real-Time Calculus is then used 

to compute upper and lower bounds of the system 
performance. 
Although all static analysis methods provide 
scalable solutions for performance evaluation they 
cannot model dynamic effects, such as varying 
delays and race conditions, as they do not capture 
the flow of data, and are less accurate than dynamic 
estimation methods. Communication in embedded 
systems is often non-deterministic, data-dependent, 
and hard to model as well-formed event streams. 
 

In contrast, the analysis methods in this 
research work explicitly capture dependencies, and 
the asynchronous event-based communication of 
asynchronous event-driven Distributed Real-time 
Embedded systems. This approach captures 
dynamic effects, such as varying delays and race 
conditions in distributed systems, and results in 
more accurate performance analysis at the price of 
being computationally more intensive. 
 

Simulations are the preferred and widely 
accepted way to evaluate the performance of 
Distributed Real-time Embedded system designs in 
the industry today. A simulation based design space 
exploration method, however, has several 
disadvantages. Developing the models for a design 
alternative may take weeks or months therefore 
only a handful of alternatives may be practically 
analyzed given the short product development 
cycles. Moreover, designers typically notice 
performance issues late in the design cycle 
therefore addressing changes can be rather time-
consuming and costly. Register-Transfer Level 
(RTL) languages such as VHDL [4] and Verilog [5] 
are classic hardware description languages that 
target hardware specification at low-level 
abstractions providing a high precision, 
synthesizable platform for hardware development. 
The low-level abstraction, however, results in slow 
simulation speeds unsuitable for the analysis of 
complex Multi-processor System-on-Chip. Due to 
the increase in Multi-processor System-on-Chip 
design complexity as well as the decrease in the 
time to market window, today's designers are 
turning to transaction-level modelling languages 
such as SystemC [6] and SystemVerilog [7] to 
perform early design exploration and hardware-
software co-design in order to shorten the design 
cycle. Transaction-level modeling focuses on the 
interactions between systems components, such as 
bus transfers, interrupts or signals, rather than on 
gates or registers. Transaction-level languages 
employ higher-level abstractions than RTL 
languages and are often not synthesizable. A semi-
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formal simulation-based performance evaluation 
method for Multi-processor System-on-Chips was 
proposed in [8]. The authors represent execution 
traces as symbolic graphs for performance analysis, 
annotated with execution times obtained by 
simulating individual components of the system. 
Although the approaches described in [8] improves 
simulation speed by utilizing symbolic 
representations of execution traces, the quality of 
results depends on the ad-hoc selection of test 
vectors. 
 

This research work considers the problem 
of combining simulations and formal methods for 
real-time analysis. Simulations in our approach are 
used to obtain execution intervals that we use to 
annotate the formal models for design space 
exploration. The symbolic model introduced 
captures all possible execution traces of the system, 
not just one execution trace. This is a more accurate 
model for Real Time Distributed Embedded 
systems, where execution times are rarely constant. 
Moreover, the proposed methodology is formalized 
for obtaining test vectors based on the discrete 
event model, that provide better coverage than 
random simulations. 
 

A generic method for protocol verification 
using synchronous protocol automata is presented 
in [9]. Synchronous protocol automata can be 
mapped to the Finite State Machine (FSM) Model 
of Computation, and a main contribution of the 
paper is to show how protocols can be translated to 
a formal language for functional verification. A 
method for the functional verification of the 
Peripheral Component Interconnect (PCI) protocol 
is described in [10]. The authors model the PCI 
protocol by the FSM Model of Computation, and 
use the Cadence SMV tool for functional 
verification. A similar approach is used to verify 
the IBM Core Connect arbiter in [11]. An early 
work on applying model checking methods to the 
ARM Advanced Microcontroller Bus Architecture 
Advanced High-speed Bus protocol was presented 
in [12], where the authors used FSM models and 
the SMV tool to uncover an unspecified condition. 
The described case study is due to awed 
implementation rather than the protocol itself. A 
verification platform for Advanced Microcontroller 
Bus Architecture ARM7 is presented in [13]. The 
authors use the SMV tool to prove the functional 
correctness of the protocol by checking various 
properties. The authors do not describe any 
ambiguities, rather they focus on properties that 
have turned out to be valid. A verification platform 

for Advanced Microcontroller Bus Architecture 
Advanced High-speed Bus protocol using a 
combination of model checking and theorem 
proving is described in [14]. The author extends 
earlier approaches by considering both control and 
data properties, and describes properties that have 
proven to be true. 
 
 
3. APPROACH 
 

Discrete event based simulation 
methodology is proposed for the performance 
evaluation of Real Time Distributed embedded 
systems. This methodology employs fixed priority 
scheduling.  The concept of logical executing time 
and the event order tree are introduced in this 
methodology. The proposed methodology explicitly 
captures the flow of data and communication 
effects (such as non-deterministic delays etc.). This 
approach represents real-time properties in 
continuous time leading to a minimal memory 
requirements. 
 

The main advantage of the proposed 
methodology is that it gradually increases coverage 
over time. Random simulation-based methods do 
not have this property. Random simulations assign 
execution times following a uniform distribution 
from the intervals of tasks. However, in the actual 
system the execution times rarely follow a uniform 
distribution; it is quite probable that some execution 
times are more frequent than others, and that the 
real system encounters execution traces that were 
not considered during the simulation-based 
evaluation process. Since these traces are not 
simulated, designers will also fail to recognize how 
the system performance/ schedulability might 
change due to dynamic effects such as race 
conditions. Therefore, we conclude that random 
simulations may be useful for the first steps of 
performance evaluation. The preliminary results 
show that the proposed methodology allows better 
simulation performance compared to the actual 
simulations with comparable accuracy, providing 
an efficient method for design space exploration. 
 
Discrete event based simulation: 
 

This involves the Analysis Language for 
the formal performance analysis of Real-time 
Distributed Embedded systems. This method is 
applicable to non-preemptive systems only, but can 
be composed with the real-time verification of 
preemptive systems. We introduce a formal model 
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based on discrete event scheduling using the 
concept of logical execution time, and the Event 
Order Tree. Nodes in the EOT represent events, and 
edges represent causality between the events. As 
events may arise non-deterministically, the tree 
may branch when different event orderings are 
possible. The proposed model explicitly captures 
the flow of data and communication effects (such 
as non-deterministic delays etc.) in event-driven 
systems for dynamic performance evaluation.  
 

 
 

Figure 1: Example model of a Real-time Distributed 
Embedded system 

 
Figure 1 shows an example of Real-time 

Distributed Embedded systems. Timers are 
represented by the timer icon, tasks by the T icon, 
channels by C, threads by the thread icon, and 
machines by the processor icon. The solid arrows 
show the dependencies (set D) in the model. The 
mapping of tasks and timers to threads (the function 
thread(tk) : T →TH) and the mapping of threads to 
machines (the function machine(tk) : TH→M) are 
shown by the dashed arrows. Channels are not 
mapped to any threads as they are executed non 
concurrently. Since there is only one thread 
assigned to each processor, the model utilizes non-
preemptive scheduling. 
 
 
The following notation is employed:  
 
The sequence of input events of a task tk as: 

 Ik =  { ik0, ik1,……} 
The sequence of output events of a task tk as: 
  Ok =  { ok0, ok1,……}, 

where.  t € T,  
  ik0, ik1,… € E, 
  ok0, ok1,.. € E.  
  E is the set of all (infinite) events 
generated by the system. 

 

End-to-end computation time problem formulation: 
 

We define the end-to-end computation 
time between an input event ijn of task tj and an 
output event okm of task tk as the maximum possible 
difference between the events' timestamps along all 
the possible runs of the model. 
 
end-to-end(okm, ijn) = max[time(okm)-time(ijn)] 
 

If task tk does not depend on task tj then 
end-to-end(okm, ijn = ∞ 
 

It is a fact that the product of local worst 
case execution times does not necessarily result in 
worst case end to-end computation times.  
 
 
The following is the algorithm developed based on 
Discrete events: 
 
Step 1. Run simulation during which each task 

stores its start time as startk 

 
Step 2: During the simulation all tasks tk observe 

events ei that are raised in the [startk 
+ bcetk, startk + exec_timek] interval 

 
Step 3: If startk + next timek < time(ei) then 

// a branching point encountered 
in the (bcetk, wcetk) interval// 

 store the value of time(ei) - startk 
in the next timek variable 
else 
do nothing, event will be considered in 
subsequent simulations 
end if 

 
step 4: // find all race conditions with the current 

exec_timek assignments// 
 

for all race conditions detected between 
events ei; ej,… ek during the simulation 
do 
search for the set containing events ei; 
ej,… ek in superset R  
if the set is found then 
do nothing 
else 
add the set S = {ei; ej,… ek} to the superset 
R 
end if 
end for 
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4. RESULTS 

We now demonstrate this problem in non-
preemptive systems to motivate our approach for 
formal performance evaluation using the simple 
example shown in Figure1. We define the period of 
each timer to be 100 time units, and the delay of 
each channel to be 0. Figure 2 illustrates the first 
period of model execution traces shown in Figure 1 
using the parameters in Table 1. In this example, 
for most tasks the Best Case Execution Time bcetk 
time equals the Worst Case Execution Time wcetk 
time to reduce complexity, for easier illustration. 
We utilize fixed-priority scheduling in machine 1 
between tasks tA, tB, tC and tD. Tasks tE and tF are 
executed concurrently and have their own 
schedulers. Note that Earliest Deadline First (EDF) 
scheduling would result in a deadline miss by task 
tB, as it scheduled the sequence tA, tC, tB. 
 

This illustrates that EDF is not optimal in 
the non-preemptive systems. The execution trace in 
the left of Figure 2 demonstrates that the system is 
schedulable if all tasks execute using their Worst 
Case Execution Time (WCET). The trace in the 
middle of Figure 2 shows that the system is 
schedulable when Best Case Execution Time 
(BCET) are considered during the execution trace. 
However, the trace in the right of Figure 2 shows 
that task tC might miss its deadline if task tE 
executes for 71 time units. This example shows that 
the performance evaluation of event driven non-
preemptive DRE systems has to consider execution 
intervals rather than worst case execution times, 
and justifies the need for formal performance 
analysis.  
 

 
Figure 2: execution of traces of the example shown.  

 
Task tA tB tc tD tE tF
bcet 10 10 10 10 50 70 
Wcet 10 10 10 10 90 70 
deadline 22 25 12 32 100 100 

 
Table 1: timing details for the model shown.  

 
 

In a Real-time Distributed Embedded 
systems semantic domain, tasks receive a 
potentially infinite sequence of events 
(timestamped values as event labels) in 
chronological order. The task then outputs a 
timestamped event for each input event. The order 
of events in the output sequence of each task is the 
same as the order of events in the input sequence of 
the task. The timestamps of input events must be 
smaller than or equal to their corresponding output 
events. Note that the discrete event simulation is 
completely deterministic if timestamps are unique 
constants. 
  

Comparison with Random Simulations:  
 

The main advantage of the Discrete event 
based simulation method is that it gradually 
increases coverage over time. Random simulation-
based methods do not have this property. Random 
simulations assign execution times following a 
uniform distribution from the [bcetk, wcetk] 
intervals of tasks.  
 

Let's denote the two endpoints of a 
branching interval as lki,hki , where lki refers to the 
lower bound on the branching interval, and hki 
refers to the higher bound on the branching interval 
and bcetk< lki < hki <wcetk. Then the probability that 
the random execution time is within the branching 
interval can be formalized as follows: 

 

 
 

Therefore the probability that an exact 
number is chosen randomly from a continuous-time 
interval is close to 0, even if infinite number of 
simulations are executed. Also, the smaller the 
branching interval, the less chance that we actually 
consider it during simulation. Since there is a 
higher chance that the execution time is picked 
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from larger branching intervals, repetitive 
simulations will pick execution times from 
branching intervals that have already been chosen 
for simulation. However, in the actual system the 
execution times rarely follow a uniform 
distribution; it is quite probable that some execution 
times are more frequent than others, and that the 
real system encounters execution traces that were 
not considered during the simulation-based 
evaluation process. Since these traces are not 
simulated, designers will also fail to recognize how 
the system performance/ schedulability might 
change due to dynamic effects such as race 
conditions or congestions. Therefore, it can be 
conclude that random simulations may be useful for 
the first steps of performance evaluation, but can 
achieve only partial coverage of the possible 
execution traces over time. 
 

In contrast, the method presented 
gradually increases coverage over time. Moreover, 
each branching interval is considered only once, 
and the worst case times are checked directly, 
rather than a random number from the branching 
interval. Therefore, the proposed method can 
discover significantly more corner cases than 
random simulation-based performance estimation 
techniques.  
 
TOOLS EMPLOYED  
 

To check whether the observations are 
relevant in large-scale systems, the experiments to 
compare random simulations and the Discrete event 
based simulation method are run on an Intel Core i7 
920 processor running at 4GHz using 6GB of three-
channel RAM. On this test configuration, an open 
source analysis tool, Dream 0.7 Beta version is 
used for simulation.   
 
5. CONCLUSIONS 
 

The proposed method explicitly captures 
the data flow, and models the communication and 
execution intervals using a non-preemptive 
scheduling model. This leads to a formal executable 
model allowing to bridge the gap between 
simulations and formal verification. Our 
benchmarks based on a real time model case study 
show that the methodology employed for 
performance evaluation can achieve better coverage 
than alternative methods, and provides a way for 
the systematic measurement of coverage. The 
proposed approach allows to efficiently exploring 
large design spaces early in the design flow, 

provides formal guarantees on real-time constraints, 
and can produce counter-examples when real-time 
properties are violated.  
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