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ABSTRACT 
 
The phase information extraction of atrial fibrillation (AF) is significant in medical applications. In this 
method, atrial activity is decomposed into fundamental and harmonic components. Each component is 
divided into short blocks for which the amplitudes, frequencies, and phases are estimated. The phase delays 
between the fundamental and each of the harmonics, here referred to as harmonic phase relationships, are 
used as features of f-wave morphology. The estimated waves are clustered into typical morphologic 
patterns. The performance of the method is illustrated by simulated signals, ECG signals recorded from 50 
patients with organized AF, and an ECG signal recorded during drug loading. The results show that the 
method can distinguish a wide variety of f-wave morphologies, and that typical morphologies can be 
established for further analysis of AF. 
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I. INTRODUCTION  

 
Atrial fibrillation (AF) is a 

heterogeneous disease considered to be the 
resulting end state of several mechanisms. 
Initiation of AF typically requires both a 
triggering event and an arrhythmia-prone 
anatomical substrate [1]–[3]. Suggested triggers 
include abnormal activity of the autonomic 
nervous system and rapidly firing foci located in 
the pulmonary veins. The arrhythmia-prone 
substrate may result from, e.g., impaired impulse 
propagation, changes in tissue structure, or 
alternations in atrial electrical properties induced 
by the arrhythmia itself. AF has mainly been 
viewed as an acquired disorder related to 
structural heart disease in patients with other 
cardiovascular problems, including coronary 
artery and mistral valve diseases and 
hypertension [4]; however, AF is now 
recognized to also have a heritable component 
[5]. Characterization of AF based on ECG 
recordings calls for separation of atrial and 
ventricular activity. Several approaches to such  

 
 
 
separation have been suggested based on, e.g., 
principal component analysis [6], [7], 
independent component analysis [8], and patio 
temporal modeling [9], [10]. The most important 
aspect of AF pattern analysis has, so far, been to 
determine the fibrillatory rate. This rate has 
potential value for monitoring spontaneous and 
autonomic maneuver-induced changes in atrial 
electrophysiology, monitoring and prediction of 
anti arrhythmic drug responses as well as for 
prediction of atrial defibrillation thresholds and 
AF recurrence following cardio version . AF 
with slower rates seems more likely to terminate 
spontaneously  or to respond to anti-arrhythmic 
drug therapy whereas faster rates are more often 
found in persistent and drug- and cardio version-
refractory AF . Recently, methods for 
characterizing temporal AF dynamics have been 
developed for studying mechanisms and 
treatment strategies. Using time-domain 
methods, the properties of f-waves have been 
investigated in terms of the plane of best fit and 
the spatial phase properties of different ECG 
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planes . Time–frequency analysis, combined 
with frequency alignment of an adaptively 
updated spectral profile, has been used to track 
variations in AF frequency and f-wave 
morphology. Morphologic characterization was 
based on the harmonics pattern, expressed as the 
exponential decay of the harmonics’ magnitude. 
The significance of AF harmonics has been paid 
little attention in the literature, one reason being 
that spectral analysis is almost invariably based 
on longer segments (> 30 s). As a Consequence, 
each segment contains large temporal variations 
in AF frequency that smears the harmonics. The 
aforementioned time–frequency analysis is 
particularly well suited to handle such variations 
in AF frequency as spectral alignment is 
performed, facilitating the detection and 
characterization of harmonics [23]. Several 
important questions related to the interpretation 
of AF patterns in the ECG remain unanswered, 
including how the patterns can be used to 
determine disease state and predict treatment 
outcome in  individual patients. Other questions 
relate to the meaning of f-wave morphology in 
terms of intra-atrial activation patterns and to 
signal-based identification of AF subgroups. The 
use of AF frequency alone does not answer these 
questions. In this paper, we introduce a novel 
approach to f-wave factorization based on signal 
phase analysis. The method has a two-stage 
structure in which the atrial activity is first 
translated into compact sets of features, which 
are then clustered so that the typical waveform 
patterns can be discerned. The morphologic 
parameters of the present method offer 
information complementary 
to the atrial rate and are not intended as a 
replacement to rate. The paper is outlined as 
follows: the method is presented in Section II, 
simulated and ECG signals in Section III, the 
results are presented in Section IV, and a 
discussion of the method and its performance is 
found in Section V.  
 
II. METHODOLOGY 
 

The method assumes that an atrial 
signal is obtained from the original ECG, 
produced here by spatiotemporal QRST 
cancellation [9]. Subsequent analysis is divided 
into two stages of which the first segments the 
atrial signal into short blocks and extracts 
features from each block that characterize the f-
waves. Feature extraction involves signal 
decomposition into bandpass components that 

are used for estimation of AF frequency, 
amplitude, and phase. In the second stage, the 
resulting features are clustered into different 
waveform patterns. 

Fourier analysis, using the Fourier 
transform, is a powerful tool for analyzing the 
components of a stationary signal (a stationary 
signal is a signal that repeats). For example, the 
Fourier transform is a powerful tool for 
processing signals that are composed of some 
combination of sine and cosine signals. 

a) Acquisition system 
 

A total of 56 chest and back leads were 
acquired simultaneously for each subject in 
addition to the standard limb leads. The 
predefined site walls are shown in Figure 2.Chest 
leads (N=40) were arranged as a grid around V1 
with an inter-electrode distance of 2.2 cm. (See 
Figure 2) while back leads (N=16) were arranged 
in a similar fashion around V1post (placed on the 
back at the same level than V1). We designed a 
new belt for specifically attaching the electrodes 
in the correct position on the chest and back of 
the patient. Perforations are applied to the belt 
according to the electrode grid designed. Elastic 
bands cover the perforations providing fixation 
of the electrodes and applying the needed 
pressure. The front and back parts of the belt are 
joined with stripes of adjustable length, adapting 
to the shape of the patient. This attachment 
system allows repeatability in the measurements 
and provides a good contact of the electrodes 
with the skin of patient, reducing movement 
artefacts.Signals were acquired at a sampling rate 
of 2048 Hz, with a resolution of 1 microvolt and 
a bandwidth of 500 Hz. Before acquisition, 
signal quality of all leads was visually inspected 
and an ECG recording of 10 minutes was stored 
for off-line processing.  
 

 
 
Fig.1 Predefined sites at the right atrial-free wall 
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Fig.2 Arrangement of the electrodes and belt 
used for their attachment to the patient. 
 
b) ECG Signal Processing 
 

ECG signals were processed using Mat 
lab 7.0.1 (The Math works Inc, The 
Netherlands). Baseline wandering was reduced 
by subtracting the baseline to the recording, 
calculated by using a 3rd order low-pass 
Chebyshev filter. Signals were low-pass filtered 
in order to avoid my electric interference by 
using a low-pass Butterworth filter (fc=40 Hz) 
and down sampled to 512 Hz in order to speed 
up the calculations. Only long segments free 
from ventricular content were included in the 
study. For that purpose, the peaks of QRS 
complexes were detected in V1. RR intervals 
longer than 950 ms were first selected and a TQ 
segment was defined as starting 400 ms after the 
QRS peak and ending 150 ms before the next 
QRS peak. All TQ segments were visually 
inspected in order to avoid wrong detections or 
inclusion of T segments. After this step, only 
segments free from ventricular activity and 
longer than 400 ms were considered. Typically, 
one to three leads presented noticeable baseline 
wandering which was comparable or greater than 
the amplitude of the AF signal. In order to avoid 
this baseline wandering, AF segments were 
filtered again. First, the mean value in each lead 
was subtracted and the baseline was again 
calculated and subtracted. For the estimation of 
the baseline, segments were down sampled 
(fs=128 Hz) and low-pass filtered (fc=3.3 Hz). 
Then, the baseline was up sampled to 512 Hz 
and subtracted to the segment. After baseline 
wandering correction, AF segments were low-
pass filtered (fc=20Hz). All leads in all segments 
were visually inspected. Leads presenting 
noticeable noise contributions (typically, a 
transient loss of contact in one electrode) were 
discarded and interpolated from its neighboring 
electrodes by cubic spline interpolation. No 
segment presented more than three discarded 

leads, and we considered that the loss of signal 
content of less than 4 electrodes out of the 56 
available was acceptable. Once AF segments had 
been isolated and processed, maps for each time 
instant belonging to the each segment were 
constructed. For that purpose, potentials at a 
given time instant were arranged in two matrices: 
one for the front (5x8) and one for the back 
(4x4). In such matrices, signals recorded from 
neighboring electrodes are placed together. In 
order to obtain a smooth representation of the 
maps, finer matrices for the front (50x80) and the 
back (40x40) were created. Potentials for 
unknown positions were interpolated by cubic 
spline interpolation. Two display modes were 
implemented: the is potential mode and the 
waterfront propagation mode. In the is potential 
mode, voltages at a given time instant were 
represented according to a color scale. Videos of 
each AF segment were generated. In the wave 
front propagation mode, only lines connecting 
points on the surface with a voltage equals to 
zero were represented. This display mode allows 
the visualization of both the polarization and re 
polarization wave fronts depending on the time 
interval selected. The succession of wave fronts 
is represented using a color scale according to 
the time instant in which each wave front 
appears. We used a method as previously 
reported [16]. After removal of a 50-Hz 
disturbance component emanating from power 
supplies, and after subtraction of the mean signal 
level of all recordings, data reduction by means 
of low-pass filtering, and resembling at rate of 
100 Hz, experimental data from the 78 electrode 
array were arranged in impulse response 
matrices of dimensions the number being the 
number of data points in each recording between 
two consecutive heart beats. Subsequent impulse 
response analysis and simulation of the resulting 
state-space realization were applied as described 
in next section. 
 
III. RESULTS AND DISCUSSION 
 

Maps were generated for all the 
segments considered in the study and visually 
inspected. Single or multiple simultaneous wave 
fronts, wave breakages and disorganized 
electrical activity could be observed. Figure 2 
shows some selected wave front propagation 
maps representative patterns observed. In panel 
1a, a succession of wave fronts from patient 3 is 
observed. A single wave front can be observed in 
both panels 1a and 1b. In panel 1a wave fronts 
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are mostly parallel to each other. Panel 1b shows 
the next succession of wave fronts, which differ 
from panel 1a.Panels 2a and 2b show two 
consecutive depolarization waves from patient 3 
which present a similar pattern. Surface wave 
fronts rotate along a similar axis in both panels. 
The same pattern was observed in the 
consecutive wave fronts appearing in the same 
segment (total=5).Panel 3 shows two consecutive 
depolarization waves from patient 5.     

 
 Depolarization wave shown in panel a 

is first shown in the leftmost part on bottom of 
the grid and spreads towards the center and top 
until it gets blocked. A second depolarization 
wave starts in the uppermost part on the right of 
the grid and propagates towards the bottom and 
the left until it gets blocked in roughly the same 
position where the previous wave arrived. It can 
be observed that one wave front is blocked by 
the previous propagation contributing to a 
chaotic propagation. Panels 4a and 4b show 
depolarization waves in patient 6. Multiple 
waves arise at the same time, propagate and then 
disappear in an uncoordinated fashion.  

 
By analyzing the 10-minute recording 

of each patient, we observed that the wave front 
propagation patterns were, to some extent, 
repeatable. Patient 3 showed clear wave fronts 
with similar patterns in most segments analyzed. 
Patients 1, 5 and 6 showed a completely unstable 
pattern with multiple simultaneous activation 
wave fronts that changed widely even in short 
time intervals. Patients 2 and 4 presented an 
intermediate degree of repeatability, with one or 
two simultaneous propagation wave fronts that 
could both differ greatly or slightly from one 
activation to another. By application of the state-
space realization algorithm to every heart beat 
with a period of approximately 1 s and 175 ms  
during atrial fibrillation, it was possible to 
reproduce the electro gram impulse response 
which, in turn, makes possible a quantitative 
comparison as to the variation and complexity of 
a set of consecutive heart beats. The wavelet 
decomposition of scddvbrk signal is shown in 
Figure 3. 

 

Fig.3 wavelet decomposition of scddvbrk signal  
 
Relative prediction error versus model 

order and the singular value sequences indicate a 
model order to be relevant for the SR and the 
atrial pacing, whereas a model order is relevant 
for atrial fibrillation. As for the temporal and 
channel-dependent autocovariances and cross 
covariance of data and residuals, it is apparent 
that atrial fibrillation data exhibit other temporal 
covariance than data of SR and of artificial atrial 
pacing data. The phase curve extraction of 
standard signals like scddvbrk, freqdbrk and 
cuspamax provides useful information in the 
atrial fibrillation. The phase curve extraction of 
scddvbrk signal using “bior1.3” is shown in 
Figure4.  

 

 
Fig.4 Phase curve extraction using bior1.3    

The phase curve extraction of cuspamax 
signal using bior1.5 is shown in Figure 4. 
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Fig.5 Phase curve extraction of cuspamax         
Signal using bior1.5 
 

Modeling: Generally, the purposes of 
theoretical models are to pinpoint deficiencies in 
our knowledge about a system and to predict 
properties of the system which otherwise should 
not have emerged. In our case we have studied 
heart surface properties of impulse propagation 
as the impulse response to natural and artificial 
pacing. Thus, the nonlinear modeling needed to 
reproduce the impulse generation and refractory 
tissue properties is not included. As for all 
behaviorist models, the models obtained here 
provide no final or definite answer as to the 
underlying physiological mechanisms. Although 
the linear properties of the underlying 
physiological processes might be challenged, the 
system identification provides linear 
approximate models of finite and low complexity 
and good prediction accuracy. As for 
methodological extensions, the realization theory 
applied here lends itself to modeling by linear 
partial differential equations by using the spatial 
information available in the electro gram data.  

 
The linear models obtained for electro 

grams of SR, atrial pacing, and atrial fibrillation 
have been validated by means of approximation 
notions and (preliminary) extensions of 
statistical validation properties including cross 
validation on data sets not used for system 
parameter estimation. The phase curve extraction 
used above are applicable to the ECG signal. The 
raw ECG data is denoised and applied to phase 
curve extraction  using reverse bi-orthogonal 
wavelet is shown below. 
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Fig.6 Phase curve extraction  of ECG signal 
using reverse bi-orthogonal wavelet 
 

Thus, the models obtained actually 
provide a means for prediction of behavior and 
for classification purposes—e.g., for distinction 
among various beat-to-beat behaviors. In 
contrast to the hypotheses of Hoekstra et al. [14], 
no evidence of chaotic nonlinear dynamics was 
found. By application of the state-space 
realization algorithm to every heart beat with a 
period of approximately 1 s and 175 ms, 
respectively, it was possible to reproduce the 
electro gram impulse response which, in turn, 
makes possible a quantitative comparison as to 
the variation and complexity of a set of 
consecutive heart beats (Figs. 2–4). The residual 
autocovariance and cross covariance between 
residuals and data provide good or excellent 
model agreement for atrial fibrillation, artificial 
pacing rhythm, and SR.  
 
IV. CONCLUSION 
 

The phase information extraction in 
atrial fibrillation has been presented. Since phase 
extraction provides more information about the 
signal, we applied it to the various signals and 
ECG signal. Different patterns of electrical 
activation and degrees of stability of the 
activation patterns have been observed. The 
comparison of this new method for the 
quantification of the degree of organization of 
the atrial electrical activity with other methods 
such as spectral analysis and validation by 
comparison with invasive mapping data will be 
of great interest in future studies. Although 
observations from the present study have not 
been compared to the effectiveness of any 
specific treatment, there is a great potential in 
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further analyzing the activation patterns of the 
electrical wave fronts occurring in the atria as 
observable in body surface maps. 
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