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ABSTRACT 
 

This paper presents a brief survey on coarse grained Reconfigurable architectures for motion 
estimation. The motion estimation processor demands a very large amount of computing power in recent 
video coding standard H.264/AVC. To reduce   computational complexity without affecting image quality, 
Motion estimation algorithms are implemented on various course grained Reconfigurable architectures 
such as Morphosys, Matrix, Rapid, Mora and Chess.  The purpose of this study is to compare these 
architectures based on Granularity, resource utilization, memory bandwidth and computation model.  The 
methodology and results presented here provide useful guidelines to system designers in selecting coarse 
grained Reconfigurable Architectures for motion estimation. 
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1.  INTRODUCTION 
 

There is an increasing demand for 
multimedia processing solutions through flexible 
and highly parallel architectures.H.264 [1] video 
compression standard plays an important role in 
today’s consumer market. Motion estimation 
(ME) (Figure.1) is a key technique in most 
algorithms for video compression. It is one of the 
most computational intensive subroutines of 
H.264.  Compared to fixed block-size ME 
(FBSME), H.264 supports VBSME [2] which 
provides better estimation of small and irregular 
motion fields and allows better adaptation of 
motion boundaries resulting in a reduced number 
of bits required for coding prediction. In motion 
estimation, each frame of a video sequence is 
divided into fixed number of non-overlapping 
square blocks. For each block in current frame, 
best matching block is searched within the 
previous frame. In most block matching 
algorithms, the sum of absolute differences 
(SAD) is used as the main metric. VBSME 
requires support for 7 block patterns: 16x16, 
16x8, 8x8, 8x4, 4x8, and 4x4. Supporting this 
feature is a challenging task in terms of resource 
utilization when implementing the application on 
hardware. Due to its highly parallel nature and 

algorithm’s demand for a flexible solution, a 
reconfigurable architecture poses as an ideal 
candidate to respond to this compute intensive 
routine. 
  

Based on the historical perspective, 
implementation of motion estimation has 
evolved through general purpose processors [3] 
[4] [5], ASIC [5] [6] [7] [8] [9], FPGA [10], and 
coarse grained reconfigurable architectures [11] 
[12] [13] [14] [15] [16]. Existing architectures 
either only support FBSME or implement 
VBSME with redundant hardware. While new 
processor advances including VLIW, SIMD, and 
out of order execution, have provided some 
advances in exploiting parallelism within 
applications, the processor’s inherently 
sequential and generic architecture limits the 
ability to efficiently exploit potential parallelism 
within highly concurrent types of algorithms. 
Alternatively, application specific instruction set 
processors (ASIPs) allow designers to custom 
the microprocessor by adding custom 
instructions and execution units within the 
processor. However, such extensions are similar 
to VLIW or SIMD approaches and are still 
limited to the data access through the processor’s 
register file.  
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Figure.1. Block Diagram of Motion Estimation 
Processor 
 

 Several ASIC based approaches have 
been proposed for variable block size block 
matching algorithms to reduce computational 
complexities. However some of these 
architectures [5] [6] [7] are not capable of 
processing all the block sizes specified by the 
H.264. As an alternative, Yap [8] promises to 
support all block sizes. Architecture is formed of 
16 processing elements (PEs) interconnected as a 
1D systolic array where each PE computes a4x4 
SAD. As an improvement, Ou [9] introduces a 
hierarchical 1D systolic architecture that 
employs partial SAD computation technique. 
Additionally in [9], a “VBSME processor”, based 
on an adder tree structure, supports all block 
sizes. This paper [9] achieves lower latencies 
with higher throughput compared to existing 
VBSME architectures. However partial SAD 
computation requires delay registers and extra 
accumulators; and “VBSME processor” consists 
of a fixed set of redundant adders. Therefore this 
architecture has high area overhead which can be 

improved by using a flexible routing 
architecture. 

Coarse-grained reconfigurable 
architectures RAPID [14], MATRIX [12], 
CHESS [13], RAW [11], Morphosys [15], 
MORA [16] have been introduced to overcome 
some of the drawbacks of lookup table based 
fine grained reconfigurable architectures, such as 
FPGAs. In general, coarse-grained 
reconfigurable fabrics are composed of high 
level processing elements (PEs) with generic 
reconfigurable interconnect network. While 
fewer configuration bits are needed for the PEs, 
fully utilizing the functionality of each PE is 
difficult; leading to significant under utilization 
of coarse grained fabrics.  
                  
2.   ASIC BASED APPROACHES 

ASIC based architectures can be 
broadly classified into different   categories 
depending upon various metrics such as topology 
of processing elements and methodology for 
accumulation of SADs etc. Based on topology, 
the architecture can be classified as 1D and 2D 
systolic arrays. 1D architectures [8, 17, and 18] 
consist of 1D systolic array of processing 
elements. They are simpler in structure but use a 
large number of registers for storing partial 
SADs and thus suffer in area and high latencies 
owing to the sequential computation and 
accumulation of SADs. 2D architectures [6, 7] 
consist of processing elements connected in a 
mesh-based architecture and SAD computations 
are direct mapped. J.F. Shen et al .,[6] does not 
support block sizes smaller than 8x8. This 
architecture uses a smaller 2D array. So, the 
partial SADs are calculated and added 
sequentially. This results in greater latencies. De 
Vos et al., [7] do not support VBSME. It uses a 
large number of storage registers to store 
reference pixels. Also, loading of reference 
pixels in the propagation registers causes long 
latencies.  

Based on methodology for 
accumulation of SADs, the architectures can be 
classified as partial and parallel sum SADs. In 
partial sum SAD architectures [6], reference 
pixels are broadcasted and SAD computation for 
each 4x4 sub block is pipelined. In this 
architecture, each processing element computes 
one pixel difference, accumulates it to the 
previous partial SAD and sends the computed 
partial SAD to the next processing element. This 
kind of architecture uses large number of storage 
registers due to the accumulation of partial SADs 
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in each processing element. In parallel sum SAD 
architectures, all pixel differences for a 4x4 sub-
block are computed concurrently and thus added 
in one clock cycle. In this architecture, reference 
pixels are reused between different processing 
elements which decrease memory bandwidth 
requirements. The direction of data transfer 
among different processing elements depends on 
the search pattern adopted.  VBSME processor 
[9] consists of 16 separate SAD “modules” 
(Figure 2a) to process sixteen 4x4 motion 
vectors. It also consists of a chain of adders and 
comparators, (VBSME processor), to compute 
larger SADs. “PE array” (Figure 2b.) which 
forms the computation element of each SAD 
module is constructed by cascading four 1D 
arrays (Figure 2c). Each 1D array consists of a 
1D systolic array of 4 PEs.  

 
 
 

 
 
Figure.2a.SAD Modules 
 

Each PE computes 1 pixel SAD. This 
circuit operates by scheduling the columns of the 
current 4x4 sub block “current_block_data_i” 

through a delay line, and broadcasting two sets 
of search block columns “block_strip_A” and 
“block_strip_B” on each clock cycle. Four block 
matching operations can be performed 
concurrently in one SAD module. The produced 
4x4 SADs are then sent through a fixed series of 
adders and  
comparators to produce 4x4 motion vectors. The 
4x4 SADs are also sent in parallel to four sets of 
adders and comparators to produce 4x8, 8x4 
SADs. The two 8x4 SADs are then again sent 
through a set of adders and comparators to form 
8x8 SAD. 16x8, 8x16, and 16x16 SADs are 
computed similarly. This adder/comparator 
based chain of events form the adder tree 
structure.  
 

 An efficient VLSI Architecture for 
H.264 Variable Block Size Motion Estimation 
[9] has separate SAD modules for 4x4 sub block 
computations with separate input ports for 
loading current block and search region data. 
Thus, it does not support reuse of search data 
between modules. This increases the amount of 
data transactions from the memory. Also, the 
VBSME is supported by a fixed set of adders 
based on a large adder tree leading to resource 
wastage. An intelligent routing scheme that uses 
same set of adders to compute different motion 
vectors each time is needed to overcome the 
wastage. Also, this architecture does not support 
other fast search algorithms like diamond search, 
hexagonal search etc. 

 
 

 
 
 
Figure.2b.PE Array 
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 Figure.2c.1D Array 
 

3.  COARSE-GRAINED ARCHITECTURES 
 

In general, flexibility is an important 
feature of reconfigurable devices, conventional 
FPGAs are simply too generic to provide high 
performance in many situations. General-purpose 
reconfigurable devices, while well suited to 
small or irregular functions, typically suffer a 
stiff penalty when implementing wide and 
complex arithmetic operations. These types of 
functions need to be built from too many small 
logical resources and end up being spread across 
too general a routing structure to be efficient. 
However, if the range of applications that a 
device is intended for is known beforehand, a 
designer can specialize the logic, memory and 
routing resources to enhance the performance of 
the device while still providing adequate 
flexibility to accommodate all anticipated uses. 
Common and complex operations can be 
implemented much more efficiently on 
specialized coarse-grain functional units while 
routing and memory resources can be tuned to 
better reflect the requirements. 
 

Coarse-grained reconfigurable fabrics 
are composed of high-level functional blocks 
with generic reconfigurable interconnect 
network. In this section, a brief review and 
analysis of ChESS, RaPiD, MATRIX, 
Morphosys, and Mora architectures for 
implementing motion estimation algorithm. 
There is a need to choose carefully these 
architectures for an investigation based on 
granularity. They vary in granularity from 4-bit, 
8-bit to 16- bit processing elements and buses 
and thus help in providing a broad view about 

mapping of motion estimation algorithm on 
coarse-grained architectures. 
   

The ChESS [13] architecture is a 
reconfigurable arithmetic array targeted mainly 
for multimedia applications. The fundamental 
computation component is a 4-bit ALU with 16 
instructions. The routing structure is based on 4-
bit buses. Each ALU has a switchbox adjacent to 
it which serves as a cross point with 64 
connections. Hence it needs about 64 bits to 
configure the switches and connections. Since 
each ALU has a corresponding switchbox 
associated with it the routing area consumes up 
to 50% of the total area. Mapping of the motion 
estimation algorithm on the ChESS architecture 
exploiting full parallelism, SAD computation for 
a 16x16 array would require a 512 ALU ChESS 
array. 
 

MATRIX [12] is yet another coarse-
grained reconfigurable computing architecture 
composed of 2D array of identical, 8-bit 
functional units overlaid with a configurable 
network. Each functional unit consists of an 8-bit 
ALU, memory and control logic. MATRIX also 
has a generic routing architecture. Mapping the 
motion estimation algorithm on the MATRIX 
architecture for a 16x16 block would require a 
256 ALU MATRIX array. The MATRIX array 
with 8-bit functional units would require one 
functional unit for one pixel difference 
calculation. The performance result for motion 
estimation algorithm if mapped on a 256 ALU 
MATRIX array is [(M x 0.8M)/256 x 17 x 17] 
clock cycles considering a frame size of M x 
0.8M. Also, support for VBSME in these 
architectures would involve huge routing 
complexity which is difficult to implement 
owing to the generic nature of routing 
architecture. 
 

RaPiD [14] is a coarse-grained 
architecture mainly targeted for DSP 
applications. It consists of 1D array of functional 
units (ALUs, multipliers, Registers and RAMs). 
The complete RaPiD array contains 16 of these 
cells. The functional units (cells) in RaPiD are 
interconnected using a set of ten segmented 
buses that run the length of the data path. The 
buses in different tracks re segmented into 
different lengths. The implementation result for 
motion estimation as provided in the paper for a 
block size of 8x8 is 272+32M+14.45M2 clock 
cycles considering a frame size of M x 0.8M. 
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The implementation details show that the 
available parallelism in the system has not been 
exploited to the fullest extent. For a 16x16 SAD, 
only the row-wise differences are computed in 
parallel. The column wise differences are 
computed sequentially which decreases the 
performance to a great extent. This is because the 
linear array form of architecture fails to exploit 
this parallelism. Also there is huge 
underutilization of resources as one cell 
comprising of 3 ALUs is being used for 
computing just one difference per clock cycle. 
Assume that the second ALU is being used for 
adding the differences in a pipeline, the third 
ALU remains unutilized. Also, the ALUs are 16 
bit, and the SAD computation involves 8 bit 
operation, which again adds to underutilization. 
Also, the reference frames considered are 8x8. 
So, the architecture does not support SAD 
calculation for smaller block sizes. The 
algorithm does not require ten buses for routing. 
So it leads to under utilization of routing 
resources too. Also, the real time video 
performance on a standard 720 x 576 image is 
about 12 frames per second using 100 MHz 
clock. So, the performance is quite poor with a 
huge dissipation of energy. 

Morphosys [15] is a reconfigurable 
arithmetic array targeted mainly for multimedia 
applications. The main component of 
MorphoSys is the 8 x 8 RC (Reconfigurable 
Cell) Array. Each RC has an ALU-multiplier, a 
register file and is configured through a 32-bit 
context word. The ALU has 16-bit inputs, and 
the   multiplier has 16 by 12 bit inputs.  The 
ALU adder is 28 bits wide to prevent loss of 
precision during multiply-accumulate operation. 
Besides standard functions, the ALU has several 
additional functions e.g. absolute value of 
difference of two numbers and a single cycle 
multiply-accumulate operation. The controlling 
component of MorphoSys is a 32-bit processor, 
called Tiny RISC, based on [7]. Tiny RISC 
handles serial operations, initiates data transfers 
and controls operation of the RC array. Mapping 
the motion estimation algorithm on this array, 
5304 cycles are required to finish the matching 
of the whole search area. If the image size is 
352x288 pixels at 30 frames per second (MPEG-
2 main profile, low level), processing of an entire 
image frame would take 2.1 x 106 cycles. At 
clock rate of 100 MHz for MorphoSys, the 
computation time is » 21.0 ms. 

 

MORA (Multimedia oriented 
Reconfigurable array) [16] consists of a scalable 
2D array of identical Reconfigurable Cells (RCs) 
organized in 4X4 quadrants and connected 
through a hierarchical reconfigurable network. 
The main building elements of the circuit are: a 
256*8-bit SRAM acting as an internal data 
buffer, an 8-bit Processing Element (PE) and a 
Control Unit incorporating the Configuration 
Memory. The latter holds the control program of 
the RC, which is loaded during the 
“configuration phase” of the system. Each RC 
has two possible operative states: loading and 
executing. When the RC is in the loading state, 
data can be loaded through one or both the input 
ports and stored into the internal SRAM. The 
latter is dual-ported, thus enabling two 
independent read or write operations per clock 
cycle. As soon as all the required operands are 
available, the RC switches in the executing state. 
 
4.  CONCLUSION 
 

This paper has attempted to give a 
survey on today’s coarse - grained 
reconfigurable architectures (TABLE I) 
significantly relieving the burden of the 
computational complexity of motion estimation 
processor in H.264/AVC standard. Their 
abundant parallelism, high computational 
density, and flexibility of changing behavior 
during runtime make such architectures are 
superior to ASIC based approaches. 

 
Table1.Performance of various 

Coarse-Grained Reconfigurable Architectures 
 

               

CGRA Granularity Resource 
utilization  

Memory 
Band 
Width 

Architectu
re 

ChESS 4 bit low Low Hexagon 
mesh 

MATRIX 8 bit low Low 2D Mesh 
RaPiD 16 bit high Low 1D Array 
Morphosy
s 

16 bit low Low 2D Mesh 

MORA 8 bit high high 2D Array 
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