

121

ISSN: 1817-3195 / E-ISSN: 1992-8615

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

COARSE GRAINED RECONFIGURABLE ARCHITECTURES
FOR MOTION ESTIMATION IN H.264/AVC

1D.RUKMANI DEVI , 2P.RANGARAJAN ^, 3J.RAJA PAUL PERINBAM*

1 Research Scholar, Department of Electronics and Communication Engineering, RMK EC, Chennai, India-
601206

2Prof & Head, Department of Information Technology, RMD Engineering College, Chennai, India-601206
3 Professor, Department of Electronics and Communication Engineering, RMK EC, Chennai, India-601206

ABSTRACT

This paper presents a brief survey on coarse grained Reconfigurable architectures for motion
estimation. The motion estimation processor demands a very large amount of computing power in recent
video coding standard H.264/AVC. To reduce computational complexity without affecting image quality,
Motion estimation algorithms are implemented on various course grained Reconfigurable architectures
such as Morphosys, Matrix, Rapid, Mora and Chess. The purpose of this study is to compare these
architectures based on Granularity, resource utilization, memory bandwidth and computation model. The
methodology and results presented here provide useful guidelines to system designers in selecting coarse
grained Reconfigurable Architectures for motion estimation.

Keywords: Coarse grained, Reconfigurable architectures, motion estimation, H.264.

1. INTRODUCTION

There is an increasing demand for
multimedia processing solutions through flexible
and highly parallel architectures.H.264 [1] video
compression standard plays an important role in
today’s consumer market. Motion estimation
(ME) (Figure.1) is a key technique in most
algorithms for video compression. It is one of the
most computational intensive subroutines of
H.264. Compared to fixed block-size ME
(FBSME), H.264 supports VBSME [2] which
provides better estimation of small and irregular
motion fields and allows better adaptation of
motion boundaries resulting in a reduced number
of bits required for coding prediction. In motion
estimation, each frame of a video sequence is
divided into fixed number of non-overlapping
square blocks. For each block in current frame,
best matching block is searched within the
previous frame. In most block matching
algorithms, the sum of absolute differences
(SAD) is used as the main metric. VBSME
requires support for 7 block patterns: 16x16,
16x8, 8x8, 8x4, 4x8, and 4x4. Supporting this
feature is a challenging task in terms of resource
utilization when implementing the application on
hardware. Due to its highly parallel nature and

algorithm’s demand for a flexible solution, a
reconfigurable architecture poses as an ideal
candidate to respond to this compute intensive
routine.

Based on the historical perspective,
implementation of motion estimation has
evolved through general purpose processors [3]
[4] [5], ASIC [5] [6] [7] [8] [9], FPGA [10], and
coarse grained reconfigurable architectures [11]
[12] [13] [14] [15] [16]. Existing architectures
either only support FBSME or implement
VBSME with redundant hardware. While new
processor advances including VLIW, SIMD, and
out of order execution, have provided some
advances in exploiting parallelism within
applications, the processor’s inherently
sequential and generic architecture limits the
ability to efficiently exploit potential parallelism
within highly concurrent types of algorithms.
Alternatively, application specific instruction set
processors (ASIPs) allow designers to custom
the microprocessor by adding custom
instructions and execution units within the
processor. However, such extensions are similar
to VLIW or SIMD approaches and are still
limited to the data access through the processor’s
register file.

122

ISSN: 1817-3195 / E-ISSN: 1992-8615

31st May 2010. Vol.15. No.2.
© 2005-2010 JATIT. All rights reserved

www.jatit.org

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN

Figure.1. Block Diagram of Motion Estimation
Processor

 Several ASIC based approaches have
been proposed for variable block size block
matching algorithms to reduce computational
complexities. However some of these
architectures [5] [6] [7] are not capable of
processing all the block sizes specified by the
H.264. As an alternative, Yap [8] promises to
support all block sizes. Architecture is formed of
16 processing elements (PEs) interconnected as a
1D systolic array where each PE computes a4x4
SAD. As an improvement, Ou [9] introduces a
hierarchical 1D systolic architecture that
employs partial SAD computation technique.
Additionally in [9], a “VBSME processor”, based
on an adder tree structure, supports all block
sizes. This paper [9] achieves lower latencies
with higher throughput compared to existing
VBSME architectures. However partial SAD
computation requires delay registers and extra
accumulators; and “VBSME processor” consists
of a fixed set of redundant adders. Therefore this
architecture has high area overhead which can be

improved by using a flexible routing
architecture.

Coarse-grained reconfigurable
architectures RAPID [14], MATRIX [12],
CHESS [13], RAW [11], Morphosys [15],
MORA [16] have been introduced to overcome
some of the drawbacks of lookup table based
fine grained reconfigurable architectures, such as
FPGAs. In general, coarse-grained
reconfigurable fabrics are composed of high
level processing elements (PEs) with generic
reconfigurable interconnect network. While
fewer configuration bits are needed for the PEs,
fully utilizing the functionality of each PE is
difficult; leading to significant under utilization
of coarse grained fabrics.

2. ASIC BASED APPROACHES

ASIC based architectures can be
broadly classified into different categories
depending upon various metrics such as topology
of processing elements and methodology for
accumulation of SADs etc. Based on topology,
the architecture can be classified as 1D and 2D
systolic arrays. 1D architectures [8, 17, and 18]
consist of 1D systolic array of processing
elements. They are simpler in structure but use a
large number of registers for storing partial
SADs and thus suffer in area and high latencies
owing to the sequential computation and
accumulation of SADs. 2D architectures [6, 7]
consist of processing elements connected in a
mesh-based architecture and SAD computations
are direct mapped. J.F. Shen et al .,[6] does not
support block sizes smaller than 8x8. This
architecture uses a smaller 2D array. So, the
partial SADs are calculated and added
sequentially. This results in greater latencies. De
Vos et al., [7] do not support VBSME. It uses a
large number of storage registers to store
reference pixels. Also, loading of reference
pixels in the propagation registers causes long
latencies.

Based on methodology for
accumulation of SADs, the architectures can be
classified as partial and parallel sum SADs. In
partial sum SAD architectures [6], reference
pixels are broadcasted and SAD computation for
each 4x4 sub block is pipelined. In this
architecture, each processing element computes
one pixel difference, accumulates it to the
previous partial SAD and sends the computed
partial SAD to the next processing element. This
kind of architecture uses large number of storage
registers due to the accumulation of partial SADs

123

ISSN: 1817-3195 / E-ISSN: 1992-8615

31st May 2010. Vol.15. No.2.
© 2005-2010 JATIT. All rights reserved

www.jatit.org

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN

in each processing element. In parallel sum SAD
architectures, all pixel differences for a 4x4 sub-
block are computed concurrently and thus added
in one clock cycle. In this architecture, reference
pixels are reused between different processing
elements which decrease memory bandwidth
requirements. The direction of data transfer
among different processing elements depends on
the search pattern adopted. VBSME processor
[9] consists of 16 separate SAD “modules”
(Figure 2a) to process sixteen 4x4 motion
vectors. It also consists of a chain of adders and
comparators, (VBSME processor), to compute
larger SADs. “PE array” (Figure 2b.) which
forms the computation element of each SAD
module is constructed by cascading four 1D
arrays (Figure 2c). Each 1D array consists of a
1D systolic array of 4 PEs.

Figure.2a.SAD Modules

Each PE computes 1 pixel SAD. This
circuit operates by scheduling the columns of the
current 4x4 sub block “current_block_data_i”

through a delay line, and broadcasting two sets
of search block columns “block_strip_A” and
“block_strip_B” on each clock cycle. Four block
matching operations can be performed
concurrently in one SAD module. The produced
4x4 SADs are then sent through a fixed series of
adders and
comparators to produce 4x4 motion vectors. The
4x4 SADs are also sent in parallel to four sets of
adders and comparators to produce 4x8, 8x4
SADs. The two 8x4 SADs are then again sent
through a set of adders and comparators to form
8x8 SAD. 16x8, 8x16, and 16x16 SADs are
computed similarly. This adder/comparator
based chain of events form the adder tree
structure.

 An efficient VLSI Architecture for
H.264 Variable Block Size Motion Estimation
[9] has separate SAD modules for 4x4 sub block
computations with separate input ports for
loading current block and search region data.
Thus, it does not support reuse of search data
between modules. This increases the amount of
data transactions from the memory. Also, the
VBSME is supported by a fixed set of adders
based on a large adder tree leading to resource
wastage. An intelligent routing scheme that uses
same set of adders to compute different motion
vectors each time is needed to overcome the
wastage. Also, this architecture does not support
other fast search algorithms like diamond search,
hexagonal search etc.

Figure.2b.PE Array

124

ISSN: 1817-3195 / E-ISSN: 1992-8615

31st May 2010. Vol.15. No.2.
© 2005-2010 JATIT. All rights reserved

www.jatit.org

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN

 Figure.2c.1D Array

3. COARSE-GRAINED ARCHITECTURES

In general, flexibility is an important
feature of reconfigurable devices, conventional
FPGAs are simply too generic to provide high
performance in many situations. General-purpose
reconfigurable devices, while well suited to
small or irregular functions, typically suffer a
stiff penalty when implementing wide and
complex arithmetic operations. These types of
functions need to be built from too many small
logical resources and end up being spread across
too general a routing structure to be efficient.
However, if the range of applications that a
device is intended for is known beforehand, a
designer can specialize the logic, memory and
routing resources to enhance the performance of
the device while still providing adequate
flexibility to accommodate all anticipated uses.
Common and complex operations can be
implemented much more efficiently on
specialized coarse-grain functional units while
routing and memory resources can be tuned to
better reflect the requirements.

Coarse-grained reconfigurable fabrics
are composed of high-level functional blocks
with generic reconfigurable interconnect
network. In this section, a brief review and
analysis of ChESS, RaPiD, MATRIX,
Morphosys, and Mora architectures for
implementing motion estimation algorithm.
There is a need to choose carefully these
architectures for an investigation based on
granularity. They vary in granularity from 4-bit,
8-bit to 16- bit processing elements and buses
and thus help in providing a broad view about

mapping of motion estimation algorithm on
coarse-grained architectures.

The ChESS [13] architecture is a
reconfigurable arithmetic array targeted mainly
for multimedia applications. The fundamental
computation component is a 4-bit ALU with 16
instructions. The routing structure is based on 4-
bit buses. Each ALU has a switchbox adjacent to
it which serves as a cross point with 64
connections. Hence it needs about 64 bits to
configure the switches and connections. Since
each ALU has a corresponding switchbox
associated with it the routing area consumes up
to 50% of the total area. Mapping of the motion
estimation algorithm on the ChESS architecture
exploiting full parallelism, SAD computation for
a 16x16 array would require a 512 ALU ChESS
array.

MATRIX [12] is yet another coarse-
grained reconfigurable computing architecture
composed of 2D array of identical, 8-bit
functional units overlaid with a configurable
network. Each functional unit consists of an 8-bit
ALU, memory and control logic. MATRIX also
has a generic routing architecture. Mapping the
motion estimation algorithm on the MATRIX
architecture for a 16x16 block would require a
256 ALU MATRIX array. The MATRIX array
with 8-bit functional units would require one
functional unit for one pixel difference
calculation. The performance result for motion
estimation algorithm if mapped on a 256 ALU
MATRIX array is [(M x 0.8M)/256 x 17 x 17]
clock cycles considering a frame size of M x
0.8M. Also, support for VBSME in these
architectures would involve huge routing
complexity which is difficult to implement
owing to the generic nature of routing
architecture.

RaPiD [14] is a coarse-grained
architecture mainly targeted for DSP
applications. It consists of 1D array of functional
units (ALUs, multipliers, Registers and RAMs).
The complete RaPiD array contains 16 of these
cells. The functional units (cells) in RaPiD are
interconnected using a set of ten segmented
buses that run the length of the data path. The
buses in different tracks re segmented into
different lengths. The implementation result for
motion estimation as provided in the paper for a
block size of 8x8 is 272+32M+14.45M2 clock
cycles considering a frame size of M x 0.8M.

125

ISSN: 1817-3195 / E-ISSN: 1992-8615

31st May 2010. Vol.15. No.2.
© 2005-2010 JATIT. All rights reserved

www.jatit.org

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN

The implementation details show that the
available parallelism in the system has not been
exploited to the fullest extent. For a 16x16 SAD,
only the row-wise differences are computed in
parallel. The column wise differences are
computed sequentially which decreases the
performance to a great extent. This is because the
linear array form of architecture fails to exploit
this parallelism. Also there is huge
underutilization of resources as one cell
comprising of 3 ALUs is being used for
computing just one difference per clock cycle.
Assume that the second ALU is being used for
adding the differences in a pipeline, the third
ALU remains unutilized. Also, the ALUs are 16
bit, and the SAD computation involves 8 bit
operation, which again adds to underutilization.
Also, the reference frames considered are 8x8.
So, the architecture does not support SAD
calculation for smaller block sizes. The
algorithm does not require ten buses for routing.
So it leads to under utilization of routing
resources too. Also, the real time video
performance on a standard 720 x 576 image is
about 12 frames per second using 100 MHz
clock. So, the performance is quite poor with a
huge dissipation of energy.

Morphosys [15] is a reconfigurable
arithmetic array targeted mainly for multimedia
applications. The main component of
MorphoSys is the 8 x 8 RC (Reconfigurable
Cell) Array. Each RC has an ALU-multiplier, a
register file and is configured through a 32-bit
context word. The ALU has 16-bit inputs, and
the multiplier has 16 by 12 bit inputs. The
ALU adder is 28 bits wide to prevent loss of
precision during multiply-accumulate operation.
Besides standard functions, the ALU has several
additional functions e.g. absolute value of
difference of two numbers and a single cycle
multiply-accumulate operation. The controlling
component of MorphoSys is a 32-bit processor,
called Tiny RISC, based on [7]. Tiny RISC
handles serial operations, initiates data transfers
and controls operation of the RC array. Mapping
the motion estimation algorithm on this array,
5304 cycles are required to finish the matching
of the whole search area. If the image size is
352x288 pixels at 30 frames per second (MPEG-
2 main profile, low level), processing of an entire
image frame would take 2.1 x 106 cycles. At
clock rate of 100 MHz for MorphoSys, the
computation time is » 21.0 ms.

MORA (Multimedia oriented
Reconfigurable array) [16] consists of a scalable
2D array of identical Reconfigurable Cells (RCs)
organized in 4X4 quadrants and connected
through a hierarchical reconfigurable network.
The main building elements of the circuit are: a
256*8-bit SRAM acting as an internal data
buffer, an 8-bit Processing Element (PE) and a
Control Unit incorporating the Configuration
Memory. The latter holds the control program of
the RC, which is loaded during the
“configuration phase” of the system. Each RC
has two possible operative states: loading and
executing. When the RC is in the loading state,
data can be loaded through one or both the input
ports and stored into the internal SRAM. The
latter is dual-ported, thus enabling two
independent read or write operations per clock
cycle. As soon as all the required operands are
available, the RC switches in the executing state.

4. CONCLUSION

This paper has attempted to give a
survey on today’s coarse - grained
reconfigurable architectures (TABLE I)
significantly relieving the burden of the
computational complexity of motion estimation
processor in H.264/AVC standard. Their
abundant parallelism, high computational
density, and flexibility of changing behavior
during runtime make such architectures are
superior to ASIC based approaches.

Table1.Performance of various

Coarse-Grained Reconfigurable Architectures

CGRA Granularity Resource
utilization

Memory
Band
Width

Architectu
re

ChESS 4 bit low Low Hexagon
mesh

MATRIX 8 bit low Low 2D Mesh
RaPiD 16 bit high Low 1D Array
Morphosy
s

16 bit low Low 2D Mesh

MORA 8 bit high high 2D Array

126

ISSN: 1817-3195 / E-ISSN: 1992-8615

31st May 2010. Vol.15. No.2.
© 2005-2010 JATIT. All rights reserved

www.jatit.org

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN

REFERENCES

[1] T. Wiegand, G. J. Sullivan, G.

Bjontegaard, and A. Luthra “Overview of
the H.264/AVC video coding
standard,”IEEE Trans. on Circuits and
Systems for Video Technology, vol.13, no.
7, pp. 560–576, July 2003.

[2] Injong Rhee, .“Quadtree-Structured
Variable-SizeBlock-Matching Motion
Estimation with Minimal Error,”IEEE
Trans. Circuits Syst. Video Technol.,
vol. 10(Feb.):pp.42-50, 2000.

[3] Lappalainen, V. Hailapuro, A. Hamalainen,
T.D. Nokia Res.Center, Tampere,
“Performance of H.26L video encoder on
General -purpose processor,” The Journal
of VLSI Signal Processing.

[4] S. Reader and T. Meng, “Performance
Evaluation of Motion Estimation Algorithms
for Digital Signal Processors,” Tech. report,
Stanford University, 1999.

[5] P. M. Kuhn, “Fast MPEG-4 Motion
Estimation: Processor Based and Flexible
VLSI Implementations,” Journal of VLSI
Signal Processing Systems for Signal,
Image, and Video Technology vol.23, pp
67-92, October 1999.

[6] J.F. Shen et al, “ A Novel Low-Power
Full-Search Block- Matching Motion-
Estimation Design for H.263+,” IEEE
Transactions on Circuits and Systems for
Video Technology, vol.11, no. 7, July2001,
pp.890-897.

[7] L. de Vos and M. Schobinger, “VLSI
architecture for a flexible block matching
processor,” IEEE Trans. Circuits and
Systems for Video Technology, Vol. 5,
pp. 417-428, 1995.

[8] S. Y. Yap and J. V. McCann, “A VLSI
architecture for variable block size video
motion estimation,” IEEE Transactions on
CAS II, vol. 51, no. 7, July 2004.

[9] Chien-Min Ou, Chian-Feng Le and
Wen-Jyi Hwang, “An Efficient VLSI
Architecture for H.264 Variable Block
Size Motion Estimation,” IEEE
Transaction on Consumer Electronics,
Volume 51, Issue 4, Nov. 2005
Page(s):1291 -1299.

[10] Alex Soohoo, “FPGA Co-Processing
Architectures for Video Compression,”
Altera Corporation.

[11] E. Waingold et al., “Baring it all to
Software: RAW Machines,” IEEE
Computer, September 1997, pp. 86-93.

[12] E. Mirsky, A. DeHon, “MATRIX: A
ReconfigurableComputing Architecture with
Configurable Instruction Distribution and
Deployable Resources,” Proc. IEEE
FCCM'96, Napa, CA, USA, April 17-19,
1996.

[13] A. Marshall et al., “A Reconfigurable
Arithmetic Array for Multimedia
Applications,” Proc. ACM/SIGDA
FPGA'99, Monterey, Feb. 21-23, 1999

[14] Carl Ebeling, Darren C. Cronquist, Paul
Franklin, Chris Fisher,“RaPiD - A
Configurable Computing Architecture for
Compute Intensive Applications,”
University of Washington Department of
Computer Science & Engineering Tech
Report TR-96-11-03.

[15] H.Singh,M.LeeG.Lu F. Kurdahi, N.
Bagherzadeh, "MorphoSys:A
Reconfigurable Architecture for Multimedia
Applications,"sbcci, pp.134, XI Brazilian
Symposium on Integrated Circuit Design,
1998

[16] Marco Lanuzza, Stefania Perri, Pasquale
Corsonello, Martin Margala ,” A New
Reconfigurable Coarse-Grain Architecture
For Multimedia Applications,”
Proceedings of the Second NASA/ESA
Conference on Adaptive Hardware and
Systems (AHS 2007), pp 119-126, 2007

[17] K.M. Yang, M. T. Sun, and L. Wu, “A
family of VLSIdesigns for the motion
compensation block-matching algorithm,”
IEEE Trans. Circuits Syst., vol. 36, no. 10,
pp.1317–1325, Oct. 1989.

[18] Y.K. Lai and L. G. Chen, “A data-
interlacing architecture with two
dimensional data-reuse for full-search
block matching algorithm ,” IEEE Trans.
Circuits Syst. Video Technovol. 8, no. 2,
pp. 124–127, Apr. 1998.

