

108

Journal of Theoretical & Applied Information Technology , Islamabad PAKISTAN

31st May 2010. Vol.15. No 2.
© 2005-2010 JATIT. All rights reserved

 www.jatit.org

8615-1992: ISSN-E/ 3195-1817: ISSN

REQUIREMENTS BASED STATIC CLASS DIAGRAM
CONSTRUCTOR (SCDC) CASE TOOL

1KHALID DAGHAMEEN, 2NABIL ARMAN

1Instructor, Department of Electrical and Computer Engineering, Palestine Polytechnic University,

Palestine
2Associate Professor, Department of Mathematics and Computer Science, Palestine Polytechnic University,

Palestine

E-mail: dkhalid@ppu.edu , narman@ppu.edu

ABSTRACT

Object-Oriented development methodology is currently the main trend in software industry. Many tools
were introduced to aid in the analysis and design phases of the object-oriented development methodology.
However, tools that can aid in the requirements phase of the object-oriented development methodology
and that can generate class diagrams as a major step in the design phase have attracted little attention and
efforts. This paper introduces a tool to automate the process of constructing a static class diagram from
software requirements. The CASE tool takes the static class diagram a step further and generates a skeleton
code for popular object-oriented languages.

Keywords: Software requirements, Object-oriented development, CASE tools.

1. INTRODUCTION

Object-oriented software development has been a
major trend in software industry. To reduce the
high costs of developing software companies
have been trying to automate as many phases as
they can in the object-oriented development
methodology. Obtaining static class diagrams
from software requirements is a major activity
in object-oriented development methodology. A
systematic approach for constructing static class
diagrams from software requirements is
presented in [1]. This paper presents a CASE
tool that is based on that approach of
constructing class diagrams. Many tools were
introduced to aid in the analysis and design
phases. It is well-known that there are three
generic phases for software development
regardless of the methodology being used. These
phases are definition, development and
deployment [2]. For these different stages, many
CASE tools were introduced that can aid in the
automation of some phases of the software
development of the software. These tools, which
automate part of the development process,
include UML Skeleton tool [2,3]. The tool
converts the design of the class diagram into a
skeleton of code based on the chosen language.
The programmer must do the rest of the work.

Other tools were introduced to help in cost
estimation and software tracking process. These
are managerial processes rather than software
development. An example of those tools is
COCOMO model [2,4]. One of the main tools in
Object-Oriented development is the Rational
Rose. It uses the UML for the design of the
software development. This tool can even have a
skeleton code for different languages after
obtaining the static class diagram, which is the
role of the developer. One main thing about
Rational Rose is that it works perfectly after
design [5].

The role of use cases in the construction of class
diagrams was presented in [6]. However, the
focus was on using the use cases rather than the
software requirements to construct class
diagrams as presented in our approach.
Therefore, one should consider developing a tool
to automate the process of generating use cases
from software requirements represented by
narrative description of a problem statement for
that tool to perform what our tool is capable of.

A tool to implement a system that automates the
building of class diagrams from free-text

109

Journal of Theoretical & Applied Information Technology , Islamabad PAKISTAN

31st May 2010. Vol.15. No 2.
© 2005-2010 JATIT. All rights reserved

 www.jatit.org

8615-1992: ISSN-E/ 3195-1817: ISSN

Table 1. Building Object-Oriented information

requirement documents was presented in [7].
This approach first applies natural language
processing techniques to understanding of the
written requirements, and then uses domain
knowledge represented by domain ontology to
improve the performance of class identification.
However, this approach has the overhead of
handling the domain ontology to identify classes
of the class diagram. These tools perform part of
the development phase. There is no tool that
performs the automation of the entire process.
Another important issue is that there is no tool
that automates the process between requirement
analysis and design phases. The CASE tool in
this paper introduces a semi-automated process
to perform that. Human intervention is required
at some point to answer few questions or confirm
certain assumptions.

2. SCDC CASE TOOL DESCRIPTION

The CASE tool presented in this paper uses the
systematic approach/algorithm presented in [1].
The algorithm consists of a number of iterative
steps to accomplish the construction of the static
class diagram form the software requirements of
a given narrative description of a problem
statement. The algorithm needs to build a matrix
to represent the relationships between candidate
classes and the candidate’s members of these
classes. The matrix must be filled with letters
such as I, P and H. These letters represent
inheritance, part of relationship and “has-a”
relationship. The matrix is then used to extract
the static class diagram from the matrix. A
sample matrix of certain requirements is given in
Table 1.

110

Journal of Theoretical & Applied Information Technology , Islamabad PAKISTAN

31st May 2010. Vol.15. No 2.
© 2005-2010 JATIT. All rights reserved

 www.jatit.org

8615-1992: ISSN-E/ 3195-1817: ISSN

The CASE tool works to develop the static class
diagram after analyzing the requirements input to
the tool as a paragraph. Another tool for natural
language processing is used to extract all the
nouns, noun-phrases and verbs from the problem
statement narrative description. This tool used
the English language. The lack of a natural
processing tool for Arabic language represents
an obstacle of allowing problem statement
description in Arabic to be used in SCDC CASE
tool. The approach that is presented in [1] has a
number of steps to automate the process of
obtaining the static class diagram from the
matrix filled with the letters I, H, and P using the
algorithm:

for each column of the matrix
 for each row of the matrix
 Begin
 Matrix[row, column]= “”
 Construct an “IS_A” questions for
 that column, row
 if the Answer of the question is Yes
 Matrix [row, column]=”I”
 else
 Construct a “HAS_A” question for
 that column, row
 if the answer of the question is Yes
 Matrix [row, column]=”H”
 else
 Construct a “part-of” question for
 that column , row
 if the answer of the question is Yes
 Matrix [row, column]=”P”
 End

Determining the inheritance in the matrix is
performed by finding a cell that contains an “I”
between a row and a column that are not equal
and that the column must be less than the row is
given by the algorithm:

for each row in the matrix

 for column from 0 to row
 if Type of the that row is class
 if Matrix [row, column] =”I”

 Relation between classes [row]
 and classes[column] is inheritance.

The tool output is an XML file that describes the
candidate classes, classes contents, structure and
relationships between classes. In addition, the
tool provides a skeleton code for two languages:

VB.NET as well as C# language. SCDC CASE
tool can be extended easily to support other
object-oriented programming languages like Java
and C++.

3. SCDC CASE TOOL DEMONSTRATION

SCDC is a CASE Tool that has a GUI interface,
that is very simple and easy to use. After
launching the application, the program shows up
like Figure 1. The user can enter the problem
statement by either specifying the text file of the
problem statement or by copying it from any
other text program and paste it into the specified
box. In order to get all the nouns and noun
phrases as well as verbs, the user must click on
the button start analyzing. The CASE tool fills
up a list of nouns and noun phrases as a well as
another list for the verbs and verb phrases.

The SCDC gives the opportunity to the
developer to change, delete or even add new
nouns or verbs. If the user feels there are more
nouns or verbs that must be there. he/she can add
them to the lists using the GUI components as
shown in Figure 2. The second way has a default
answer and it is faster than the message box.
Figure 2 shows the problem statement of the
example as well as the noun and noun phrases
that were extracted from the problem statement.
The next step is to perform a series of yes/no
questions. This step is too lengthy, but the tool
works to decrease the number of questions. The
questions can be performed in two ways:

(1) The first one uses the message boxes in
which each message box would fill one cell in
the matrix. Figure 3 shows a sample of the
message box questions.

(2) The second one is to use a grid of questions;
the tool shows all the questions in one form, so
the developer could pick the answer of any
question. Figure 4 shows a sample of the grid
that has the questions. The second way has a
default answer and it is faster than the message
box. Figures 3 and 4 shows part of the questions
that the CASE tool construct and that can
generally be answered by the software engineer.
The questions refer to the same previous
problem.

The developer does not need to worry about
losing the data. In fact he/she can save all what
he/she does until the point then continue at some
other time. The tool saves all the information in a

111

Journal of Theoretical & Applied Information Technology , Islamabad PAKISTAN

31st May 2010. Vol.15. No 2.
© 2005-2010 JATIT. All rights reserved

 www.jatit.org

8615-1992: ISSN-E/ 3195-1817: ISSN

project file in an XML format. After completing
the questions, the tool would generate the static
class structure, the output would be an XML
format. Figure 5 shows a sample of the output
file of the previous example.

As mentioned before, at some stages human
intervention is required to refine those nouns and
noun phrases as well as verbs and verb phrases.

The tool creates a matrix according to the
number of nouns and verbs. The matrix initially
would be empty. Note that the nouns and verbs
are sorted and the nouns are kept at the
beginning of the list. It is clear that filling the
matrix with appropriate letters require extensive

human intervention, although the tool has some
optimization to ease this step and make the
human intervention less, but still there is a work
that must be done by the software engineer. The
tool performs this by a series of yes/no questions
to fill up the cells of the matrix, or a chart that
contains radio buttons to select the correct
answer.

The tool searches each row to identify its type.
For example any row that has more than one cell
that contains an "I" means that this element is a
class. The same thing applies if one cell in a row
that has one cell that contains an "H". The verbs
which are at the rear of the list are always
methods.

Figure 1. SCDC Main Window

112

Journal of Theoretical & Applied Information Technology , Islamabad PAKISTAN

31st May 2010. Vol.15. No 2.
© 2005-2010 JATIT. All rights reserved

 www.jatit.org

8615-1992: ISSN-E/ 3195-1817: ISSN

Figure 2. SCDC after analyzing the problem statement

Figure 3. Sample of the Message box questions

Figure 4. Grid view of the Questions

113

Journal of Theoretical & Applied Information Technology , Islamabad PAKISTAN

31st May 2010. Vol.15. No 2.
© 2005-2010 JATIT. All rights reserved

 www.jatit.org

8615-1992: ISSN-E/ 3195-1817: ISSN

Figure 5. Sample of the output file and Practice

Generating the class hierarchy is also performed
by the CASE tool. It looks for any row that has
more than one cell that contains an "I" and finds
that the corresponding column , which means the
relation between the left-cell and the top-cell is
an inheritance. If the row has more than twice of
the cells that contain an "I". This means multiple
inheritance between the left-cell and the top-
cells.

4. CONCLUSIONS

In this paper, the systematic approach for
constructing static class diagrams from software
requirements is used to develop SCDC CASE
tool. SCDC CASE tool can aid in the automation

of the construction of static class diagrams from
software requirements expressed as a problem
statement narrative description with little human
intervention to confirm certain assumptions
about the requirements. SCDC CASE tool uses a
simple and user friendly GUI interface. The tool
is very useful for software engineers who are
responsible for generating the static class
diagrams from software requirements and who
are interested in generating the skeleton code for
popular object-oriented programming languages.
In addition, SCDC CASE tool doesn't involve a
great deal of preprocessing steps like other tools
that involve much overhead in determining the
appropriate classes from the software
requirements and in constructing the class

<?xml version="1.0" ?>
‐ <Package>
 <ProjectName>VESSELS_SHAPES</ProjectName>
‐ <Class>
 <ClaasName>VESSELS</ClaasName>
‐ <Attributes>
 <Item>AMOUNT</Item>
 </Attributes>
‐ <Operations>
 <Item>CAPACITY</Item>
 </Operations>
 <Super>Object</Super>
‐ <Sub>
 <Item>CYLINDRICAL_TANK</Item>
 <Item>RECTANGULAR_TANKS</Item>
 </Sub>
 </Class>
‐ <Class>
 <ClaasName>CYLINDRICAL_TANK</ClaasName>
‐ <Attributes>
 <Item>HEIGHT</Item>
 <Item>RADIUS</Item>
 </Attributes>
 <Operations />
 <Super>VESSELS</Super>
 <Sub />
 </Class>
‐ <Class>
 <ClaasName>RECTANGULAR_TANKS</ClaasName>
‐ <Attributes>
 <Item>HEIGHT</Item>
 <Item>LENGTH</Item>
 <Item>WIDTH</Item>
 </Attributes>
 <Operations />
 <Super>VESSELS</Super>
‐ <Sub>
 <Item>CUBIC_TANK</Item>
 </Sub>
 </Class>
‐ <Class>
 <ClaasName>CUBIC_TANK</ClaasName>
 <Attributes />
 <Operations />
 <Super>RECTANGULAR_TANKS</Super>
 <Sub />
 </Class>
 </Package>

114

Journal of Theoretical & Applied Information Technology , Islamabad PAKISTAN

31st May 2010. Vol.15. No 2.
© 2005-2010 JATIT. All rights reserved

 www.jatit.org

8615-1992: ISSN-E/ 3195-1817: ISSN

diagrams. Finally, these tools don't generate
skeleton code for popular object-oriented
programming languages to facilitate the tasks of
software engineers.

ACKNOWLEDGEMENTS

The authors would like to give deep appreciation
to the students Ibrahim Saraheen, Sari Jabareen
and Sari Adam for implementing the tool.

REFRENCES:

[1] Arman, N. and Daghameen, K., “A Systematic

Approach for Constructing Static Class
Diagrams from Software Requirements,”
Proceedings of the 8th International Arab
Conference on Information Technology
(ACIT’2007), November 26-28, 2007,
Academy for Science & Technology and
Maritime Transports, Syria.

[2] Pressman, R., Software Engineering,
McGraw-hill, 6th edition, 2005. ISBN :007-
123840-9.

[3] Rosenberg, D. and Stephens, M. , "Use Case
Driven Object Modeling with UML",
Apress, 2007, ISBN-10 (pbk): 1-59059-774-
5.

[4] Galorath, D. and Evans, M., "Software Sizing,
Estimation, and Risk management",
Auroback publication, 2006, ISBN-10(pbk):
10: 0-8493-3593-0.

[5] Boggs, M, and Boggs, W. Mastering UML
with Rational Rose, 2002, sybex, ISBN-10:
0782140173.

[6] Anda, B. and Sjoberg, D., “Investigating the
Role of Use Cases in the Construction of
Class Diagrams,” ESE, Vol. 10, No. 3, 2005.

[7] Zhou, X., Zhou, N., “Auto-generation of Class
Diagram from Free-text Functional
Specifications and Domain Ontology,” 2008,
downloaded 1/2/2010 from
http://www.daviszhou.net/Research/INFO62
6Prj.pdf.

AUTHOR PROFILES:

Khalid Daghameen received his BS in Computer
Systems Engineering in 1996 from Palestine
Polytechnic University/Palestine. He worked for
two years as a teaching assistant at Palestine
Polytechnic University. In 2001, he completed his
master’s degree in Computer Engineering from
University of Detroit Mercy/USA. Then he
worked for two years in Caterpillar Inc as a
computer engineer. Currently, he is working at
Palestine Polytechnic University/College of
Engineering and Technology as an instructor. His
main interests are algorithms, image processing
and software Engineering.

Nabil Arman received his BS in Computer
Science with high honors from Yarmouk
University, Jordan in 1990, an MS in Computer
Science from The American University of
Washington, DC USA in 1997, and a Ph.D. from
the School of Information Technology and
Engineering, George Mason University,
Virginia, USA in 2000. He is an Associate
Professor of Computer Science at Palestine
Polytechnic University, Hebron, Palestine. Dr.
Arman is interested in Database and Knowledge-
Base Systems, Algorithms and Software
Engineering.

