

96

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

AN ALGORITHM TO DETERMINE ENERGY-AWARE
MAXIMAL LEAF NODES DATA GATHERING TREE FOR

WIRELESS SENSOR NETWORKS

NATARAJAN MEGHANATHAN
Assistant Professor, Department of Computer Science, Jackson State University, Jackson, MS 39217, USA

ABSTRACT

We propose an Energy-aware Maximal Leaf Nodes Data Gathering (EMLN-DG) algorithm for periodic
data collection and transmission in wireless sensor networks. For each round of data gathering, an EMLN-
DG tree spanning the entire sensor network is formed based on the residual energy level available at the
nodes and the number of uncovered neighbors of a node during tree formation. Only nodes that have a
relatively larger number of neighbors as well as a higher energy level are included as intermediate nodes in
the EMLN-DG tree. By maximizing the number of leaf nodes in a DG tree and considering the energy level
available at the nodes while forming the tree, we reduce energy consumption per round as well as balance
the energy level across all the nodes in the network. This contributes to a significantly larger network
lifetime, measured as the number of rounds before the first node failure due to exhaustion of battery charge.
Performance comparison studies with the well-known data gathering algorithms such as LEACH and
PEGASIS illustrate that EMLN-DG can help to sustain the network for a significantly larger number of
rounds and at the same time incur a lower, or if not comparable, energy loss, delay and energy loss*delay
per round of data gathering.

Keywords: Algorithm, Data Aggregation, Data Gathering Trees, Energy-awareness, Maximal Leaf Nodes,
Network Lifetime, Sensor Networks

1. INTRODUCTION

A wireless sensor network is often viewed as a
distributed system of smart sensor nodes that gather
data about the ambient environment and propagate
them to one or more control centers called sinks or
base stations. The end-user typically accesses the
data at the sinks. Some of the characteristics of a
typical sensor node are limited computing
capability, memory capacity and battery charge.
Each sensor node operates with a limited
transmission range, which is the distance until
which the signals emanating from the node
propagate and are received with appreciable signal
strength. Wireless sensor networks operate with a
limited bandwidth that is also shared among the
nodes within a common transmission range. The
sink is normally static and located far away from
the sensor nodes. Hence, direct communication
between the sensor nodes and the sink is expensive
in terms of energy consumption and bandwidth
usage. This forms the motivation to deploy data
gathering algorithms at the sensor nodes to combine
data into a small set of meaningful information,

which is a representative of the network condition
and can be transmitted to the sink, leading to
significant energy and bandwidth savings.
Throughout this paper, the terms ‘data gathering’,
‘data fusion’ and ‘data aggregation’ are used
interchangeably. They mean the same.

In this paper, we consider a wireless sensor
network wherein the sensor nodes periodically (in
rounds) report the collected data to the sink. For
each round of communication, each sensor node
generates a data packet and wants the information
to be transferred to the sink. If each sensor node
directly transmits its data to the sink that is
typically located far away from the network field, it
would lead to significantly high energy
consumption per round. To minimize energy
consumption, it would be more efficient if the data
packets from sensor nodes are gathered and
aggregated with the packets of peer sensor nodes
and only one aggregated data packet (of the same
size as that of the individual data packets) is sent
per round from the sensor network to the sink. With
data aggregation, we can filter the uncorrelated
noise in several signals and transmit to the sink a

97

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

more accurate signal that is representative of the
network condition.

Various data gathering algorithms have been
proposed in the literature. Well-known among these
are the LEACH (Low-Energy Adaptive Clustering
Hierarchy) [1] and PEGASIS (Power-Efficient
Gathering in Sensor Information Systems) [2]
algorithms. Both of these algorithms operate
through discrete rounds of data collection. LEACH
operates in two phases: a set-up phase and a steady-
state phase. In the set-up phase, the sensor nodes
are grouped into clusters with the assignment of a
cluster head for each cluster; in the steady-state
phase, the sensor nodes transmit the collected data
to their individual cluster heads and after gathering
data from all of the sensor nodes in its cluster, a
cluster head transmits the aggregated data to the
sink. In PEGASIS, a chain of sensor nodes is
formed using a greedy approach, starting from the
node farthest to the sink. The nearest node to this
node is added as the next node in the chain. This
procedure is repeated until all the nodes are
included in the chain. A node can be in the chain at
only one position. During each round, a leader node
is randomly selected and it is responsible for
forwarding the aggregated data to the sink. After
the sink selects the leader node and notifies it to the
network, each node on both sides of the chain (with
respect to the leader node), receives and transmits
the aggregated data to the next node in the chain,
until the data reaches the leader node. The original
PEGASIS algorithm based on Time Division
Multiple Access (referred to as PEGASIS-TDMA)
resulted in huge delay as data moves across the
complete chain of sensor nodes before being
transmitted to the sink. PEGASIS has been later
improved for CDMA (Code Division Multiple
Access) systems [3] using a chain-based binary
scheme to minimize the delay incurred and to
reduce the energy*delay metric [4]. In PEGASIS-
CDMA, a round comprises of logN levels where N
is the number of nodes in the network. For every
round of data gathering, each node transmits data to
a close neighbor in a given level of the hierarchy.
Nodes that receive data at a given level are the only
nodes that rise to the next level. At the top level,
there will be only one node that will remain as the
leader and it will transmit the aggregated data
packet to the sink.

The distance-based chain formation heuristic of
PEGASIS is prone to an increase in the physical
distance between successive nodes as the chain
progresses away from the starting node. This can
lead to higher energy consumption per round.

PEGASIS-CDMA consumes more energy per
round compared to PEGASIS-TDMA, because the
former requires nodes to communicate over long-
distances because of the binary tree hierarchy.
Nevertheless, the energy consumed per round for
LEACH is significantly more than that consumed
for PEGASIS-TDMA and PEGASIS-CDMA. If
multiple cluster-heads are selected, even though the
delay per round would be low because of reduced
size of a cluster, several cluster-heads would be
transferring data over long-distances to the sink. On
the other hand, if few cluster-heads are selected, the
sensor nodes may have to transmit over long-
distances to reach the nearest cluster-head. Due to
competition in each cluster, the delay might also
increase. The above qualitative analysis of the
energy consumption per round for the LEACH and
PEGASIS algorithms suggests that the number of
rounds sustained by the sensor network running
these algorithms before the failure of the first
sensor node (due to the exhaustion of battery
charge) need not be maximum. There is a
possibility of increasing the number of rounds
before the first node failure by reducing the energy
consumed per round and choosing only the nodes
with a relatively higher energy level for data
gathering from multiple sensor nodes and
transmitting the aggregated data to an another
sensor node or the sink. This observation formed
the motivation of our work in this paper.

In this paper, we advocate the use of a maximal
leaf nodes tree for energy-efficient data gathering in
wireless sensor networks. A leaf node in a data
gathering tree needs to turn on itself for only to
periodically sense and transmit data to its parent
and the node can remain asleep for the rest of the
time. On the other hand, an intermediate node
would need to be turned on and stay in active and
listening modes much longer than a leaf node
because the intermediate node would need to
receive data from all of its child nodes, aggregate
with its own sensed data and transmit to its parent.
This observation made in [5] motivates the need to
consider a maximal leaf nodes spanning tree for
data gathering in wireless sensor networks. In
addition, the problem of determining a maximal
leaf spanning tree has been proven to be
polynomially equivalent to the problem of
approximating a Minimum Connected Dominating
Set (MCDS) [6]. The above two observations form
the basis for our paper. A common approach (e.g.,
[7]) for approximating an MCDS is to consider
inclusion of nodes that have a larger number of
uncovered neighbors. We provide energy-
awareness to this strategy by computing the weight

98

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

of a node as the product of the number of
uncovered neighbors and the available residual
energy at the node. Such an energy-aware maximal
leaf data gathering tree has not been proposed in the
literature for wireless sensor networks.

Only a couple of works are available on the
application of maximal leaf tree for efficient data
gathering in wireless sensor networks. In [5][8], the
authors compared maximal leaf tree (MLT) based
data gathering and shortest path tree (SPT) based
data gathering and observed that the MLT-based
approach incurs an energy consumption and delay
that is one-half of that incurred with the SPT-based
approach in tree constructions, data transmissions
and dynamic tree reconstructions. In [9], the
authors advocate the use of a maximal leaf
spanning tree for minimizing the number of
forwarding nodes as part of an energy-efficient
broadcast mechanism in wireless sensor networks.
However, both of the above works attempt to only
maximize the number of leaf nodes without paying
attention to the energy-level of the intermediate
nodes selected for data aggregation.

The rest of the paper is organized as follows: In
Section 2, we describe the proposed algorithm to
construct an Energy-aware Maximal Leaf Nodes
Data Gathering (EMLN-DG) tree. Section 3
describes the algorithm to compute the delay per
round for the EMLN-DG tree. Section 4 illustrates
an example to construct the EMLN-DG tree and
compute its delay. Section 5 describes the
simulation environment and the performance results
obtained comparing EMLN-DG with that of
LEACH and PEGASIS (both TDMA and CDMA
versions). Section 6 concludes the paper.

2. ALGORITHM TO CONSTRUCT THE

ENERGY-AWARE MAXIMAL LEAF
NODES DATA GATHERING (EMLN-DG)
TREE

The algorithms to construct the EMLN-DG tree

(pseudo code in Figure 1) and compute its delay
(pseudo code in Figure 2) use the following
variables associated with each node. The input to
the algorithm is a snapshot of the underlying sensor
network graph G = (V, E) at a particular time
instant during which we want to find the data
gathering tree. Note that V represents the set of
vertices (nodes in the network) and E represents the
set of edges (links between the nodes in the
network). There exists an edge between any two
vertices in the graph if and only if the distance

between the corresponding nodes in the network is
less than or equal to the transmission range. The
following variables are associated with each node:

 Neighbors(s) – Neighbor list of node s in graph G
 Uncovered-Neighbors(u) ⊆ Neighbors(u)
 – the list of neighbors of node u that are not yet
 covered by the EMLN-DG tree
 Energy(u) – the residual energy (in Joules)
 available at node u
 Weight(u) – | Uncovered-Neighbors(u) | *
 Energy(u)
 Level(u) – the level of node u in the EMLN-DG
 tree; the root node is at level 0.
 Child-Nodes(u) – the list of immediate child
 nodes of node u
 Predecessor-Node(u) – the predecessor node for
 node u in the EMLN-DG tree

The algorithm is executed for each round of data
aggregation. The weight of a sensor node is the
product of the number of uncovered neighbors of
the node and the residual energy level available at
the node. The sensor node that has the largest
weight value is selected as the rootNode for the
round. The algorithm uses the following four
principal data structures to facilitate the
computation of the DG tree:
(i) Intermediate-Nodes-List – the list of all the

intermediate nodes, including the root node of
the DG tree

(ii) Leaf-Nodes-List – the list of all the leaf nodes
of the DG tree

(iii) Covered-Nodes-list – the list of all nodes that
are spanned (i.e., covered) by the DG tree

(iv) Priority-Queue – a queue whose entries are
tuples of the form (Weight(u), u) and the entries
are stored in the decreasing order of the node
weights. A dequeue operation results in
extracting the node with the minimum weight
from the queue. The weight of a node is the
product of the number of uncovered neighbors
of a node and the residual energy available at
the node. If two or more nodes have the same
minimum weight, a node is randomly chosen
and extracted from the queue.

The Level of the rootNode in the DG tree is set
to 0. The maximum value for the Level of a node in
the DG tree corresponds to the Height of the tree.
To compute the delay associated with data
gathering per round, we keep track of the list of
nodes at each level of the tree through a data
structure referred to as Nodes-All-Levels. As the
DG tree is constructed by finding the intermediate

99

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

nodes of the tree, the Level values of the nodes are
determined and used to update the Nodes-All-Levels
data structure.

Initially, the Intermediate-Nodes-List, Leaf-
Nodes-List and Covered-Nodes-List are initialized
to null set (i.e., empty). The Priority-Queue is
populated with entries in the form of the tuple
(Weight(u), u), with the entries sorted in the
decreasing order of the values of the node weights.
The rootNode is the first node to be dequeued from
the Priority-Queue and added to the Covered-
Nodes-List and the Intermediate-Nodes-List. Once a
node is added to the Intermediate-Nodes-List, all its
neighboring nodes are considered covered, and
added to the Covered-Nodes-List if not previously
covered. If a node is added to the Covered-Nodes-
List as a result of being newly covered by its
predecessor node, then the node is also added to the
Leaf-Nodes-List. Later, if a covered node is selected
as an intermediate node, it is removed from Leaf-
Nodes-List and added to Intermediate-Nodes-List.

Input: Snapshot of the Network Graph G = (V, E),
V is the set of vertices and E is the set of edges

Auxiliary Variables and Functions:
Intermediate-Nodes-List, Leaf-Nodes-List,
Covered-Nodes-List, Priority-Queue
rootNode – the first node to be added to the
 Intermediate-Nodes-List
intermediateNode – the next node added to the
 Intermediate-Nodes-List
Nodes-At-Level(i) – the list of nodes at a particular
 level i in the DG tree
Nodes-All-Levels – the list of tuples (i, Nodes-At-
 Level(i))

Output: Intermediate-Nodes-List, Leaf-Nodes-List,
Nodes-All-Levels, Height-DG-Tree, rootNode
// returns the above if the underlying Network
Graph G is connected
NULL // returns NULL if the underlying Network
Graph G is not connected
Initialization:
Intermediate-Nodes-List = Φ; Leaf-Nodes-List = Φ;
Covered-Nodes-List = Φ;
∀u, Uncovered-Neighbors(u) = Neighbors(u);
Nodes-All-Levels = Φ; Height-DG-Tree = 0
 for every vertex u∈V do // O(|V|*log|V|) time
 Insert the tuple (Weight(u), u) to the Priority-
 Queue at the appropriate location in the queue
 Level(u) = -1
 Child-Nodes(u) = Φ

 Predecessor-Node(u) = NULL
 end for

Begin EMLN-DG Construction

rootNode = Dequeue(Priority-Queue)
Level(rootNode) = 0
Covered-Nodes-List = Covered-Nodes-List U
 {rootNode}
Intermediate-Nodes-List = Intermediate-Nodes-List
 U {rootNode}
Nodes-At-Level(0) = Nodes-At-Level(0) U
 {rootNode}
Nodes-All-Levels = Nodes-All-Levels(0, Nodes-At-
 Level(0))

for every vertex v∈Neighbors(rootNode) do
 Covered-Nodes-List = Covered-Nodes-List U {v}
 Leaf-Nodes-List = Leaf-Nodes-List U {v}
 Level(v) = 1
 Child-Nodes(rootNode) =
 Child-Nodes (rootNode) U {v}
 Predecessor-Node(v) = rootNode

 if (Height-DG-Tree < Level(v)) then
 Height-DG-Tree = Level(v)
 end if
end for

while (|Covered-Nodes-List| < |V|) do
 for every vertex u∈ V do // takes O(|V|+|E|) time
 for every vertex v∈Neighbors(u) do
 if v∈Covered-Nodes-List then
 Uncovered-Neighbors(u) = Uncovered-
 Neighbors(u) – {v}
 end if
 end for
 end for

 Priority-Queue = Φ

 for u∈V and u∉ Intermediate-Nodes-List do
 Weight(u) = |Uncovered-Neighbors(u)| *
 Energy(u)
 Insert the tuple (Weight(u), u) to Priority-
 Queue at the appropriate location in the queue
 end for

 if (Priority-Queue = Φ) then
 return NULL; // G is not connected
 end if

 intermediateNode = Dequeue(Priority-Queue)
 Intermediate-Nodes-List = Intermediate-Nodes-

100

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

 List U {intermediateNode}
 Leaf-Nodes-List = Leaf-Nodes-List –
 {intermediateNode}

 for vertex v∈ Neighbors(intermediateNode) do
 if (v∉ Covered-Nodes-List) then
 Predecessor-Node(v) = intermediateNode
 Level(v) = Level(intermediateNode) + 1
 Covered-Nodes-List = Covered-Nodes-List
 U {v}
 Leaf-Nodes-List = Leaf-Nodes-List U {v}
 Child-Nodes(intermediateNode) = Child-
 Nodes(intermediateNode) U {v}
 if (Height-DG-Tree < Level(v)) then
 Height-DG-Tree = Level(v)
 end if
 end if
 end for

 Nodes-At-Level(Level(intermediateNode)) =
 Nodes-At-Level(Level(intermediateNode)) U
 {intermediateNode}

end while

return Intermediate-Nodes-List, Leaf-Nodes-List,
Nodes-All-Levels, Height-DG-Tree, rootNode

End EMLN-DG Construction

Figure 1: Algorithm to Construct EMLN-DG Tree

After we populate the Covered-Nodes-List by
exploring the neighbors of the rootNode, we use
this list as the base and proceed to cover the rest of
the nodes in the network by executing a loop – an
iteration of the loop has the following sequence of
steps:

Step 1 – Re-compute the set of Uncovered-
Neighbors for each node: For each vertex u in
the graph, if a neighbor v has been newly added
to the Covered-Nodes-List (i.e., the neighbor v
was uncovered before the previous iteration),
then vertex v is removed from u’s set of
Uncovered-Neighbors.
Step 2 – Re-compute the Priority-Queue: The
Priority-Queue is reset to null set (i.e., empty).
The Weight of the covered nodes u (i.e., nodes in
the Covered-Nodes-List) that are not in the
Intermediate-Nodes-List is computed and the
tuple (Weight(u), u) is stored at the appropriate
location in the queue. Note that in order for a
node to be considered for inclusion in the
Priority-Queue and considered a candidate for

being selected as an intermediate node, the node
has to be already covered (i.e., be part of the
Covered-Nodes-List) by another intermediate
node. This is essential to maintain the
connectivity of the network. If the Priority-
Queue continues to be empty (i.e., none of the
covered nodes have uncovered neighbors), then
we stop the execution of the algorithm and
return NULL – i.e., the underlying sensor
network is not connected.
Step 3 – Add a node to the Intermediate-Nodes-
List: We dequeue the Priority-Queue and add
the extracted node to the Intermediate-Nodes-
List and remove it from the Leaf-Nodes-List.
Every uncovered neighbor of the newly
determined intermediate node is added to the
Covered-Nodes-List and the Leaf-Nodes-List,
added as a child node for the intermediate node.
The Level of a newly covered node is one more
than the Level of its immediate predecessor node
through which the former was covered.

If the algorithm runs until all the nodes in the
network are covered, it returns the following five
data structures/variables that are used to compute
the delay per round associated with the DG tree:
Intermediate-Nodes-List, Leaf-Nodes-List, Nodes-
All-Levels, Height-DG-Tree and rootNode. The
time complexity of the algorithm is O(|V|*(|V|+|E|)),
as it takes O(|V|+|E|) time per iteration. At the
beginning of each iteration (i.e. in Step 1), we have
to re-compute the number of uncovered neighbors
for every node in the network. There are |V| nodes
in the network and we have to process each of the
|E| edges twice, once for each vertex on which the
edge is incident.

3. ALGORITHM TO COMPUTE THE

DELAY PER ROUND FOR EMLN-DG
TREE

The delay at a node indicates the number of time

slots it takes for the root node to receive the
aggregated data from all of its immediate child
nodes. The delay associated with each of the leaf
nodes is 0. We assign one time slot per child node
to transfer data to its immediate predecessor
intermediate node. We start processing the
intermediate nodes from the bottom of the DG tree.
Note that the intermediate nodes at a particular
level in the DG tree are independent of each other
and their delay can be computed in parallel. Also, a
node is the child node for only one intermediate
node in the DG tree.

101

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

For each intermediate node u at a particular
level, we prepare a sorted list of the delay
associated with each of its immediate child nodes.
The delay associated with the intermediate node is
computed through a temporary running variable,
Temp-Delay (initialized to zero), as we explore the
delay associated with each of the child nodes in the
sorted list. For every child node v in the sorted list
of the delay, Temp-Delay is set to the maximum of
Temp-Delay + 1 and Delay(v) + 1, as we assume it
takes one time slot for a child node to transfer its
aggregated data to the immediate predecessor
intermediate node. The delay associated with the
intermediate node u, Delay(u), is the final value of
Temp-Delay after we run through the sorted list of
the delays associated with the Child-Nodes(u). The
above procedure is repeated for all intermediates
nodes, from levels one less than the Height of the
tree all the way to zero (i.e. the root node). The
delay per round for the DG tree is the delay
associated with the rootNode. The delay per round
on a |V|-node DG tree can be computed in
O(|V|*log|V|) time as there are only |V|-1 edges in
the tree and O(log|V|) is the time it takes to update
additions to the sorted list implemented as a heap.

Input: Intermediate-Nodes-List, Leaf-Nodes-List,
 Nodes-All-Levels, rootNode
Output: Delay-per-Round
Auxiliary Variables:
 Delay(u) // Number of time slots it takes for
 the aggregated data to reach node u
 Node-Level // level of a particular node in the
 DG tree
 Nodes-At-Level // the list of nodes at a
 particular level
 Sorted-Delay-Child-Nodes // sorted list (in the
 increasing order) of the delay of the child nodes
 Temp-Delay // temporary variable to process
 the delay at a node
Initialization: Delay-per-Round = 0

Begin Computation-Delay-EMLN-DG-Tree

 for (every vertex v∈ Leaf-Nodes-List) do
 Delay(v) = 0
 end for
 for (Node-Level = Height-DG-Tree-1 to 0) do
 Nodes-At-Level = Nodes-All-Levels(Node-Level)
 for (every vertex u∈Nodes-At-Level) do
 Temp-Delay = 0
 Sorted-Delay-Child-Nodes = Φ
 for (every vertex v∈Child-Nodes(u)) do
 Insert the tuple {v, Delay(v)} at an

 appropriate entry in Sorted-Delay-Child-Nodes
 end for
 for (every tuple {v, Delay(v)} in the Sorted-
 Delay-Child-Nodes list) do
 Temp-Delay = Maximum (Temp-Delay + 1,
 Delay(v) + 1)
 end for
 Delay(u) = Temp-Delay
 end for
 end for

 return Delay(rootNode)

End Computation-Delay-EMLN-DG-Tree

Figure 2: Algorithm to Compute the Delay per

Round for the EMLN-DG Tree

4. EXAMPLE TO ILLUSTRATE THE

CONSTRUCTION OF THE EMLN-DG
TREE AND THE COMPUTATION OF ITS
DELAY

Figure 3 illustrates an example to demonstrate

the working of the EMLN-DG algorithm. In
Figures 3.1 – 3.9, each circle represents a node. The
integer outside the circle represents the node ID and
the integer inside the circle represents the number
of uncovered neighbors of the corresponding node.
The real-number inside the circle represents the
residual energy (in Joules) currently available at the
node and the real-number outside the circle
represents the weight (product of the residual
energy and the number of uncovered neighbors) for
the particular node. The intermediate nodes that are
part of the EMLN-DG tree have their circles bold.
We shade the circles of leaf nodes that are covered
by the intermediate nodes of the EMLN-DG tree.
The circles of nodes that are not yet part of the
EMLN-DG tree (i.e., nodes that are neither
intermediate nodes nor leaf nodes) are neither
shaded nor made bold.

On the 15-node example illustrated in Figure 3,
we observe that it takes 6 iterations to compute the
final EMLN-DG tree. The EMLN-DG tree has only
6 intermediate nodes, including the root node. The
remaining 9 nodes (i.e. 60% of the nodes) are leaf
nodes. The height of the tree is 5 (nodes 4 and 5 are
at level 5) and the delay at the root node (i.e.
number of time slots it takes for the root node 7 to
receive the aggregated data from all its immediate
downstream child nodes) is 6 time slots.

102

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

5. SIMULATIONS

We evaluated the performance of the EMLN-DG
algorithm vis-à-vis LEACH, PEGASIS-TDMA and
PEGASIS-CDMA in a discrete-event simulator
developed by us in Java. This simulator has been

successfully used to develop and study data
gathering algorithms in some of our recent studies
[10][11][12]. The network dimension is 100m x
100m. The number of nodes in the network is 100
and these are uniformly and randomly distributed

 Figure 3.1: Initial Network Figure 3.2: Iteration # 1 Figure 3.3: Iteration # 2

 Figure 3.4: Iteration # 3 Figure 3.5: Iteration # 4 Figure 3.6: Iteration # 5

 Figure 3.7: Iteration # 6 Figure 3.8: Final EMLN-DG Tree Figure 3.9: Delay Computation

Figure 3: Example Illustrating the Construction of the EMLN-DG Tree and the Computation of its Delay

throughout the network. The sink node is located at
(50, 300), away from the sensor field. With EMLN-
DG, the transmission range per sensor node used to
form the network graph in the algorithm is varied
from 15m to 50m. There exists an edge between
any two vertices in the graph if the distance
between the corresponding nodes in the network is
less than or equal to the transmission range. Sensor

nodes running the LEACH, PEGASIS-TDMA and
PEGASIS-CDMA algorithms are assumed to be
able to conduct transmission power control (i.e.
vary their transmission range) depending on the
distance to the receiver node.

We assume all the sensor nodes are CDMA
(Code Division Multiple Access) enabled so that

103

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

we can achieve parallel communication between
any pair of sensor nodes as and when desired. Such
an assumption has also been made in other well-
known data aggregation algorithms such as
LEACH and PEGASIS. For data aggregation in the
EMLN-DG tree, we assume that every intermediate
upstream node uses a particular CDMA code to
communicate with all its immediate downstream
child nodes. The upstream node broadcasts a time
schedule for data transmission to all its immediate
downstream nodes. A downstream node sends its
data to the upstream node according to the slots
provided in the time schedule. Note that such
TDMA (Time Division Multiple Access) – based
communication between every upstream node and
its downstream nodes can occur in parallel using
the unique CDMA codes chosen by each of the
upstream nodes.

We use a first order radio model [13], which has
also been used to model energy consumption in
previous work [1][2][4]. According to this model,
energy expended by a radio to run the transmitter or
receiver circuitry is Eelec = 50 nJ/bit and ∈amp =

100 pJ/bit/m2 for the transmitter amplifier. The
radios are turned off when a node wants to avoid
receiving unintended transmissions. An r2 energy
loss model is used to compute the transmission
costs. The energy lost in transmitting a k-bit
message over a distance d is given by: ETX (k, d) =

Eelec* k +∈amp *k* d2. The energy lost in

receiving a k-bit message is ERX (k) = Eelec* k.

The energy lost per round is the sum of the
energy lost at all the nodes for the transmission,
reception and fusion of the data. The leaf nodes in
the EMLN-DG tree do not lose energy to receive or
fuse the data, but lose energy to transmit data to
their upstream node. Every intermediate node,
including the Root node, loses energy to receive
and aggregate data from each of its immediate
downstream nodes and to forward the aggregated
data to its upstream node in the tree. Note that the
sink is the upstream node for the Root node.

The performance metrics considered are: (i)
Energy lost per round, (ii) Delay (in terms of the
number of time units) per round of data aggregation
and transmission to the sink, (iii) Network lifetime,
measured as the number of rounds the network
sustains before the first sensor node dies due to
exhaustion of battery charge and (iv) energy*delay
value per round. For the EMLN-DG tree, we also
evaluate the impact of the transmission range on the

(i) Probability of connectivity of the tree, (ii)
Energy lost per round, (iii) Delay per round, (iv)
Energy*Delay per round, (v) Number of leaf nodes
per tree and (vi) Network lifetime, measured as the
round of first node failure. The results reported in
Figure 4 for EMLN-DG are obtained for 1000 trials
of the algorithm for each value of the transmission
range per node. The results reported in Figure 5 for
EMLN-DG correspond to a transmission range of
25m as the algorithm appears to give the best
performance with respect to several metrics at this
transmission range value. The results reported in
Figure 5 for LEACH, PEGASIS-TDMA and
PEGASIS-CDMA versions (average of 1000 trials)
do not assume a particular transmission range per
node as these three algorithms assume that the
nodes can do transmission power control as and
when needed. For each trial, the initial energy
supplied to every sensor node is 1J.

5.1. Impact of the Sensor Transmission Range
on the Performance of EMLN-DG

Figure 4.1 illustrates that the probability of
network connectivity reaches 0.994 (99.4%) when
the sensor transmission range is 25m. Lower values
of transmission range result in poor network
connectivity and as the transmission range
increases, the connectivity increases. After the
transmission range value reaches 25m, the
probability of network connectivity does not
change much, increases only from 0.994 to 0.9998
as we increase the transmission range from 25m to
35m. The height of the DG tree decreases with
increase in the sensor transmission range and this
can be attributed to the corresponding increase in
the number of leaf nodes (and a decrease in the
number of intermediate nodes). As the transmission
range increases, the number of nodes that can be
covered by the inclusion of a node as an
intermediate node in the DG tree increases. Hence,
less number of intermediate nodes needed to be
added in the DG tree. On a 100-node network, we
observe that only less than 35% of the nodes serve
as intermediate nodes of the EMLN-DG tree at a
very low transmission range per node value of 15m
and as the transmission range per node increases,
the percentage of nodes serving as intermediate
nodes significantly decreases. At a transmission
range of 50m (i.e., half of the one-side dimension
of the network), less than 4% of the nodes serve as
intermediate nodes of the tree.

For low and moderate values of transmission
range, more intermediate nodes are added to the
DG tree and this leads to less number of

104

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

downstream child nodes per upstream node in the
DG tree. On the other hand, for higher transmission
range values, less number of intermediate nodes are
included in the DG tree and each upstream
intermediate node in the DG tree has several
downstream child nodes. There can be
simultaneous transmissions across the different
upstream node – downstream node sets, with each
upstream node assigning a unique CDMA code to

its set of downstream nodes. In order to avoid too
much of interference with simultaneous
transmissions, we assume that all the downstream
nodes of an upstream node send their data to the
upstream node using a single CDMA code
according to a time schedule and only one
transmission is allowed per time unit (this is also
the approach adopted for communication within a

 Figure 4.1: Connectivity Figure 4.2: Energy Lost per Round Figure 4.3: Delay per Round

Figure 4.4: Energy*Delay per Round Figure 4.5: # Leaf Nodes per Figure 4.6: Round of First Node
 EMLN-DG Tree Failure

Figure 4: Performance of the Energy-aware Maximal leaf Nodes Data Gathering (EMLN-DG) Tree

cluster in LEACH). An upstream node has thus to
wait to receive data from all its downstream nodes
before propagating the data further. The more the
number of downstream nodes, more the delay
incurred at an upstream node to collect, aggregate
and further transfer the data.

The energy lost per round increases with
increase in the sensor transmission range as more
energy is expended with increase in the distance.
But, the increase in the energy lost per round is not
proportional to the increase in the sensor
transmission range. As the transmission range is
doubled (to 30m) and tripled (to 45m) from 15m,
the energy lost per round is at most 18% and 49%
respectively. This can be attributed to the reduction
in the number of leaf nodes in the DG tree with
increase in the sensor transmission range and not all
sensors need to do data aggregation, all the time.

The network lifetime is the maximum when the
transmission range per node is at 20m and 25m. As
we increase the sensor transmission range from
25m to 35m and 50m, the network lifetime (in
terms of the number of rounds) decreases, by about
12% and 35% respectively. This can be attributed
to a slight to moderate increase in the energy lost
per round. However, when we compute the
energy*delay values, it remains low for smaller and

moderate transmission range values and increases
rapidly as the transmission range gets high.

Considering the performance of EMLN-DG with
respect to all the performance metrics, we conclude
that the optimal transmission range per sensor to
achieve higher connectivity and lower
energy*delay value for a 100-node network of
dimensions 100m x 100m is 25m. This translates to

a neighborhood size of
22
7

25 100

100 100

2*() *

*

m nodes

m m
≈

20 nodes. At the transmission range value of 25m,
less than 15% of the nodes in the network serve as
intermediate nodes and the rest of the nodes serve
as leaf nodes of the tree. The performance
comparison studies reported for EMLN-DG in
Section 5.2 are based on this transmission range
value of 25m per node.

5.2. Performance Comparison Study with
LEACH and PEGASIS

EMLN-DG incurs the largest value for the
network lifetime (the number of rounds the network
runs before the first node failure occurs due to
exhaustion of battery charge). This could be

105

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

attributed to the balancing effect due to the
consideration of the energy levels of the nodes as
well as their number of uncovered neighbors before
deciding whether a node would serve as an
intermediate node or leaf node. Most of the
intermediate nodes added to the EMLN-DG tree
have relatively higher energy than the leaf nodes of
the tree. The leaf nodes spend relatively less energy
for data transfer per round whereas the intermediate
nodes spend more energy for data reception,

aggregation and transmission per round.
Nevertheless, with the EMLN-DG tree being
refreshed and determined for every round, we
achieve a very high energy balance in the network.
This leads to a significantly high network lifetime
and is much larger compared to those obtained with
the contemporary protocols like LEACH and
PEGASIS. As future work, we will study the
performance of EMLN-DG when the DG tree is not

 Figure 5.1: Energy Lost per Round, Joules Figure 5.2: Delay per Round, Time Slots

 Figure 5.3: Energy Lost * Delay per Round Figure 5.4: Round of First Node Failure

Figure 5: Performance Comparison of EMLN-DG, LEACH, PEGASIS (TDMA and CDMA Systems)

computed for every round, but updated only
periodically, for every n (n > 1) number of rounds.

With LEACH, even though the clusters are
updated for every round of data aggregation, the
cluster heads have to transmit the aggregated data
over a longer distance to the sink node. In the case
of PEGASIS and EMLN-DG, only the leader
node/root node is responsible for transferring the
aggregated data to the sink node. The energy lost
per round for EMLN-DG is 62% less than that
incurred for LEACH and the network lifetime for
EMLN-DG is about 235% greater than that
obtained for LEACH.

The reasons that can be attributed to the
relatively lower lifetime for the PEGASIS – TDMA
and CDMA versions are that the distance-based
chain is formed only once and is being used for all
the rounds and also, the average distance between
successive nodes in the second half of the chain has
been found to be far more than the average distance

between successive nodes in the first half of the
chain. This is due to the suboptimal solution
obtained with the greedy distance-based chain
formation heuristic. The energy consumption per
round for PEGASIS-TDMA is relatively lower
(actually the lowest of all the four algorithms
considered) than that of PEGASIS-CDMA because,
in the latter case, nodes that are far away from each
other are more likely required to communicate
because of the binary-tree approach. The energy
consumption per round for EMLN-DG is about
10% more than that incurred for PEGASIS-TDMA
and is about 10% less than that incurred for
PEGASIS-CDMA. Nevertheless, because of the
huge energy imbalance created due to the use of a
static and suboptimal greedy distance-based chain
(without any consideration of the energy levels of
the nodes in the chain), the network lifetime per
round for PEGASIS is far lower than that of
EMLN-DG. We observe that the network lifetime

106

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

per round for EMLN-DG is about 135% more than
that obtained for the two PEGASIS versions.

EMLN-DG incurs a larger delay than that of
PEGASIS-CDMA and this can be attributed to the
use of time-division multiplexing during the
aggregation of the data packets at an upstream node
from its immediate downstream nodes. PEGASIS-
CDMA assumes that at a given level in the binary
tree hierarchy, any two nodes in the chain can
communicate simultaneously with each other using
a unique CDMA code. Even though CDMA codes
help to avoid mixing up of the data signals, there
can be still some interference among the signals if
all the simultaneous communications are targeted to
a single node. Hence, we assume the use of time-
division multiplexing in EMLN-DG for data
aggregation at every upstream node. All the
downstream nodes of an upstream node forward
data to the upstream node according to a time
schedule, with only one transmission allowed per
time slot. Data aggregation at different upstream
nodes can however occur in parallel, using different
CDMA codes. Also, an intermediate node in the
EMLN-DG tree cannot forward the aggregated data
to its upstream node until it receives data from each
of its immediate downstream nodes. The delay per
round of communication for EMLN-DG is about
2.75 times to that incurred with PEGASIS–CDMA.
However, the delay incurred for EMLN-DG is still
lower than that incurred for PEGASIS–TDMA and
LEACH. The delay incurred for PEGASIS–TDMA
and LEACH is respectively about 3.85 and 1.65
times more than that incurred for EMLN-DG.

The energy*delay value is the least for the
binary-tree based PEGASIS-CDMA. As discussed
before, PEGASIS-CDMA incurs the lowest delay
per round because of the assumption of
simultaneous communication between any pair of
nodes all the time. EMLN-DG incurs a larger
energy*delay value, which is 2.5 times more than
that incurred with PEGASIS-CDMA. On the other
hand, the energy*delay values for PEGASIS-
TDMA and LEACH is respectively 3.5 and 4.3
times more than that incurred for EMLN-DG.

Comparing the performance of EMLN-DG with
that of direct transmission (where each sensor node
directly transmits the data to the sink), we observe
that (i) the energy lost per round in direct
transmission is at least 30 times more than that
incurred with EMLN-DG, (ii) the delay per round
of data communication is about 4 times more than
that incurred with EMLN-DG, (iii) the network
lifetime incurred with direct transmission is less
than 1/40th of that incurred with EMLN-DG and

(iv) the energy*delay value incurred with direct
transmission is at least 120 times more than that
incurred with EMLN-DG.

6. CONCLUSIONS

The high-level contribution of this paper is the
development of an Energy-aware Maximal Leaf
Nodes Data Gathering (EMLN-DG) algorithm that
is aimed at simultaneously reducing the energy lost
per round of data gathering as well as maximizing
the number of rounds of communication before the
first failure of a sensor node due to the exhaustion
of battery charge. The overall run-time complexity
of the ECDS-DG algorithm is O(|V|*(|V|+|E|))
where |E| is the number of edges and |V| is the
number of vertices in the underlying sensor
network graph. Performance simulation studies on
EMLN-DG illustrate that when running the
algorithm at a transmission range value that is one-
fourth of the one-side dimension of the network
employed, we observe that less than 15% of the
nodes serve as intermediate nodes of the tree and
rest of the nodes serve as leaf nodes. Even while
operating the network at very low transmission
range values per node, we observe that less than
35% of the nodes serve as intermediate nodes of the
tree. Based on the simulation comparison studies of
EMLN-DG with that of the well-known data
gathering algorithms such as LEACH and
PEGASIS (both TDMA and CDMA versions), we
can conclude that EMLN-DG is a better data
gathering algorithm as it incurs the maximum value
for the network lifetime that is significantly high
(as large as 200%-300% more) compared to those
incurred by the other algorithms. At the same time,
EMLN-DG also incurs a relatively lower, or if not
comparable, energy loss, delay and energy*delay
per round vis-à-vis LEACH and PEGASIS.

REFRENCES:

[1] W. Heinzelman, A. Chandrakasan and H.

Balakarishnan, “Energy Efficient
Communication Protocols for Wireless
Microsensor Networks,” Proceedings of the
Hawaaian International Conference on
Systems Science, January 2000.

[2] S. Lindsey, C. Raghavendra and K. M.
Sivalingam, “Data Gathering Algorithms in
Sensor Networks using Energy Metrics,” IEEE
Transactions on Parallel and Distributed
Systems, vol. 13, no. 9, pp. 924-935, September
2002.

107

Journal of Theoretical and Applied Information Technology , Islamabad PAKISTAN
31st May 2010. Vol.15. No.2.

© 2005-2010 JATIT. All rights reserved

www.jatit.org

ISSN: 1817-3195 / E-ISSN: 1992-8615

[3] A. J. Viterbi, “CDMA: Principles of Spread
Spectrum Communication,” 1st edition,
Prentice Hall, April 1995, ISBN: 0201633744.

[4] S. Lindsey, C. Raghavendra and K. M.
Sivalingam, “Data Gathering in Sensor
Networks using the Energy*Delay Metric,”
Proceedings of the 15th International Parallel
and Distributed Processing Symposium, pp.
2001-08, April 2001.

[5] M. Moh, M. Dumont, T.-S Moh, T. Hamada
and C.-F. Su, “Brief Announcement:
Evaluation of Tree-based Data Gathering
Algorithms for Wireless Sensor Networks,”
Proceedings of the 24th Annual ACM
Symposium on Principles of Distributed
Computing, p. 239, July 2005.

[6] Y. Caro, D. B. West and R. Yuster, “Connected
Domination and Spanning Trees with Many
Leaves,” Journal of Discrete Mathematics, vol.
13, no. 2, pp. 202-211, April 2000.

[7] N. Meghanathan, “An Algorithm to Determine
the Sequence of Stable Connected Dominating
Sets in Mobile Ad Hoc Networks,”
Proceedings of 2nd Advanced International
Conference on Telecommunications,
Guadeloupe, French Caribbean, February 2006.

[8] M. Moh, M. Dumont and T.-S Moh,
“Evaluation of Dynamic Tree-based Data
Gathering Algorithms for Wireless Sensor
Networks,” Proceedings of the 5th IEEE
International Symposium on Signal Processing
and Information Technology, pp. 170-175,
December 2005.

[9] B. Zeng, L. Yao and Y.-Q. He, “An Energy-
Efficient Broadcast Control Protocol for
Wireless Sensor Networks,” Proceedings of the
IEEE International Conference on Networking,
Architecture and Storage, pp. 3-8, 2009.

[10] N. Meghanathan , “Grid Block Energy based
Data Gathering Algorithm for Lower
Energy*Delay and Longer Lifetime in Wireless
Sensor Networks,” Proceedings of the
International Conference on Sensor Networks
and Applications, November 2009.

[11] L. King and N. Meghanathan , “A Weighted-
Density Connected Dominating Set Data
Gathering Algorithm for Wireless Sensor
Networks,” Journal of Computer and
Information Science, vol. 2, no. 4, pp. 3-13,
November 2009.

 [12] N. Meghanathan, “An Algorithm to
Determine Energy-aware Connected
Dominating Set and Data Gathering Tree for
Wireless Sensor Networks,” Proceedings of the

2009 International Conference on Wireless
Networks, pp. 608 - 614, Las Vegas, July 2009.

[13] T. S. Rappaport, “Wireless Communications:
Principles and Practice,” 2nd edition, Prentice
Hall, January 2002, ISBN: 0130422323.

