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ABSTRACT 
 

We propose an Energy-aware Maximal Leaf Nodes Data Gathering (EMLN-DG) algorithm for periodic 
data collection and transmission in wireless sensor networks. For each round of data gathering, an EMLN-
DG tree spanning the entire sensor network is formed based on the residual energy level available at the 
nodes and the number of uncovered neighbors of a node during tree formation. Only nodes that have a 
relatively larger number of neighbors as well as a higher energy level are included as intermediate nodes in 
the EMLN-DG tree. By maximizing the number of leaf nodes in a DG tree and considering the energy level 
available at the nodes while forming the tree, we reduce energy consumption per round as well as balance 
the energy level across all the nodes in the network. This contributes to a significantly larger network 
lifetime, measured as the number of rounds before the first node failure due to exhaustion of battery charge. 
Performance comparison studies with the well-known data gathering algorithms such as LEACH and 
PEGASIS illustrate that EMLN-DG can help to sustain the network for a significantly larger number of 
rounds and at the same time incur a lower, or if not comparable, energy loss, delay and energy loss*delay 
per round of data gathering. 

Keywords: Algorithm, Data Aggregation, Data Gathering Trees, Energy-awareness, Maximal Leaf Nodes, 
Network Lifetime, Sensor Networks 

 
1. INTRODUCTION  
 

A wireless sensor network is often viewed as a 
distributed system of smart sensor nodes that gather 
data about the ambient environment and propagate 
them to one or more control centers called sinks or 
base stations. The end-user typically accesses the 
data at the sinks. Some of the characteristics of a 
typical sensor node are limited computing 
capability, memory capacity and battery charge. 
Each sensor node operates with a limited 
transmission range, which is the distance until 
which the signals emanating from the node 
propagate and are received with appreciable signal 
strength. Wireless sensor networks operate with a 
limited bandwidth that is also shared among the 
nodes within a common transmission range. The 
sink is normally static and located far away from 
the sensor nodes. Hence, direct communication 
between the sensor nodes and the sink is expensive 
in terms of energy consumption and bandwidth 
usage. This forms the motivation to deploy data 
gathering algorithms at the sensor nodes to combine 
data into a small set of meaningful information, 

which is a representative of the network condition 
and can be transmitted to the sink, leading to 
significant energy and bandwidth savings. 
Throughout this paper, the terms ‘data gathering’, 
‘data fusion’ and ‘data aggregation’ are used 
interchangeably. They mean the same. 

In this paper, we consider a wireless sensor 
network wherein the sensor nodes periodically (in 
rounds) report the collected data to the sink. For 
each round of communication, each sensor node 
generates a data packet and wants the information 
to be transferred to the sink. If each sensor node 
directly transmits its data to the sink that is 
typically located far away from the network field, it 
would lead to significantly high energy 
consumption per round. To minimize energy 
consumption, it would be more efficient if the data 
packets from sensor nodes are gathered and 
aggregated with the packets of peer sensor nodes 
and only one aggregated data packet (of the same 
size as that of the individual data packets) is sent 
per round from the sensor network to the sink. With 
data aggregation, we can filter the uncorrelated 
noise in several signals and transmit to the sink a 
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more accurate signal that is representative of the 
network condition. 

Various data gathering algorithms have been 
proposed in the literature. Well-known among these 
are the LEACH (Low-Energy Adaptive Clustering 
Hierarchy) [1] and PEGASIS (Power-Efficient 
Gathering in Sensor Information Systems) [2] 
algorithms. Both of these algorithms operate 
through discrete rounds of data collection. LEACH 
operates in two phases: a set-up phase and a steady-
state phase. In the set-up phase, the sensor nodes 
are grouped into clusters with the assignment of a 
cluster head for each cluster; in the steady-state 
phase, the sensor nodes transmit the collected data 
to their individual cluster heads and after gathering 
data from all of the sensor nodes in its cluster, a 
cluster head transmits the aggregated data to the 
sink. In PEGASIS, a chain of sensor nodes is 
formed using a greedy approach, starting from the 
node farthest to the sink. The nearest node to this 
node is added as the next node in the chain. This 
procedure is repeated until all the nodes are 
included in the chain. A node can be in the chain at 
only one position. During each round, a leader node 
is randomly selected and it is responsible for 
forwarding the aggregated data to the sink. After 
the sink selects the leader node and notifies it to the 
network, each node on both sides of the chain (with 
respect to the leader node), receives and transmits 
the aggregated data to the next node in the chain, 
until the data reaches the leader node. The original 
PEGASIS algorithm based on Time Division 
Multiple Access (referred to as PEGASIS-TDMA) 
resulted in huge delay as data moves across the 
complete chain of sensor nodes before being 
transmitted to the sink. PEGASIS has been later 
improved for CDMA (Code Division Multiple 
Access) systems [3] using a chain-based binary 
scheme to minimize the delay incurred and to 
reduce the energy*delay metric [4]. In PEGASIS-
CDMA, a round comprises of logN levels where N 
is the number of nodes in the network. For every 
round of data gathering, each node transmits data to 
a close neighbor in a given level of the hierarchy. 
Nodes that receive data at a given level are the only 
nodes that rise to the next level. At the top level, 
there will be only one node that will remain as the 
leader and it will transmit the aggregated data 
packet to the sink. 

The distance-based chain formation heuristic of 
PEGASIS is prone to an increase in the physical 
distance between successive nodes as the chain 
progresses away from the starting node. This can 
lead to higher energy consumption per round. 

PEGASIS-CDMA consumes more energy per 
round compared to PEGASIS-TDMA, because the 
former requires nodes to communicate over long-
distances because of the binary tree hierarchy. 
Nevertheless, the energy consumed per round for 
LEACH is significantly more than that consumed 
for PEGASIS-TDMA and PEGASIS-CDMA. If 
multiple cluster-heads are selected, even though the 
delay per round would be low because of reduced 
size of a cluster, several cluster-heads would be 
transferring data over long-distances to the sink. On 
the other hand, if few cluster-heads are selected, the 
sensor nodes may have to transmit over long-
distances to reach the nearest cluster-head. Due to 
competition in each cluster, the delay might also 
increase. The above qualitative analysis of the 
energy consumption per round for the LEACH and 
PEGASIS algorithms suggests that the number of 
rounds sustained by the sensor network running 
these algorithms before the failure of the first 
sensor node (due to the exhaustion of battery 
charge) need not be maximum. There is a 
possibility of increasing the number of rounds 
before the first node failure by reducing the energy 
consumed per round and choosing only the nodes 
with a relatively higher energy level for data 
gathering from multiple sensor nodes and 
transmitting the aggregated data to an another 
sensor node or the sink. This observation formed 
the motivation of our work in this paper.   

In this paper, we advocate the use of a maximal 
leaf nodes tree for energy-efficient data gathering in 
wireless sensor networks. A leaf node in a data 
gathering tree needs to turn on itself for only to 
periodically sense and transmit data to its parent 
and the node can remain asleep for the rest of the 
time. On the other hand, an intermediate node 
would need to be turned on and stay in active and 
listening modes much longer than a leaf node 
because the intermediate node would need to 
receive data from all of its child nodes, aggregate 
with its own sensed data and transmit to its parent. 
This observation made in [5] motivates the need to 
consider a maximal leaf nodes spanning tree for 
data gathering in wireless sensor networks. In 
addition, the problem of determining a maximal 
leaf spanning tree has been proven to be 
polynomially equivalent to the problem of 
approximating a Minimum Connected Dominating 
Set (MCDS) [6]. The above two observations form 
the basis for our paper. A common approach (e.g., 
[7]) for approximating an MCDS is to consider 
inclusion of nodes that have a larger number of 
uncovered neighbors. We provide energy-
awareness to this strategy by computing the weight 
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of a node as the product of the number of 
uncovered neighbors and the available residual 
energy at the node. Such an energy-aware maximal 
leaf data gathering tree has not been proposed in the 
literature for wireless sensor networks. 

Only a couple of works are available on the 
application of maximal leaf tree for efficient data 
gathering in wireless sensor networks. In [5][8], the 
authors compared maximal leaf tree (MLT) based 
data gathering and shortest path tree (SPT) based 
data gathering and observed that the MLT-based 
approach incurs an energy consumption and delay 
that is one-half of that incurred with the SPT-based 
approach in tree constructions, data transmissions 
and dynamic tree reconstructions. In [9], the 
authors advocate the use of a maximal leaf 
spanning tree for minimizing the number of 
forwarding nodes as part of an energy-efficient 
broadcast mechanism in wireless sensor networks. 
However, both of the above works attempt to only 
maximize the number of leaf nodes without paying 
attention to the energy-level of the intermediate 
nodes selected for data aggregation. 

The rest of the paper is organized as follows: In 
Section 2, we describe the proposed algorithm to 
construct an Energy-aware Maximal Leaf Nodes 
Data Gathering (EMLN-DG) tree. Section 3 
describes the algorithm to compute the delay per 
round for the EMLN-DG tree. Section 4 illustrates 
an example to construct the EMLN-DG tree and 
compute its delay. Section 5 describes the 
simulation environment and the performance results 
obtained comparing EMLN-DG with that of 
LEACH and PEGASIS (both TDMA and CDMA 
versions). Section 6 concludes the paper. 

 
2. ALGORITHM TO CONSTRUCT THE 

ENERGY-AWARE MAXIMAL LEAF 
NODES DATA GATHERING (EMLN-DG) 
TREE 

 
The algorithms to construct the EMLN-DG tree 

(pseudo code in Figure 1) and compute its delay 
(pseudo code in Figure 2) use the following 
variables associated with each node. The input to 
the algorithm is a snapshot of the underlying sensor 
network graph G = (V, E) at a particular time 
instant during which we want to find the data 
gathering tree. Note that V represents the set of 
vertices (nodes in the network) and E represents the 
set of edges (links between the nodes in the 
network). There exists an edge between any two 
vertices in the graph if and only if the distance 

between the corresponding nodes in the network is 
less than or equal to the transmission range. The 
following variables are associated with each node: 

 
   Neighbors(s) – Neighbor list of node s in graph G 
  Uncovered-Neighbors(u) ⊆  Neighbors(u)  
       – the list of neighbors of node u that are not yet  
          covered by the EMLN-DG tree 
   Energy(u) – the residual energy (in Joules)  
                       available at node u 
   Weight(u) – | Uncovered-Neighbors(u) | *   
                                                       Energy(u) 
    Level(u) – the level of node u in the EMLN-DG  
                     tree; the root node is at level 0. 
    Child-Nodes(u) – the list of immediate child  
                                 nodes of node u 
    Predecessor-Node(u) – the predecessor node for  
                                   node u in the EMLN-DG tree 
 

The algorithm is executed for each round of data 
aggregation. The weight of a sensor node is the 
product of the number of uncovered neighbors of 
the node and the residual energy level available at 
the node. The sensor node that has the largest 
weight value is selected as the rootNode for the 
round. The algorithm uses the following four 
principal data structures to facilitate the 
computation of the DG tree: 
(i) Intermediate-Nodes-List – the list of all the 

intermediate nodes, including the root node of 
the DG tree 

(ii) Leaf-Nodes-List – the list of all the leaf nodes 
of the DG tree 

(iii) Covered-Nodes-list – the list of all nodes that 
are spanned (i.e., covered) by the DG tree  

(iv) Priority-Queue – a queue whose entries are 
tuples of the form (Weight(u), u) and the entries 
are stored in the decreasing order of the node 
weights. A dequeue operation results in 
extracting the node with the minimum weight 
from the queue. The weight of a node is the 
product of the number of uncovered neighbors 
of a node and the residual energy available at 
the node. If two or more nodes have the same 
minimum weight, a node is randomly chosen 
and extracted from the queue. 

The Level of the rootNode in the DG tree is set 
to 0. The maximum value for the Level of a node in 
the DG tree corresponds to the Height of the tree. 
To compute the delay associated with data 
gathering per round, we keep track of the list of 
nodes at each level of the tree through a data 
structure referred to as Nodes-All-Levels. As the 
DG tree is constructed by finding the intermediate 
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nodes of the tree, the Level values of the nodes are 
determined and used to update the Nodes-All-Levels 
data structure. 

Initially, the Intermediate-Nodes-List, Leaf-
Nodes-List and Covered-Nodes-List are initialized 
to null set (i.e., empty). The Priority-Queue is 
populated with entries in the form of the tuple 
(Weight(u), u), with the entries sorted in the 
decreasing order of the values of the node weights. 
The rootNode is the first node to be dequeued from 
the Priority-Queue and added to the Covered-
Nodes-List and the Intermediate-Nodes-List. Once a 
node is added to the Intermediate-Nodes-List, all its 
neighboring nodes are considered covered, and 
added to the Covered-Nodes-List if not previously 
covered. If a node is added to the Covered-Nodes-
List as a result of being newly covered by its 
predecessor node, then the node is also added to the 
Leaf-Nodes-List. Later, if a covered node is selected 
as an intermediate node, it is removed from Leaf-
Nodes-List and added to Intermediate-Nodes-List. 
 
 
Input: Snapshot of the Network Graph G = (V, E), 
V is the set of vertices and E is the set of edges 
 
Auxiliary Variables and Functions:  
Intermediate-Nodes-List, Leaf-Nodes-List, 
Covered-Nodes-List, Priority-Queue 
rootNode – the first node to be added to the  
                   Intermediate-Nodes-List 
intermediateNode – the next node added to the  
                                 Intermediate-Nodes-List 
Nodes-At-Level(i) – the list of nodes at a particular  
                                 level i in the DG tree  
Nodes-All-Levels – the list of tuples (i, Nodes-At- 
                                                                   Level(i)) 
 
Output: Intermediate-Nodes-List, Leaf-Nodes-List, 
Nodes-All-Levels, Height-DG-Tree, rootNode  
// returns the above if the underlying Network 
Graph G is connected 
NULL // returns NULL if the underlying Network 
Graph G is not connected 
Initialization: 
Intermediate-Nodes-List = Φ; Leaf-Nodes-List = Φ; 
Covered-Nodes-List = Φ;  
∀u, Uncovered-Neighbors(u) = Neighbors(u); 
Nodes-All-Levels = Φ; Height-DG-Tree = 0 
  for every vertex u∈V do   // O(|V|*log|V|) time 
      Insert the tuple (Weight(u), u) to the Priority- 
     Queue at the appropriate location in the queue                                
      Level(u) = -1 
      Child-Nodes(u) = Φ 

      Predecessor-Node(u) = NULL 
  end for 
 
   
Begin EMLN-DG Construction 
 
rootNode = Dequeue(Priority-Queue) 
Level(rootNode) = 0 
Covered-Nodes-List = Covered-Nodes-List U  
                                     {rootNode} 
Intermediate-Nodes-List = Intermediate-Nodes-List  
                                            U {rootNode} 
Nodes-At-Level(0) = Nodes-At-Level(0) U  
                                  {rootNode} 
Nodes-All-Levels = Nodes-All-Levels(0, Nodes-At- 
                                                                  Level(0)) 
 
for every vertex v∈Neighbors(rootNode) do 
    Covered-Nodes-List = Covered-Nodes-List U {v} 
    Leaf-Nodes-List = Leaf-Nodes-List U {v} 
    Level(v) = 1 
    Child-Nodes(rootNode) =  
                                  Child-Nodes (rootNode) U {v} 
     Predecessor-Node(v) = rootNode 
 
     if ( Height-DG-Tree < Level(v) ) then 
           Height-DG-Tree = Level(v) 
     end if 
end for 
 
while ( |Covered-Nodes-List| < |V| ) do  
    for every vertex u∈ V do // takes O(|V|+|E|) time 
        for every vertex v∈Neighbors(u) do 
            if v∈Covered-Nodes-List then 
               Uncovered-Neighbors(u) = Uncovered- 
                                                    Neighbors(u) – {v} 
            end if 
         end for 
     end for 
 
     Priority-Queue = Φ 
 
     for u∈V and u∉ Intermediate-Nodes-List do 
        Weight(u) = |Uncovered-Neighbors(u)| *  
                                                                   Energy(u) 
         Insert the tuple (Weight(u), u) to Priority- 
        Queue at the appropriate location in the queue 
     end for 
 
     if (Priority-Queue = Φ) then 
         return NULL; // G is not connected 
    end if 
 
     intermediateNode = Dequeue(Priority-Queue)   
     Intermediate-Nodes-List = Intermediate-Nodes- 
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                                        List U {intermediateNode} 
     Leaf-Nodes-List = Leaf-Nodes-List –  
                                                   {intermediateNode} 
 
     for vertex v∈ Neighbors(intermediateNode) do 
           if (v∉ Covered-Nodes-List) then 
              Predecessor-Node(v) = intermediateNode 
              Level(v) = Level(intermediateNode) + 1 
              Covered-Nodes-List = Covered-Nodes-List  
                                                                          U {v} 
               Leaf-Nodes-List = Leaf-Nodes-List U {v} 
               Child-Nodes(intermediateNode) = Child- 
                               Nodes(intermediateNode) U {v} 
               if ( Height-DG-Tree < Level(v) ) then 
                    Height-DG-Tree = Level(v) 
               end if           
           end if 
     end for 
 
     Nodes-At-Level(Level(intermediateNode)) =  
           Nodes-At-Level(Level(intermediateNode)) U 
                                                   {intermediateNode} 
 
end while       
 
return Intermediate-Nodes-List, Leaf-Nodes-List, 
Nodes-All-Levels, Height-DG-Tree, rootNode  
 
End EMLN-DG Construction 
 
 
Figure 1: Algorithm to Construct EMLN-DG Tree 
 

After we populate the Covered-Nodes-List by 
exploring the neighbors of the rootNode, we use 
this list as the base and proceed to cover the rest of 
the nodes in the network by executing a loop – an 
iteration of the loop has the following sequence of 
steps: 

Step 1 – Re-compute the set of Uncovered-
Neighbors for each node: For each vertex u in 
the graph, if a neighbor v has been newly added 
to the Covered-Nodes-List (i.e., the neighbor v 
was uncovered before the previous iteration), 
then vertex v is removed from u’s set of 
Uncovered-Neighbors. 
Step 2 – Re-compute the Priority-Queue: The 
Priority-Queue is reset to null set (i.e., empty). 
The Weight of the covered nodes u (i.e., nodes in 
the Covered-Nodes-List) that are not in the 
Intermediate-Nodes-List is computed and the 
tuple (Weight(u), u) is stored at the appropriate 
location in the queue. Note that in order for a 
node to be considered for inclusion in the 
Priority-Queue and considered a candidate for 

being selected as an intermediate node, the node 
has to be already covered (i.e., be part of the 
Covered-Nodes-List) by another intermediate 
node. This is essential to maintain the 
connectivity of the network. If the Priority-
Queue continues to be empty (i.e., none of the 
covered nodes have uncovered neighbors), then 
we stop the execution of the algorithm and 
return NULL – i.e., the underlying sensor 
network is not connected. 
Step 3 – Add a node to the Intermediate-Nodes-
List: We dequeue the Priority-Queue and add 
the extracted node to the Intermediate-Nodes-
List and remove it from the Leaf-Nodes-List. 
Every uncovered neighbor of the newly 
determined intermediate node is added to the 
Covered-Nodes-List and the Leaf-Nodes-List, 
added as a child node for the intermediate node. 
The Level of a newly covered node is one more 
than the Level of its immediate predecessor node 
through which the former was covered.  

If the algorithm runs until all the nodes in the 
network are covered, it returns the following five 
data structures/variables that are used to compute 
the delay per round associated with the DG tree: 
Intermediate-Nodes-List, Leaf-Nodes-List, Nodes-
All-Levels, Height-DG-Tree and rootNode. The 
time complexity of the algorithm is O(|V|*(|V|+|E|)), 
as it takes O(|V|+|E|) time per iteration. At the 
beginning of each iteration (i.e. in Step 1), we have 
to re-compute the number of uncovered neighbors 
for every node in the network. There are |V| nodes 
in the network and we have to process each of the 
|E| edges twice, once for each vertex on which the 
edge is incident. 

 
3. ALGORITHM TO COMPUTE THE 

DELAY PER ROUND FOR EMLN-DG 
TREE 

 
The delay at a node indicates the number of time 

slots it takes for the root node to receive the 
aggregated data from all of its immediate child 
nodes. The delay associated with each of the leaf 
nodes is 0. We assign one time slot per child node 
to transfer data to its immediate predecessor 
intermediate node. We start processing the 
intermediate nodes from the bottom of the DG tree. 
Note that the intermediate nodes at a particular 
level in the DG tree are independent of each other 
and their delay can be computed in parallel. Also, a 
node is the child node for only one intermediate 
node in the DG tree.  
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For each intermediate node u at a particular 
level, we prepare a sorted list of the delay 
associated with each of its immediate child nodes. 
The delay associated with the intermediate node is 
computed through a temporary running variable, 
Temp-Delay (initialized to zero), as we explore the 
delay associated with each of the child nodes in the 
sorted list. For every child node v in the sorted list 
of the delay, Temp-Delay is set to the maximum of 
Temp-Delay + 1 and Delay(v) + 1, as we assume it 
takes one time slot for a child node to transfer its 
aggregated data to the immediate predecessor 
intermediate node. The delay associated with the 
intermediate node u, Delay(u), is the final value of 
Temp-Delay after we run through the sorted list of 
the delays associated with the Child-Nodes(u). The 
above procedure is repeated for all intermediates 
nodes, from levels one less than the Height of the 
tree all the way to zero (i.e. the root node). The 
delay per round for the DG tree is the delay 
associated with the rootNode. The delay per round 
on a |V|-node DG tree can be computed in 
O(|V|*log|V|) time as there are only |V|-1 edges in 
the tree and O(log|V|) is the time it takes to update 
additions to the sorted list implemented as a heap. 
 
 
Input: Intermediate-Nodes-List, Leaf-Nodes-List,  
            Nodes-All-Levels, rootNode 
Output: Delay-per-Round 
Auxiliary Variables: 
        Delay(u) // Number of time slots it takes for  
                          the aggregated data to reach node u 
        Node-Level  // level of a particular node in the  
                                DG tree 
        Nodes-At-Level  // the list of nodes at a  
                                      particular level 
        Sorted-Delay-Child-Nodes // sorted list (in the  
      increasing order) of the delay of the child nodes 
        Temp-Delay // temporary variable to process  
                                the delay at a node 
Initialization: Delay-per-Round = 0 
 
Begin Computation-Delay-EMLN-DG-Tree 

    for (every vertex v∈ Leaf-Nodes-List) do 
          Delay(v) = 0 
    end for           
    for (Node-Level = Height-DG-Tree-1 to 0) do 
     Nodes-At-Level = Nodes-All-Levels(Node-Level) 
     for (every vertex u∈Nodes-At-Level) do 
        Temp-Delay = 0 
        Sorted-Delay-Child-Nodes = Φ 
        for (every vertex v∈Child-Nodes(u)) do 
           Insert the tuple {v, Delay(v)} at an  

        appropriate entry in Sorted-Delay-Child-Nodes 
        end for 
        for (every tuple {v, Delay(v)} in the Sorted- 
                                       Delay-Child-Nodes list) do 
           Temp-Delay = Maximum (Temp-Delay + 1,  
                                                       Delay(v) + 1)   
        end for 
       Delay(u) = Temp-Delay 
     end for      
  end for      
      
    return Delay(rootNode) 

End Computation-Delay-EMLN-DG-Tree 
 

 
Figure 2: Algorithm to Compute the Delay per 

Round for the EMLN-DG Tree 

 
4. EXAMPLE TO ILLUSTRATE THE 

CONSTRUCTION OF THE EMLN-DG 
TREE AND THE COMPUTATION OF ITS 
DELAY 

 
Figure 3 illustrates an example to demonstrate 

the working of the EMLN-DG algorithm. In 
Figures 3.1 – 3.9, each circle represents a node. The 
integer outside the circle represents the node ID and 
the integer inside the circle represents the number 
of uncovered neighbors of the corresponding node. 
The real-number inside the circle represents the 
residual energy (in Joules) currently available at the 
node and the real-number outside the circle 
represents the weight (product of the residual 
energy and the number of uncovered neighbors) for 
the particular node. The intermediate nodes that are 
part of the EMLN-DG tree have their circles bold. 
We shade the circles of leaf nodes that are covered 
by the intermediate nodes of the EMLN-DG tree. 
The circles of nodes that are not yet part of the 
EMLN-DG tree (i.e., nodes that are neither 
intermediate nodes nor leaf nodes) are neither 
shaded nor made bold. 

On the 15-node example illustrated in Figure 3, 
we observe that it takes 6 iterations to compute the 
final EMLN-DG tree. The EMLN-DG tree has only 
6 intermediate nodes, including the root node. The 
remaining 9 nodes (i.e. 60% of the nodes) are leaf 
nodes. The height of the tree is 5 (nodes 4 and 5 are 
at level 5) and the delay at the root node (i.e. 
number of time slots it takes for the root node 7 to 
receive the aggregated data from all its immediate 
downstream child nodes) is 6 time slots. 
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5. SIMULATIONS 
 

We evaluated the performance of the EMLN-DG 
algorithm vis-à-vis LEACH, PEGASIS-TDMA and 
PEGASIS-CDMA in a discrete-event simulator 
developed by us in Java. This simulator has been 

successfully used to develop and study data 
gathering algorithms in some of our recent studies 
[10][11][12]. The network dimension is 100m x 
100m. The number of nodes in the network is 100 
and these are uniformly and randomly distributed  

 
       Figure 3.1: Initial Network               Figure 3.2: Iteration # 1                    Figure 3.3: Iteration # 2 
 

 
         Figure 3.4: Iteration # 3                  Figure 3.5: Iteration # 4                   Figure 3.6: Iteration # 5 
 

 
         Figure 3.7: Iteration # 6          Figure 3.8: Final EMLN-DG Tree    Figure 3.9: Delay Computation 
 
Figure 3: Example Illustrating the Construction of the EMLN-DG Tree and the Computation of its Delay 

 
 
throughout the network. The sink node is located at 
(50, 300), away from the sensor field. With EMLN-
DG, the transmission range per sensor node used to 
form the network graph in the algorithm is varied 
from 15m to 50m. There exists an edge between 
any two vertices in the graph if the distance 
between the corresponding nodes in the network is 
less than or equal to the transmission range. Sensor 

nodes running the LEACH, PEGASIS-TDMA and 
PEGASIS-CDMA algorithms are assumed to be 
able to conduct transmission power control (i.e. 
vary their transmission range) depending on the 
distance to the receiver node. 

We assume all the sensor nodes are CDMA 
(Code Division Multiple Access) enabled so that 
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we can achieve parallel communication between 
any pair of sensor nodes as and when desired. Such 
an assumption has also been made in other well-
known data aggregation algorithms such as 
LEACH and PEGASIS. For data aggregation in the 
EMLN-DG tree, we assume that every intermediate 
upstream node uses a particular CDMA code to 
communicate with all its immediate downstream 
child nodes. The upstream node broadcasts a time 
schedule for data transmission to all its immediate 
downstream nodes. A downstream node sends its 
data to the upstream node according to the slots 
provided in the time schedule. Note that such 
TDMA (Time Division Multiple Access) – based 
communication between every upstream node and 
its downstream nodes can occur in parallel using 
the unique CDMA codes chosen by each of the 
upstream nodes. 

We use a first order radio model [13], which has 
also been used to model energy consumption in 
previous work [1][2][4]. According to this model, 
energy expended by a radio to run the transmitter or 
receiver circuitry is Eelec = 50 nJ/bit and ∈amp = 

100 pJ/bit/m2 for the transmitter amplifier. The 
radios are turned off when a node wants to avoid 
receiving unintended transmissions. An r2 energy 
loss model is used to compute the transmission 
costs. The energy lost in transmitting a k-bit 
message over a distance d is given by: ETX (k, d) = 

Eelec* k +∈amp *k* d2. The energy lost in 

receiving a k-bit message is ERX (k) = Eelec* k.  

The energy lost per round is the sum of the 
energy lost at all the nodes for the transmission, 
reception and fusion of the data. The leaf nodes in 
the EMLN-DG tree do not lose energy to receive or 
fuse the data, but lose energy to transmit data to 
their upstream node. Every intermediate node, 
including the Root node, loses energy to receive 
and aggregate data from each of its immediate 
downstream nodes and to forward the aggregated 
data to its upstream node in the tree. Note that the 
sink is the upstream node for the Root node. 

The performance metrics considered are: (i) 
Energy lost per round, (ii) Delay (in terms of the 
number of time units) per round of data aggregation 
and transmission to the sink, (iii) Network lifetime, 
measured as the number of rounds the network 
sustains before the first sensor node dies due to 
exhaustion of battery charge and (iv) energy*delay 
value per round. For the EMLN-DG tree, we also 
evaluate the impact of the transmission range on the 

(i) Probability of connectivity of the tree, (ii) 
Energy lost per round, (iii) Delay per round, (iv) 
Energy*Delay per round, (v) Number of leaf nodes 
per tree and (vi) Network lifetime, measured as the 
round of first node failure. The results reported in 
Figure 4 for EMLN-DG are obtained for 1000 trials 
of the algorithm for each value of the transmission 
range per node. The results reported in Figure 5 for 
EMLN-DG correspond to a transmission range of 
25m as the algorithm appears to give the best 
performance with respect to several metrics at this 
transmission range value. The results reported in 
Figure 5 for LEACH, PEGASIS-TDMA and 
PEGASIS-CDMA versions (average of 1000 trials) 
do not assume a particular transmission range per 
node as these three algorithms assume that the 
nodes can do transmission power control as and 
when needed. For each trial, the initial energy 
supplied to every sensor node is 1J.  
 
5.1. Impact of the Sensor Transmission Range 
on the Performance of EMLN-DG 
 

Figure 4.1 illustrates that the probability of 
network connectivity reaches 0.994 (99.4%) when 
the sensor transmission range is 25m. Lower values 
of transmission range result in poor network 
connectivity and as the transmission range 
increases, the connectivity increases. After the 
transmission range value reaches 25m, the 
probability of network connectivity does not 
change much, increases only from 0.994 to 0.9998 
as we increase the transmission range from 25m to 
35m. The height of the DG tree decreases with 
increase in the sensor transmission range and this 
can be attributed to the corresponding increase in 
the number of leaf nodes (and a decrease in the 
number of intermediate nodes). As the transmission 
range increases, the number of nodes that can be 
covered by the inclusion of a node as an 
intermediate node in the DG tree increases. Hence, 
less number of intermediate nodes needed to be 
added in the DG tree. On a 100-node network, we 
observe that only less than 35% of the nodes serve 
as intermediate nodes of the EMLN-DG tree at a 
very low transmission range per node value of 15m 
and as the transmission range per node increases, 
the percentage of nodes serving as intermediate 
nodes significantly decreases. At a transmission 
range of 50m (i.e., half of the one-side dimension 
of the network), less than 4% of the nodes serve as 
intermediate nodes of the tree. 

For low and moderate values of transmission 
range, more intermediate nodes are added to the 
DG tree and this leads to less number of 



 

 
104 

Journal of Theoretical  and Applied Information Technology , Islamabad PAKISTAN 
31st May 2010. Vol.15. No.2. 

© 2005-2010 JATIT. All rights reserved 
 

www.jatit.org  

ISSN: 1817-3195 / E-ISSN: 1992-8615 

downstream child nodes per upstream node in the 
DG tree. On the other hand, for higher transmission 
range values, less number of intermediate nodes are 
included in the DG tree and each upstream 
intermediate node in the DG tree has several 
downstream child nodes. There can be 
simultaneous transmissions across the different 
upstream node – downstream node sets, with each 
upstream node assigning a unique CDMA code to 

its set of downstream nodes. In order to avoid too 
much of interference with simultaneous 
transmissions, we assume that all the downstream 
nodes of an upstream node send their data to the 
upstream node using a single CDMA code 
according to a time schedule and only one 
transmission is allowed per time unit (this is also 
the approach adopted for communication within a 

  
          Figure 4.1: Connectivity        Figure 4.2: Energy Lost per Round        Figure 4.3: Delay per Round 
 

   
Figure 4.4: Energy*Delay per Round    Figure 4.5: # Leaf Nodes per        Figure 4.6: Round of First Node  
                                                                          EMLN-DG Tree                                           Failure 
 

Figure 4: Performance of the Energy-aware Maximal leaf Nodes Data Gathering (EMLN-DG) Tree 
 
cluster in LEACH). An upstream node has thus to 
wait to receive data from all its downstream nodes 
before propagating the data further. The more the 
number of downstream nodes, more the delay 
incurred at an upstream node to collect, aggregate 
and further transfer the data.  

The energy lost per round increases with 
increase in the sensor transmission range as more 
energy is expended with increase in the distance. 
But, the increase in the energy lost per round is not 
proportional to the increase in the sensor 
transmission range. As the transmission range is 
doubled (to 30m) and tripled (to 45m) from 15m, 
the energy lost per round is at most 18% and 49% 
respectively. This can be attributed to the reduction 
in the number of leaf nodes in the DG tree with 
increase in the sensor transmission range and not all 
sensors need to do data aggregation, all the time. 

The network lifetime is the maximum when the 
transmission range per node is at 20m and 25m. As 
we increase the sensor transmission range from 
25m to 35m and 50m, the network lifetime (in 
terms of the number of rounds) decreases, by about 
12% and 35% respectively. This can be attributed 
to a slight to moderate increase in the energy lost 
per round. However, when we compute the 
energy*delay values, it remains low for smaller and 

moderate transmission range values and increases 
rapidly as the transmission range gets high.  

Considering the performance of EMLN-DG with 
respect to all the performance metrics, we conclude 
that the optimal transmission range per sensor to 
achieve higher connectivity and lower 
energy*delay value for a 100-node network of 
dimensions 100m x 100m is 25m. This translates to 

a neighborhood size of 
22
7

25 100

100 100

2*( ) *

*

m nodes

m m
≈ 

20 nodes. At the transmission range value of 25m, 
less than 15% of the nodes in the network serve as 
intermediate nodes and the rest of the nodes serve 
as leaf nodes of the tree. The performance 
comparison studies reported for EMLN-DG in 
Section 5.2 are based on this transmission range 
value of 25m per node. 
 
5.2. Performance Comparison Study with 
LEACH and PEGASIS 
 

EMLN-DG incurs the largest value for the 
network lifetime (the number of rounds the network 
runs before the first node failure occurs due to 
exhaustion of battery charge). This could be 
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attributed to the balancing effect due to the 
consideration of the energy levels of the nodes as 
well as their number of uncovered neighbors before 
deciding whether a node would serve as an 
intermediate node or leaf node. Most of the 
intermediate nodes added to the EMLN-DG tree 
have relatively higher energy than the leaf nodes of 
the tree. The leaf nodes spend relatively less energy 
for data transfer per round whereas the intermediate 
nodes spend more energy for data reception, 

aggregation and transmission per round. 
Nevertheless, with the EMLN-DG tree being 
refreshed and determined for every round, we 
achieve a very high energy balance in the network. 
This leads to a significantly high network lifetime 
and is much larger compared to those obtained with 
the contemporary protocols like LEACH and 
PEGASIS. As future work, we will study the 
performance of EMLN-DG when the DG tree is not  

 
          Figure 5.1: Energy Lost per Round, Joules                   Figure 5.2: Delay per Round, Time Slots 
 

 
        Figure 5.3: Energy Lost * Delay per Round                   Figure 5.4: Round of First Node Failure 
 

Figure 5: Performance Comparison of EMLN-DG, LEACH, PEGASIS (TDMA and CDMA Systems) 
 
computed for every round, but updated only 
periodically, for every n (n > 1) number of rounds. 

With LEACH, even though the clusters are 
updated for every round of data aggregation, the 
cluster heads have to transmit the aggregated data 
over a longer distance to the sink node. In the case 
of PEGASIS and EMLN-DG, only the leader 
node/root node is responsible for transferring the 
aggregated data to the sink node. The energy lost 
per round for EMLN-DG is 62% less than that 
incurred for LEACH and the network lifetime for 
EMLN-DG is about 235% greater than that 
obtained for LEACH.  

The reasons that can be attributed to the 
relatively lower lifetime for the PEGASIS – TDMA 
and CDMA versions are that the distance-based 
chain is formed only once and is being used for all 
the rounds and also, the average distance between 
successive nodes in the second half of the chain has 
been found to be far more than the average distance 

between successive nodes in the first half of the 
chain. This is due to the suboptimal solution 
obtained with the greedy distance-based chain 
formation heuristic. The energy consumption per 
round for PEGASIS-TDMA is relatively lower 
(actually the lowest of all the four algorithms 
considered) than that of PEGASIS-CDMA because, 
in the latter case, nodes that are far away from each 
other are more likely required to communicate 
because of the binary-tree approach. The energy 
consumption per round for EMLN-DG is about 
10% more than that incurred for PEGASIS-TDMA 
and is about 10% less than that incurred for 
PEGASIS-CDMA. Nevertheless, because of the 
huge energy imbalance created due to the use of a 
static and suboptimal greedy distance-based chain 
(without any consideration of the energy levels of 
the nodes in the chain), the network lifetime per 
round for PEGASIS is far lower than that of 
EMLN-DG. We observe that the network lifetime 
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per round for EMLN-DG is about 135% more than 
that obtained for the two PEGASIS versions. 

EMLN-DG incurs a larger delay than that of 
PEGASIS-CDMA and this can be attributed to the 
use of time-division multiplexing during the 
aggregation of the data packets at an upstream node 
from its immediate downstream nodes. PEGASIS-
CDMA assumes that at a given level in the binary 
tree hierarchy, any two nodes in the chain can 
communicate simultaneously with each other using 
a unique CDMA code. Even though CDMA codes 
help to avoid mixing up of the data signals, there 
can be still some interference among the signals if 
all the simultaneous communications are targeted to 
a single node. Hence, we assume the use of time-
division multiplexing in EMLN-DG for data 
aggregation at every upstream node. All the 
downstream nodes of an upstream node forward 
data to the upstream node according to a time 
schedule, with only one transmission allowed per 
time slot. Data aggregation at different upstream 
nodes can however occur in parallel, using different 
CDMA codes. Also, an intermediate node in the 
EMLN-DG tree cannot forward the aggregated data 
to its upstream node until it receives data from each 
of its immediate downstream nodes. The delay per 
round of communication for EMLN-DG is about 
2.75 times to that incurred with PEGASIS–CDMA. 
However, the delay incurred for EMLN-DG is still 
lower than that incurred for PEGASIS–TDMA and 
LEACH. The delay incurred for PEGASIS–TDMA 
and LEACH is respectively about 3.85 and 1.65 
times more than that incurred for EMLN-DG. 

The energy*delay value is the least for the 
binary-tree based PEGASIS-CDMA. As discussed 
before, PEGASIS-CDMA incurs the lowest delay 
per round because of the assumption of 
simultaneous communication between any pair of 
nodes all the time. EMLN-DG incurs a larger 
energy*delay value, which is 2.5 times more than 
that incurred with PEGASIS-CDMA. On the other 
hand, the energy*delay values for PEGASIS-
TDMA and LEACH is respectively 3.5 and 4.3 
times more than that incurred for EMLN-DG. 

Comparing the performance of EMLN-DG with 
that of direct transmission (where each sensor node 
directly transmits the data to the sink), we observe 
that (i) the energy lost per round in direct 
transmission is at least 30 times more than that 
incurred with EMLN-DG, (ii) the delay per round 
of data communication is about 4 times more than 
that incurred with EMLN-DG, (iii) the network 
lifetime incurred with direct transmission is less 
than 1/40th of that incurred with EMLN-DG and 

(iv) the energy*delay value incurred with direct 
transmission is at least 120 times more than that 
incurred with EMLN-DG. 

 
6. CONCLUSIONS 
 

The high-level contribution of this paper is the 
development of an Energy-aware Maximal Leaf 
Nodes Data Gathering (EMLN-DG) algorithm that 
is aimed at simultaneously reducing the energy lost 
per round of data gathering as well as maximizing 
the number of rounds of communication before the 
first failure of a sensor node due to the exhaustion 
of battery charge. The overall run-time complexity 
of the ECDS-DG algorithm is O(|V|*(|V|+|E|)) 
where |E| is the number of edges and |V| is the 
number of vertices in the underlying sensor 
network graph. Performance simulation studies on 
EMLN-DG illustrate that when running the 
algorithm at a transmission range value that is one-
fourth of the one-side dimension of the network 
employed, we observe that less than 15% of the 
nodes serve as intermediate nodes of the tree and 
rest of the nodes serve as leaf nodes. Even while 
operating the network at very low transmission 
range values per node, we observe that less than 
35% of the nodes serve as intermediate nodes of the 
tree. Based on the simulation comparison studies of 
EMLN-DG with that of the well-known data 
gathering algorithms such as LEACH and 
PEGASIS (both TDMA and CDMA versions), we 
can conclude that EMLN-DG is a better data 
gathering algorithm as it incurs the maximum value 
for the network lifetime that is significantly high 
(as large as 200%-300% more) compared to those 
incurred by the other algorithms. At the same time, 
EMLN-DG also incurs a relatively lower, or if not 
comparable, energy loss, delay and energy*delay 
per round vis-à-vis LEACH and PEGASIS.  
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