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ABSTRACT 
 
This paper outlines a hybrid approach of neuro-fuzzy based learning and classification approach based on 
the online learning systems. The effect of fault diagnosis for the suggested fault location tool is evaluated 
over the conventional fault diagnosis based approaches. The method of fault location based on the 
conventional offline neuro controller approach is compared with the suggested hybrid approach for learning 
and convergent time evaluation for distributed systems. 
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1. INTRODUCTION 
 
 In a power system, faults, dynamic 
operations, or nonlinear loads often cause various 
types of power quality disturbances such as voltage 
sags, voltage swells, switching transients, impulses, 
notches, flickers, harmonics, etc. (1,2). On the other 
hand, the increased use of sensitive electronic 
circuitry by industrial and residential customer, as 
well as the progress of utility deregulation and 
competition have imposed greater demand on the 
quality of power. Consequently, the studies aimed 
at detecting and analyzing as well as eliminating or 
minimizing the effects of power quality 
disturbances on industrial and customer loads have 
assumed greater importance.  
 
 One critical aspect of power quality 
studies is the ability to perform automatic power 
quality monitoring and data analysis. Usually, 
utilities install power quality meters or digital fault 
recorders at certain locations so that various power 
quality events can be recorded and stored in the 
form of sampled data for further analysis. Efficient 
and prompt detection, classification, and 
characterization of the events as well as further 
identification of the location of these events 
facilitate maintenance and control of the system, 
and improve system stability and reliability.               

 Another important aspect of a power 
quality study is coordination between the power 
system behavior and equipment performance. It is 
desired that the response of the sensitive equipment 
during the event be explained and correlated to 
specific features of the event, so that either the 
system behavior or the equipment operating 
characteristics can be tuned for improved ride-
through ability or immunity of the equipment to 
specific events (3). It has been noted that the 
activities of detecting and classifying of power 
quality events, characterizing and locating events, 
studying equipment sensitivity, and modeling of the 
system and equipment are closely related and 
interdependent. Hence it is natural and desirable 
that the data processing and analysis as well as 
modeling and simulation of the system and 
equipment be studied in one unified framework. In 
this paper  a new neuro-fuzzy expert system for 
detection and classification of various types of 
faults events is developed.  
 
 Fuzzy-neural networks have been 
proposed as a knowledge engineering technique 
and used for various application domains by 
authors including Yamakawa and Uchino (1), 
Uchikawa and Furuhashi (2),  and others (3, 4, 5, 6, 9). 
The fuzzy-neural approach proposed by these 
authors have been successfully used for learning 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
49 

and tuning fuzzy rules as well as solving 
classification, prediction and control problems. 
Some recent publications suggest methods for 
training fuzzy neural in order to adjust to new or 
dynamically changing data and situations (4, 5).   
 
 This paper introduces a new architecture 
for fuzzy-neural , called FZ-NN, which stands for 
Fuzzy-Neural Network, and investigates some 
learning and adaptation strategies associated with it. 
In addition, the use of rule insertion and rule 
extraction algorithms are investigated. 
 
2. FAULT DIAGNOSIS IN POWER SYSTEM 
 
 Power supply systems comprise three 
broad categories – generation, transmission and 
distribution. Electricity is generated at power 
stations from various natural resources such as coal, 
natural gas, hydro and wind, in large quantities 
where economies of scale can be achieved. These 
generating stations are proximate to the fuel 
resource, often a considerable distance from major 
load centres. Therefore, large quantities of 
electricity are transported at high voltages via the 
transmission network to strategically located bulk 
supply substations, and from there to smaller 
substations where the supply is further reduced for 
distribution. Modern power supply systems have 
evolved from separated utilities to large 
interconnected systems, with many generating 
stations and load centres being interconnected 
through power transmission lines. With the high 
degree of system interconnection, there is increased 
power exchange over larger distances at higher 
system voltage levels. Operation and expansion of 
power systems impacts society and several factors 
must be considered. 
 
 Technical and economic factors concern 
the improvement of existing equipment and design 
of new equipment, which could offer economies. 
Social and demographic factors deal with the 
tendency of the power industry to influence social 
and political processes, including setting of 
industrial enterprises and distribution of working 
population.These concerns have resulted in the 
emergence of distributed generation, the current 
trend of interconnected smaller sized generating 
units such as Kogan Creek gas fired power station 
as opposed to the traditional coal fired large 
capacity stations such as Tarong and Stanwell. This 
trend is emerging as a consequence of increased 
Greenhouse gas issue significance, leading to 
consideration of alternate energy sources such as 
solar, wind and wave that operate with smaller 

sized generation units. These smaller units are also 
less complex, less expensive and more rapidly 
constructed, allowing more rapid adaptation to the 
requirements of expanding industries.Therefore, 
interconnection of power systems yields technical, 
economical and environmental benefits, as excess 
capacity generated by hydro resources from one 
region may augment load supplied by fossil-fuelled 
generation in another. 
 
 For interconnections to operate as 
intended, transmission systems must have adequate 
capacity or load rating to transmit the quantity of 
power intended. If the existing transmission system 
does not have adequate ratings for the predicted 
power transfer, additional lines may be constructed 
in parallel with existing transmission lines, or the 
transmission system may be upgraded to a higher 
operating voltage. This is not always possible due 
to environmental, economic and time factors,  and 
public opinion. In a conventional system the 
processing of currents  and voltages are carried out 
to protect the devices and to make a suitable and 
fast control on the faults happening in the 
transmission line. For the analysis of the suggested 
controlling this paper introduces a controlling 
operation of fault detection and controlling based 
on a hybrid modeling of neural network and fuzzy 
logic. A system architecture for the suggested 
approach is as shown below: 
 
 
 
 
 
 
 
 
 
Figure 1. Suggested operational flow model for the fault 

diagnosis system 
 
 The application module “Detection and 
Classification” automatically detects and classifies 
the type of the disturbance captured in the recorded 
or simulated waveforms. The types of disturbances 
include the voltage sag, swell, outage, harmonic, 
notch, flicker, impulse and switching transient. 
After the disturbance is detected and classified, the 
module “Waveform Characterization” further 
processes the waveform. Eight different sub-
modules corresponding to the eight types of events 
have been designed. The software automatically 
selects the appropriate sub-module for computing 
parameters pertinent to the event. Then, one may 
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proceed to the module “Equipment Sensitivity 
Study” for evaluating how various waveform 
features affect the behavior of the equipment during 
the event. Finally, the module “Event Location” 
aims at accurately pinpointing the location of the 
event occurrence. Presently, we are focusing on 
locating faults that caused the sag event using the 
waveforms recorded by a limited number of DFRs 
and related power system data. Short-circuit studies 
are employed to obtain an optimal fault location 
estimate subject to a defined performance criterion 
by iteratively posing faults in the system, running 
simulations, and comparing the simulated 
waveforms with the recorded waveforms. The 
detection and classification problem consists of two 
steps. The first step is feature extraction, during 
which the distinct and dominant features (or 
patterns) of various events are selected and 
obtained using appropriate techniques.  
 
 The second step is called decision-making, 
during which an inference engine to determine the 
types of the events further processes the extracted 
features. Appropriately chosen features are essential 
for both simplifying the Decision-Making System 
(DMS) and improving the correct identification rate 
of the system. For decision-making, a neural 
network based system was presented(4). The author 
suggests using the time-delay network to capture 
the temporal features of the input signals. One 
drawback of using neural network is the difficulty 
of the training process. Some authors have 
proposed using the fuzzy logic to model the 
uncertainties of the training error so that the 
learning rate can be finely tuned to improve the 
convergence of the system (5). However this method 
still belongs to the category of neural network and 
does not utilize fuzzy logic to model the 
uncertainties of the input patterns.  
 
 Fuzzy logic based DMS is well suited to 
solve the realworld problems. It bridges the 
quantitative and qualitative considerations. It has 
found wide applications in the areas of load 
forecasting, harmonic tracking, power metering, 
etc. (11, 12). In this work, application of fuzzy logic 
techniques to the detection and classification of 
power quality events is explored. For the analysis 
of the suggested controlling this paper introduces a 
controlling operation of fault detection and 
controlling based on a hybrid modeling of neural 
network and fuzzy logic. 
 
 

3. FUZZY-NEURO MODELING 
 
 The FZ-NN model is designed to be used 
in a distributed, and learning-based environment. 
The architecture provides learning from data and 
approximate reasoning, as well as fuzzy rule 
extraction and insertion. It allows for the 
combination of both data and rules into one system, 
thus producing the synergistic benefits associated 
with the two sources. In addition, it allows for 
several methods of adaptation (adaptive learning in 
a dynamically changing environment). FZ-NN uses 
a Multi-Layer Perceptron (MLP) network and a 
modified back propagation training algorithm. The 
general FZ-NN architecture consists of 5 layers of 
neurons with partial feed forward connections. It is 
an adaptable fuzzy-neural  where the membership 
functions of the fuzzy predicates, as well as the 
fuzzy rules inserted before training or adaptation, 
may adapt and change according to new data. The 
interface unit for the suggested design is as briefed 
below : 
 
3.1.  Input layers 
 
 The input layer of neurons represents the 
input variables as crisp values. These values are fed 
to the condition element layer, which performs 
fuzzification. This is implemented using three point 
triangular membership functions with centers 
represented as the weights into this condition 
element layer. The triangles are completed with the 
minimum and maximum points attached to adjacent 
centers, or shouldered in the case of the first and 
last membership functions. The triangular 
membership functions are allowed to be non-
symmetrical and any input value will belong to a 
maximum of two membership functions with 
degrees differing from zero. These membership 
degrees for any given input will always sum up to 
one, ensuring that some rules will be given the 
opportunity to fire for all points in the input space. 
This center based membership approach taken by 
FZ-NN avoids the problems of uncovered regions 
in the input space that can exist with more flexible 
membership representation strategies. These do not 
always limit centers and widths in such a way as to 
ensure complete coverage.  
 
 While algorithms could be formulated and 
used in such cases to force the memberships to 
cover the input space, the simple center-based 
approach taken by FZ-NN seems both more 
efficient and more natural, with fewer arbitrary 
restrictions. It should be noted that there are no 
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“bias” connections necessary for this representation 
in FZ-NN. The weights from the input to condition 
element layers of neurons can take values in [0,1] 
only since the data are assumed to be normalised to 
this range. This normalisation is normally carried 
out as part of the FZ-NN pre-processing operations, 
and can be performed and reverse transparently in 
applications. 
 
 Initially the membership functions are 
spaced equally over the weight space, although if 
any expert knowledge is available this can be used 
for initialisation. In order to maintain the semantic 
meaningfulness of the memberships contained in 
this layer of connections some restrictions are 
placed on adaptation. When adaptation is taking 
place the centers are limited,remain within equally 
sized partitions of the weight space. This avoids 
problems with violating the semantic ordering of 
membership function labels. Therefore, under the 
FZ-NN architecture labels can be attached to 
weights when the network is constructed and these 
will remain valid for the lifetime of the network. 
For example, a membership function weight 
representing low will always have a center less than 
medium, which will always be less than high. 
 
 The condition element layer of neurons is 
potentially expandable during the adaptation phase 
with more nodes representing more membership 
functions for the input variables. Simple activation 
functions are used in the condition element nodes to 
perform fuzzification. An important aspect of this 
layer is that different inputs can have differing 
numbers of membership functions. The same 
principle applies to the output membership 
functions. This allows for very different types of 
inputs to be used together. As a simple example, 
temperature may be divided into seven different 
membership functions representing the range from 
cold to hot, while holiday (which is a binary 
variable to indicate whether it is a public holiday or 
not) can be represented using just two, for yes and 
no. 
 
3.2.  Rule layer 
 
 In the rule layer each node represents a 
single fuzzy rule. The layer is also expandable, in 
that nodes can be added to represent more rules as 
the network adapts. The activation function is the 
sigmoidal logistic function with a variable gain 
coefficient g (a default value of 1 is used giving the 
standard sigmoidal activation function). For the 
gain coefficient large values will make it close to 
the hard limited thresholding function. A value of 

2.19722 would ensure that a rule node would 
provide activation values from 0.1 to 0.9 when the 
net input values are between -1 and +1. These 
values may be desirable as part of the architecture’s 
“fuzziness.” The semantic meaning of the 
activation of a node is that it represents the degree 
to which input data matches the antecedent 
component of the associated fuzzy rule. However 
the synergistic nature of rules in a fuzzy-neural 
architecture must be remembered when interpreting 
such rules. The connection weights from the 
condition element layer (also called the 
membership functions layer) to the rule layer 
represent semantically the degrees of importance of 
the corresponding condition elements for the 
activation of this node. 
 
 The values of the connection weights to 
and from the rule layer can be limited during 
training to be within a certain interval, say [-1,1], 
thus introducing non-linearity into the synaptic 
weights. This option mimics a biologically 
plausible phenomenon (10) but should be 
implemented in accordance with an appropriate 
gain factor for the activation function. For example, 
if the interval is [-1,1] a suitable value for the gain 
factor may be 2.19722 as described above. The 
weight limitation would ensure that inputs into the 
rules remain within [-1,1] (since the input 
membership functions are all between 0 and 1) and 
the gain factor would only allow the rules to output 
values in [0.1,0.9]. This further enhances the 
meaningfulness of the rules and weight saturation 
will not occur. As an example of the problems of 
rule interpretation with unrestricted weights, it is 
difficult to interpret a rule that has input weights 
that are very high values, without some form of 
normalization. With this weight limiting option, the 
necessity for such normalization is removed. 
 
3.3. Output layers 
 
 In the action element layer, a node 
represents a fuzzy label from the fuzzy quantization 
space of an output variable, for example small, 
medium, or large for the output variable “required 
change in the velocity.” The activation of the node 
represents the degree to which this membership 
function is supported by the current data used to 
recall the FZ-NN. So this is the level to which the 
membership function for this fuzzy linguistic label 
is “cut” according to the current facts. The 
connections from the rule layer to the action 
element layer represent conceptually the confidence 
factors of the corresponding rules when inferring 
fuzzy output values. They are subject to constraints 
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that require them to remain in specified intervals as 
for the previous layer with the same advantages of 
semantic interpretability. The activation function 
for the nodes of this layer is the sigmoidal logistic 
function with the same (variable) gain factor as in 
the previous layer. Again, this gain factor should be 
adjusted appropriately,given the size of the weight 
boundary. The output layer performs a modified 
center of gravity defuzzification. Singletons, 
representing centers of triangular membership 
functions, as it was the case of the input variables, 
are attached to the connections from the action to 
the output layer. Linear activation functions were 
used. For example, a small, medium and large can 
be represented as connection weights having values 
of 0, 0.5 and 1.0 respectively from the output range 
of [0,1] if normalized outputs are considered. 
Adapting the output membership functions would 
mean moving the centers, but the requirement that 
the membership degrees to which a particular 
output value belongs to the various fuzzy labels 
must always sum up to one, is always satisfied. For 
each center, there is a constraining band (partition) 
where this value can move to. This is used in the 
same way as the input membership function centers 
restrictions are. More than one output variable can 
be used in a FZ-NN structure and the different 
output variables can have different numbers of 
membership functions. 
 
 
 
 
 
 
 
 

 
 

Figure 2. A FZ-NN structure for two initial fuzzy rules 
 

Rule 1:  IF x1 is A1 (DI1,1) and x2 is B1 (DI2,1) 
THEN y is C1 (CF1). 

Rule 2:  IF x1 is A2 (DI1,2) and x2 is B2 (DI2,2) 
THEN y is C2 (CF2), where Ds are 
degrees of importance attached to the 
condition elements and CFs are confidence 
factors attached to the consequent parts of 
the rules. 

 
 One of the advantages of the FZ-NN 
architecture is that it manages to provide a fuzzy 
logic system without having to unnecessarily 
extend the traditional MLP. Since standard transfer 
functions, linear and sigmoidal, are used along with 
a slightly modified back-propagation algorithm, the 

main departure being partitions, much of the large 
body of theory regarding such networks is still 
applicable. For those results not immediately 
applicable for FZ-NN the modifications are made 
much simpler, given FZ-NN’s natural structure and 
algorithm. 
 
 Here the fuzzification layer and the 
defuzzification layer change their input connections 
based on simple and intuitive formulae. These 
changes reflect the concepts represented by the 
layers and must satisfy the restrictions 
(partitioning) imposed on the membership functions 
(the movements of their centres cannot take them 
out of the membership’s partition). The same 
principles apply for the two layers, but different 
formulae are used to calculate the change of the 
weights. Figure 3 shows the initial membership 
functions of a variable x (either input or output) and 
the membership functions after adaptation. The 
amount of change has been exaggerated in order to 
demonstrate the concept involved. In the normal 
course of training changes to membership functions 
are limited to small, gradual movements, with the 
majority of weight changes occurring with the 
weights into and out of the rules. 

 
 

Figure 3. Initial membership functions of a variable x in 
the FZ-NN and the membership functions after 

adaptation (dotted lines). 
 
4. SYSTEM MODELING 
 
 The suggested FZ-NN has a flexible 
architecture, which allows for different training and 
adaptation strategies to be tested before the most 
suitable is selected for a certain application. Some 
of the issues involved in this adaptation are 
discussed below: 
 
4.1. Initialization 
 
 Uniformly distributed triangular 
membership function can be used as initial values 
for the input variables, and uniformly distributed 
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singletons can be used as initial values for the 
output variables. These are the defaults that are 
used in the absence of other information. 
 
4.2.Membership function insertion 
 
 If some expert knowledge is available then 
this can be used to initialize the memberships, or 
atleast initialize those for which knowledge exists 
with the remained being initialized using the default 
method. 
 
4.3.Rule insertion  
 
 If initial set of rules is available, it is used 
for initialization of the FZ-NN structure through 
rules insertion mode. The rules are represented as 
weights as well as inserting the existence of a rule, 
the relative importance of that rule and its 
sensitivity to input variables can be provided. 
 
4.4.Training  
 
 The FZ-NN can be accomplished either for 
the inner two rule weight layers, in which case the 
system adapts its fuzzy rules but does not adapt the 
membership functions, or for the four weight 
layers, in which case the system adapts both the 
rules and the membership functions. The only 
difference between these two options is that the 
connections in the fuzzification and defuzzification 
layers are “frozen” in the former case and they are 
subject to change in the latter case. 
 
4.5.Aggressive  
 
 A section of new data is used for further 
training and adaptation without using any of the 
old, previously used, data. 
 
4.6.Conservative  
 
 New data is added to the entire old data 
and training is performed on the entire set. 
  
 Obviously, these concepts of 
aggressiveness and conservatism in training are 
fuzzy.  In fact, some compromise of using the new 
data with a percentage of old data tends to be most 
efficient. The amount of old data retained depends 
on operating requirements (since for on-line 
adaptation using a large data set may not be 
feasible), the stationary of the relationships, and the 
length of time that changes tend to persist for until 
returning, if at all, to the original relationships. An 
example here is that of the stock market. This tends 

to exhibit long-term trends with occasional 
departures from that trend. However except in 
unusual circumstances, such as a large financial 
market crash, the long-term pattern will eventually 
be restored. The fuzzy condition making is as 
suggested below: 
 
 The core of the rule set of the implemented 
fuzzy expert system is illustrated as follows: 
 
1) Detection: For detection, one rule follows. 
Rule 1:  If THDn is A2 or PSn is B2 or Vn is C3 or Vn 

is C1 then DETECT=1 
 
2) Classification: Fifteen rules follows. 
Rule 1:  Vn1 is A4 and Nn is F1 and OSn is G1 then 

IMPULSE=1 
Rule 2:  Vn is A1 or Vn1 is A1 then OUTAGE=1  
Rule 3:  Vn is A6 or Vn1 is A6 then SWELL=1 
Rule 4:  Vn is A5 and PSn is C1 and PSn1 is C1 and 

EWn1 is D1 and {TSn1 is H2 or [TSn1 is H4 
& TSn2 is H1]} then SWELL=1 

Rule 5:  Vn1 is A5 and {PSn is C2 or PSn1 is C2} 
then SWELL=1 

Rule 6:  Vn1 is A2 then SAG=1 
Rule 7:  Vn1 is A3 and {PSn is C2 or PSn1 is C2} 

then SAG=1 
Rule 8:  Vn1 is A3 and {PSn is C1 and PSn1 is C1} 

and {THDn1 is B1 or [THDn1 is B2 and 
OSn1 is G4]} then SAG=1 

Rule 9:  Vn1 is A3 and PSn is C1 and PSn1 is C1 
and OSn is G2 and THDn1 is B2 and 
THDn2 is B2 and THDn3 is B2 then 
NOTCH=1 

Rule 10: Vn1 is A3 and Nn is F2 and OSn is G2 then 
NOTCH=1 

Rule 11: Vn1 is A4 and PSn is C1 and PSn1 is C1 and 
THDn is B3 and THDn3 is B1 and {OSn is 
G4 or OSn1 is G4} then TRANSIENT=1 

Rule 12:Vn1 is A4 and TSn1 is H3 and TSn2 is H3 
and TSn3 is H3 and OSn1 is G4 then 
HARMONIC=1 

Rule 13:THDn1 is B4 and THDn2 is B4 and THDn3 
is B4 and OSn2 is G4 then HARMONIC=1 

Rule 14:TSn1 is H4 and TSn2 is H4 and TSn3 is H4 
and OSn2 is G4 then HARMONIC=1 

Rule 15:If RNisK1 then FLICKER=1 
 
 In the above rules, Ai, Bi, Ci, Di, Fi, Gi, Hi, 
and Ki are the membership functions for the input 
patterns, and the following trapezoidal and 
triangular functions are used. 
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5. SIMULATION RESULTS 
 
 A number of power quality events of 
various types have been simulated and 
corresponding waveforms are obtained. The 
following eight distinct features inherent to 
different types of power quality events have been 
extracted: the Fundamental Component (Vn), Phase 
Angle Shift (δn), Total Harmonic Distortion 
(THDn), Number of Peaks of the Wavelet 
Coefficients (Nn), Energy of the Wavelet 
Coefficients (EWn), Oscillation Number of the 
Missing Voltage (OSn), Lower Harmonic Distortion 
(TSn), and Oscillation Number of the rms 
Variations ( RN ). The formulae for computing 
these features are given as follows: 
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 For the evaluation of the suggested work a 
distribution system with the DFR units interfaced at 
the load side is developed as shown in figure 4. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 4. Distributed system considered for  
the electrical system 

 

   
 

Figure 5. The passed query values for  
the developed electrical system  

 

   
 

Figure 6. Passed three phase pulse as observed at  
the generation side 

 

    
 

Figure 7. The distorted phase observed in  
the transmission line due to fault introduced 

 

  
 

Figure 8. The discrete feature coefficient observed for 
the three current pulses after distortion 
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Figure 9. Effective phase voltage observed for  
the developed system with sag effects 
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Figure 10. The effective phase observation obtained  

after the reference model comparison 
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Figure 11. The compensated voltage observation after 
application of Neuro modeling for the compensation 
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Figure 12. The compensated load voltage observed after 

the correction applied to the developed system 
 
6. CONCLUSIONS 
 
 In this paper a fuzzy neural network 
architecture for digital fault processing in 
distributed power system is introduced. The 
adaptive learning algorithms used along with the 
rule extraction and rule insertion techniques show 
that this is a promising approach to building 
adaptive intelligent information processing systems, 
which is suitable for fault diagnosis, is developed. 
The developed system is evaluated over a fault 
current signal extracted with the resolution feature 
description and passed to fuzzy neuro model for the 
classification and detection of fault condition in the 
observing power system. The effects of harmonic, 
power disturbances were studied and were observed 
to be improved by the suggestive approach.  
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