
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

18

A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND
DECOMPRESSION USING HUFFMAN CODING TECHNIQUES

1JAGADISH H. PUJAR, 2LOHIT M. KADLASKAR

1 Faculty, Department of EEE, B V B College of Engg. & Tech., Hubli, India-580 031
2 Student, Department of EEE, B V B College of Engg. & Tech., Hubli, India-580 031

E-mail: jhpujar@bvb.edu , lmkadlaskar@gmail.com

ABSTRACT

The need for an efficient technique for compression of Images ever increasing because the raw images need large
amounts of disk space seems to be a big disadvantage during transmission & storage. Even though there are so many
compression technique already present a better technique which is faster, memory efficient and simple surely suits the
requirements of the user. In this paper we proposed the Lossless method of image compression and decompression
using a simple coding technique called Huffman coding. This technique is simple in implementation and utilizes less
memory. A software algorithm has been developed and implemented to compress and decompress the given image
using Huffman coding techniques in a MATLAB platform.
Keywords: Huffman codes, Huffman encoding, Huffman decoding, symbol, source reduction.

1. INTRODUCTION

A digital image obtained by sampling and quantizing a
continuous tone picture requires an enormous storage.
For instance, a 24 bit colour image with 512x512 pixels
will occupy 768 Kbyte storage on a disk, and a picture
twice of this size will not fit in a single floppy disk. To
transmit such an image over a 28.8 Kbps modem would
take almost 4 minutes. The purpose for image
compression is to reduce the amount of data required for
representing sampled digital images and therefore reduce
the cost for storage and transmission. Image compression
plays a key role in many important applications,
including image database, image communications,
remote sensing (the use of satellite imagery for weather
and other earth-resource application). The image(s) to be
compressed are gray scale with pixel values between 0 to
255. There are different techniques for compressing
images. They are broadly classified into two classes
called lossless and lossy compression techniques. As the
name suggests in lossless compression techniques, no
information regarding the image is lost. In other words,
the reconstructed image from the compressed image is
identical to the original image in every sense. Whereas in
lossy compression, some image information is lost, i.e.
the reconstructed image from the compressed image is
similar to the original image but not identical to it. In this
work we will use a lossless compression and
decompression through a technique called Huffman
coding (i.e. Huffman encoding and decoding).

It’s well known that the Huffman’s algorithm is
generating minimum redundancy codes compared to
other algorithms. The Huffman coding has effectively
used in text, image, video compression, and conferencing
system such as, JPEG, MPEG-2, MPEG-4, and H.263
etc.. The Huffman coding technique collects unique
symbols from the source image and calculates its
probability value for each symbol and sorts the symbols

based on its probability value. Further, from the lowest
probability value symbol to the highest probability value
symbol, two symbols combined at a time to form a
binary tree. Moreover, allocates zero to the left node and
one to the right node starting from the root of the tree. To
obtain Huffman code for a particular symbol, all zero and
one collected from the root to that particular node in the
same order.

The main objective of this paper is to compress
images by reducing number of bits per pixel required to
represent it and to decrease the transmission time for
transmission of images .and then reconstructing back by
decoding the Huffman codes.

The entire paper is organized in the following
sequence. In section -1 need for the compression is
stated, section-2 various types of data redundancies are
explained, section-3Methods of compressions are
explained, In section-4 the implementation of lossless
method of compression and decompression (i.e. Huffman
Coding & Decoding) is done,section-5. The algorithm is
developed and in section-6 the results were presented
with explanation. Lastly, paper concludes with
References.

2. NEED FOR COMPRESSION

The following example illustrates the need for
compression of digital images [3].
a. To store a colour image of a moderate size, e.g.

512×512 pixels, one needs 0.75 MB of disk space.
b. A 35mm digital slide with a resolution of 12µm

requires 18 MB.
c. One second of digital PAL (Phase Alternation

Line) video requires 27 MB.
To store these images, and make them available over

network (e.g. the internet), compression techniques are
needed. Image compression addresses the problem of
reducing the amount of data required to represent a

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

19

digital image. The underlying basis of the reduction
process is the removal of redundant data. According to
mathematical point of view, this amounts to transforming
a two-dimensional pixel array into a statistically
uncorrelated data set. The transformation is applied prior
to storage or transmission of the image. At receiver, the
compressed image is decompressed to reconstruct the
original image or an approximation to it.

The example below clearly shows the importance of
compression. An image, 1024 pixel×1024 pixel×24 bit,
without compression, would require 3 MB of storage and
7 minutes for transmission, utilizing a high speed, 64
Kbits/s, ISDN line. If the image is compressed at a 10:1
compression ratio, the storage requirement is reduced to
300 KB and the transmission time drop to less than 6
seconds.

2.1 Principle behind Compression

A common characteristic of most images is that the
neighboring pixels are correlated and therefore contain
redundant information [3]. The foremost task then is to
find less correlated representation of the image. Two
fundamental components of compression are redundancy
and irrelevancy reduction.
a. Redundancies reduction aims at removing

duplication from the signal source (image/video).
b. Irrelevancy reduction omits parts of the signal that

will not be noticed by the signal receiver, namely the
Human Visual System.

In an image, which consists of a sequence of images,
there are three types of redundancies in order to
compress file size. They are:
a. Coding redundancy: Fewer bits to represent

frequently occurring symbols.
b. Interpixel redundancy: Neighbouring pixels have

almost same value.
c. Psycho visual redundancy: Human visual system

cannot simultaneously distinguish all colours.

3. VARIOUS TYPES OF REDUNDANCY

In digital image compression, three basic data
redundancies can be identified and exploited:
a. Coding redundancy
b. Inter pixel redundancy
c. Psycho visual redundancy

Data compression is achieved when one or more of
these redundancies are reduced or eliminated.

3.1 Coding Redundancy

A gray level image having n pixels is considered. The
number of gray levels in the image is L (i.e. the gray
levels range from 0 to L-1) and the number of pixels with
gray level rk is nk. Then the probability of occurring gray
level is rk is Pr(rk) . If the number of bits used to

represent the gray level rk is l(rk), then the average
number of bits required to represent each pixel is.

 Lavg=) (1.2)

Where,
Pr(rk)=nk / n (1.4)

 k= 0, 1, 2,……….., L-1
Hence the number of bits required to represent the

whole image is n x Lavg. Maximal compression ratio is
achieved when Lavg is minimized (i.e. when l(rk), the
length of gray level representation function, leading to
minimal Lavg , is found). Coding the gray levels in such
a way that the Lavg is not minimized results in an image
containing coding redundancy.

Generally coding redundancy is presented when the
codes (whose lengths are represented here by l(rk)
function) assigned to a gray levels don't take full
advantage of gray level’s probability (Pr(rk)
function). Therefore it almost always presents when an
image's gray levels are represented with a straight or
natural binary code [1]. A natural binary coding of their
gray levels assigns the same number of bits to both the
most and least probable values, thus failing to minimize
equation 1.2 and resulting in coding redundancy.

Example of Coding Redundancy: An 8-level image
has the gray level distribution shown in table I. If a
natural 3-bit binary code (see code 1 and l rk in table I)
is used to represent 8 possible gray levels, Lavg is 3- bits,
because l rk = 3 bits for all rk. If code 2 in table I is
used, however the average number of bits required to
code the image is reduced to: Lavg = 2(0.19) + 2(0.25) +
2(0.21) + 3(0.16) + 4(0.08) + 5(0.06) + 6(0.03) + 6(0.02)
= 2.7 bits. From equation of compression ratio(n2/n1) the
resulting compression ratio CR is 3/2.7 or 1.11.Thus
approximately 10% of the data resulting from the use of
code 1 is redundant. The exact level of redundancy can
be determined from equation (1.0).

 Table I: Example of Variable Length Coding

 RD= 1-1/1.1 = 0.099=9.9%
It is clear that 9.9% data in first data set is redundant

which is to be removed to achieve compression.

3.1.1 Reduction of Coding Redundancy

To reduce this redundancy from an image we go for
the Huffman technique were we are, assigning fewer bits

 rk Pr(rk) code1 l1(rk) code2
l2(rk)
 r0= 0 0.19 000 3 11 2
 r1=1/7 0.25 001 3 01 2
 r2=2/7 0.21 010 3 10 2
 r3=3/7 0.16 011 3 001 3
 r4=4/7 0.08 100 3 0001 4
 r5=5/7 0.06 101 3 00001 5
 r6=6/7 0.03 110 3 000001 6
 r7=1 0.02 111 3 000000 6

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

20

to the more probable gray levels than to the less probable
ones achieves data compression. This process commonly
is referred to as variable length coding. There are several
optimal and near optimal techniques for constructs such a
code i.e. Huffman coding, Arithmetic coding etc.

3.2 Inter pixel Redundancy

Another important form of data redundancy is inter
pixel redundancy, which is directly related to the inter
pixel correlations within an image. Because the value of
any given pixel can be reasonable predicted from the
value of its neighbors, the information carried by
individual pixels is relatively small. Much of the visual
contribution of a single pixel to an image is redundant; it
could have been guessed on the basis of its neighbor’s
values. A variety of names, including spatial redundancy,
geometric redundancy, and interframe Redundancies
have been coined to refer to these interpixel
dependencies. In order to reduce the interpixel
redundancies in an image, the 2-D pixel array normally
used for human viewing and interpretation must be
transformed into a more efficient but usually non-visual
format. For example, the differences between adjacent
pixels can be used to represent an image.
Transformations of this type are referred to as mappings.
They are called reversible if the original image elements
can be reconstructed from the transformed data set [1, 2].

3.2.1 Reduction of Interpixel Redundancy

To reduce the interpixel redundancy we use various
techniques such as:
1. Run length coding.
2. Delta compression.
3. Constant area coding.
4. Predictive coding.

3.3 Psycho visual Redundancy

Human perception of the information in an image
normally does not involve quantitative analysis of every
pixel or luminance value in the image. In general, an
observer searches for distinguishing features such as
edges or textural regions and mentally combines them
into recognizable groupings. The brain then correlates
these groupings with prior knowledge in order to
complete the image interpretation process. Thus eye does
not respond with equal sensitivity to all visual
information. Certain information simply has less relative
importance than other information in normal visual
processing. This information is said to be psycho visually
redundant. It can be eliminated without significantly
impairing the quality of image perception. Psycho visual
redundancy is fundamentally different from the coding
Redundancy and interpixel redundancy .Unlike coding
redundancy and interpixel redundancy, psychovisual
redundancy is associated with real or quantifiable visual

information. Its elimination is possible only because the
information itself is not essential for normal visual
processing. Since the elimination of psychovisual
redundant data results in a loss of quantitative
information. Thus it is an irreversible process.

3.3.1 Reduction of Psycho visual Redundancy

To reduce psycho visual redundancy we use
Quantizer. Since the elimination of psychovisually
redundant data results in a loss of quantitative
information. It is commonly referred to as quantization.
As it is an irreversible operation (visual information is
lost) quantization results in lossy data compression.

Table II: Huffman Source Reductions

Original source Source reduction
 S P 1 2 3 4

 a2 0.4 0.4 0.4 0.4 0.6
 a6 0.3 0.3 0.3 0.3 0.4
 a1 0.1 0.1 0.2 0.3
 a4 0.1 0.1 0.1
 a3 0.06 0.1
 a5 0.04

S-source, P-probability

4. TYPES OF COMPRESSION

Compression can be divided into two categories, as
Lossless and Lossy compression. In lossless
compression, the reconstructed image after compression
is numerically identical to the original image [3]. In lossy
compression scheme, the reconstructed image contains
degradation relative to the original. Lossy technique
causes image quality degradation in each compression or
decompression step. In general, lossy techniques provide
for greater compression ratios than lossless techniques.
The following are the some of the lossless and lossy data
compression techniques:

4.1 Lossless coding techniques

a. Run length encoding
b. Huffman encoding
c. Arithmetic encoding
d. Entropy coding
e. Area coding

4.2 Lossy coding techniques

a. Predictive coding
b. Transform coding (FT/DCT/Wavelets)

5. IMPLEMENTATION OF LOSS LESS

COMPRESSION AND DECOMPRESSION
TECHNIQUES

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

21

5.1 Huffman coding
Huffman code procedure is based on the two
observations [3].
a. More frequently occurred symbols will have shorter

code words than symbol that occur less frequently.
b. The two symbols that occur least frequently will

have the same length.
The Huffman code is designed by merging the lowest

probable symbols and this process is repeated until only
two probabilities of two compound symbols are left and
thus a code tree is generated and Huffman codes are
obtained from labelling of the code tree. This is
illustrated with an example shown in table II:

Table III: Huffman Code Assignment Procedure

 Original source reduction Source reduction
 S P code 1 2 3
4
 a2 0.4 1 0.4 1 0.4 1 0.4 1
0.6 0
 a6 0.3 00 0.3 00 0.3 00 0.3 00
0.4 1
 a1 0.1 011 0.1 011 0.2 010 0.3 01
 a4 0.1 0100 0.1 0100 0.1 011
 a3 0.06 01010 0.1 0101
 a5 0.04 01011

S-source, P-probability

At the far left of the table I the symbols are listed and
corresponding symbol probabilities are arranged in
decreasing order and now the least t probabilities are
merged as here 0.06 and 0.04 are merged, this gives a
compound symbol with probability 0.1, and the
compound symbol probability is placed in source
reduction column1 such that again the probabilities
should be in decreasing order. so this process is
continued until only two probabilities are left at the far
right shown in the above table as 0.6 and 0.4. The second
step in Huffman’s procedure is to code each reduced
source, starting with the smallest source and working
back to its original source [3]. The minimal length binary
code for a two-symbol source, of course, is the symbols 0
and 1. As shown in table III these symbols are assigned
to the two symbols on the right (the assignment is
arbitrary; reversing the order of the 0 and would work
just and well). As the reduced source symbol with
probabilities 0.6 was generated by combining two
symbols in the reduced source to its left, the 0 used to
code it is now assigned to both of these symbols, and a 0
and 1 are arbitrary appended to each to distinguish them
from each other. This operation is then repeated for each
reduced source until the original course is reached. The
final code appears at the far-left in table 1.8. The average
length of the code is given by the average of the product
of probability of the symbol and number of bits used to
encode it. This is calculated below: Lavg = (0.4)(1) +
(0.3)(2) + (0.1)(3) + (0.1)(4) + (0.06)(5) + (0.04)(5) = 2.2

bits/ symbol and the entropy of the source is 2.14
bits/symbol, the resulting Huffman code efficiency is
2.14/2.2 = 0.973.

Entropy, H=- j) (1)
Huffman’s procedure creates the optimal code for a set of
symbols and probabilities subject to the constraint that
the symbols be coded one at a time.

5.2 Huffman decoding

After the code has been created, coding and/or
decoding is accomplished in a simple look-up table
manner[9]. The code itself is an instantaneous uniquely
decodable block code. It is called a block code, because
each source symbol is mapped into a fixed sequence of
code symbols. It is instantaneous, because each code
word in a string of code symbols can be decoded without
referencing succeeding symbols. It is uniquely
decodable, because any string of code symbols can be
decoded in only one way. Thus, any string of Huffman
encoded symbols can be decoded by examining the
individual symbols of the string in a left to right manner.
For the binary code of table 3.2, a left-to-right scan of the
encoded string 010100111100 reveals that the first valid
code word is 01010, which is the code for symbol a3.
The next valid code is 011, which corresponds to symbol
a1. Valid code for the symbol a2 is 1,valid code for the
symbols a6 is 00,valid code for the symbol a6 is
Continuing in this manner reveals the completely
decoded message a5 a2 a6 a4 a3 a1 , so in this manner the
original image or data can be decompressed using
Huffman decoding as explained above .

At first we have as much as the compressor does a
probability distribution. The compressor made a code
table. The decompressor doesn't use this method though.
It instead keeps the whole Huffman binary tree, and of
course a pointer to the root to do the recursion process.

In our implementation we'll make the tree as usual and
then you'll store a pointer to last node in the list, which is
the root. Then the process can start. We'll navigate the
tree by using the pointers to the children that each node
has. This process is done by a recursive function which
accepts as a parameter a pointer to the current node, and
returns the symbol.

5.3 Development of Huffman Coding and Decoding

Algorithm
Step1- Read the image on to the workspace of the mat

lab.
Step2- Convert the given colour image into grey level

image.
Step3- Call a function which will find the symbols (i.e.

pixel value which is non-repeated).
Step4- Call a function which will calculate the

probability of each symbol.
Step5- Probability of symbols are arranged in decreasing

order and lower probabilities are merged and this

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

22

step is continued until only two probabilities are
left and codes are assigned according to rule that
:the highest probable symbol will have a shorter
length code.

Step6- Further Huffman encoding is performed i.e.
mapping of the code words to the corresponding
symbols will result in a compressed data.

Step7- The original image is reconstructed i.e.
decompression is done by using Huffman
decoding.

Step8- Generate a tree equivalent to the encoding tree.
Step9- Read input character wise and left to the table II

until last element is reached in the table II.
Step10-Output the character encode in the leaf and return

to the root, and continue the step9 until all the
codes of corresponding symbols are known.

6. RESULTS

Fig.1 Input image Fig.2 Decompressed image

The input image shown in Fig.1 to which the above

Huffman coding algorithm is applied for the generation
of codes and then decompression algorithm(i.e. Huffman
decoding) is applied to get the original image back from
the generated codes, which is shown in the Fig.2.The
number of saved bits is the difference between the no of
bits required to represent the input image i.e. shown in
the fig1 by considering each symbol can take a maximum
code length of 8 bits and the no of bits taken by the
Huffman code to represent the compressed image i.e.
Saved bits = (8*(r*c)-(l1*l2))=3212, r and c represents
size of the input matrix, l1 and l2 represents the size of
Huffman code. The compression ratio is the ratio of
number of bits required to represent the image using
Huffman code to the no of bits used to represent the input
image. i.e. Compression ratio = (l1*l2)/ (8*r*c) =
0.8456, The output image is the decompressed image i.e.
from the Fig.2 it is clear that the decompressed image is
approximately equal to the input image.

7. CONCLUSION

The experiment shows that the higher data redundancy
helps to achieve more compression. The above presented
a new compression and decompression technique based
on Huffman coding and decoding for scan testing to
reduce test data volume, test application time.
Experimental results show that up to a 0.8456

compression ratio for the above image is obtained .hence
we conclude that Huffman coding is efficient technique
for image compression and decompression to some
extent. As the future work on compression of images for
storing and transmitting images can be done by other
lossless methods of image compression because as we
have concluded above the result the decompressed image
is almost same as that of the input image so that indicates
that there is no loss of information during transmission.
So other methods of image compression can be carried
out as namely JPEG method, Entropy coding, etc.

 REFERENCES

[1] Ternary Tree & FGK Huffman Coding Technique

Dr. Pushpa R.Suri † and Madhu Goel Department of
Computer Science & Applications, Kurukshetra
University, Kurukshetra, India

[2] Massachusetts Institute of Technology Department
of Electrical Engineering and Computer Science.

[3] Compression Using Fractional Fourier Transform
A Thesis Submitted in the partial fulfillment of
requirement for the award of the degree of Master of
Engineering In Electronics and Communication. By
Parvinder Kaur.

[4] RL-Huffman Encoding for Test Compression and
Power Reduction in Scan Applications-MEHRDAD
NOURANI and MOHAMMAD H.
TEHRANIPOUR, The University of Texas at
Dallas.

[5] A Novel VLSI Architecture of Hybrid Image
Compression Model based on Reversible Blockade
Transform C. Hemasundara Rao, Student Member,
IEEE, M. Madhavi Latha, Member, IEEE

[6] D.A.Huffman, A Method for the construction of
Minimum-redundancy Codes, Proc. IRE, vol.40,
no.10, pp.1098-1101,1952.

[7] A.B.Watson,“Image Compression using the DCT” ,
Mathematica Journal, 1995,pp.81-88.

[8] DAVID A. HUFFMAN, Sept. 1991, profile
Background story: Scientific American, pp. 54-58.

[9] Efficient Huffman decoding by MANOJ
AGGRAWAL and AJAI NARAYAN.

[10] C. SARAVANAN Assistant Professor, Computer
Centre, National Institute of
Technology,Durgapur,WestBengal, India, Pin –
713209.R. PONALAGUSAMY Professor,
Department of Mathematics, National Institute of
Technology, Tiruchirappalli, Tamilnadu, India, Pin
– 620015.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

23

AUTHOR PROFILES:
Jagadish H. Pujar received the
M. Tech degree in Power and
Energy Systems from NITK
Surthkal, Mangalore University in
the year 1999. Currently, he is
working as Asst. Professor in the
Department of Electrical &
Electronics Engineering, B. V. B.
College of Engineering &

Technology, Hubli, Karnataka, India and
simultaneously pursuing his Ph.D in EEE from the
prestigious Jawaharlal Nehru Technological
University, Anatapur, India. He has published a
number of research papers in various National and
International Journals and Conferences. His areas of
interests are Soft Computing Techniques based Digital
Control Systems, Power Electronics, AI based Digital
Image Processing, MATLAB, etc.

Lohit M. Kadlaskar is pursuing
his B.E degree in the Department
of Electrical & Electronics
Engineering, B.V.B. College of
of Engineering & Technology,
Hubli, Karnataka, India. His areas
of interests are Digital Image
Processing, Fuzzy Logic and

Artificial Neural Networks, MATLAB, etc.

