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ABSTRACT 
 

High data rates are a primary concern for wireless system designers today. It is likely that future 
breakthroughs in wireless communications will be driven mainly by the demand for high data rate 
applications. Streaming video for example, requires two to three orders of magnitude higher data rates than 
speech. A simple solution for increasing data rate is to increase channel bandwidth. This however is not 
usually considered, as it is very costly. Use of multiple element arrays (MEA) at both transmitter & 
receiver on the other hand can result in the realization of these higher data rates. So far, only partial 
consideration has been given to the analysis of space-time coding in the practical case of correlated fading. 
In this work, we will expand newly published results on the performance of space-time codes in the 
presence of spatial fading correlation, by quantifying the impact of the fading on different classes of space-
time codes. Explicitly, we show that in the case of two and above receive antenna, transmit-side correlation 
has a more brutal impact on the performance of non-orthogonal space-time codes. Orthogonal spacetime 
codes offer maximum potency against transmit correlation. 
 
Keywords: Multiple input multiple output MIMO, Capacity, Autonomous Hybrid Power System (AHPS) 
 

I. INTRODUCTION  
In the past years, diverse diversity techniques, 
amongst them time diversity, frequency diversity, 
and space diversity, have been used to improve the 
reliability of communications channels. Space 
diversity has been progressively more popular since 
it is a means of improving the reliability without 
scarifying the spectral efficiency. Initial work 
concentrated on receive diversity, i.e. the use of 
multiple antennas at the receiver, an attention on 
transmit diversity emerged lately. In this 
framework, the novel notion of space-time coding 
[1] - [5] sparked widespread interest. In most work 
on space-time codes, uncorrelated spatial fading 
was assumed. However, an insufficiently rich 
scattering environment or too closely spaced 
antennas can cause the individual antennas to be 
correlated. 
In his paper [6], H. Bolcskei used a physically 
motivated Rayleigh fading MIMO channel model 
proposed in [7] that incorporates receive and 
transmit correlation to derive results on the impact  

 
 
of the correlation on error performance. It /has been 
shown that that the maximum achievable diversity 
order is given by the product of the ranks of receive 
and transmit correlation matrices. 
In this paper we will discuss why using multiple 
antennas at both the transmitter and receiver can be 
an effective technique for increasing capacity of a 
wireless link. We will consider a single user 
Gaussian channel with multiple transmitting and 
receiving antennas. We will consider the case 
where there are an equal number of transmitting & 
receiving antennas and will denote that number by 
n. The analysis can easily be generalized to any 
combination of transmit & receive antennas. 
We will consider a linear model for the channel in 
which the received vector y & Cn depends on the 
transmitted vector x & Cn  via  

y = Hx + n 
Where H is a n x n complex matrix & n is zero 
mean complex Gaussian noise, with independent, 
equal variance real & imaginary parts. We will 
consider H to be a random matrix chosen according 
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to a probability distribution and each use of the 
channel corresponding to an independent 
realization of H. 
We will consider capacity to be a random variable 
and the goal will be to find the complementary 
cumulative distribution function curves. These 
curves will give us an idea of the increase in 
capacity that can be achieved using multiple 
transmit & receive antennas. For the baseline case 
of a single transmit & receive antenna, it is well 
known that Shannon’s classical capacity formula 
predicts an increase in capacity of 1 bit/ 
transmission for a 3 dB increase in SNR, in the high 
signal-to-noise ratio region. We will find that for 
independent Rayleigh fading paths between n 
transmit & receive antenna pairs, this increase is n 
bits/transmission for a 3 dB increase in SNR, for 
large n. 

II. CHANNEL MODEL: 
We consider a channel with input x and output y = 
Hx + n, where n is the additive white Gaussian 
noise. The channel matrix H is random and 
independent of both x and n. It is assumed that 
entries of H are zero mean, uncorrelated Gaussian 
with independent real and imaginary parts each 
with variance ½. Equivalently, each entry of H has 
uniformly distributed phase and Rayleigh 
distributed magnitude, with expected magnitude 
square equal to unity. This is intended to model a 
Rayleigh fading channel. 
We will consider a “quasi-static” analysis that is the 
channel remains constant during a burst of data 
transmission and changes randomly from burst to 
burst. The channel characteristics are not known to 
the transmitter but the receiver knows the channel 
perfectly. Since the transmitter does not know the 
channel, we will assume constant transmit power.  
We will only analyze the narrowband case where 
the bandwidth is taken to be narrow enough that the 
channel can be treated as flat over frequency. We 
will assume that the environment has a large 
number of scatterers so that the Rayleigh fading 
model is appropriate. The assumption of 
independent Rayleigh paths is also justified since 
for antenna elements separated by λ/2, the path 
losses tend to roughly decorrelate [8].  
Capacity Expressions for MIMO systems: 
Assuming that the transmitted vector is composed 
of n statistically independent equal power 
components each with a Gaussian distribution, the 
capacity expression can be derived from a general 
basic formula given as  

uA
AAC xy

det
det.detlog 2=   (1) 

where [ ] nx In
PxxEA .ˆ* ==

1, Ay = E[yy∗] = N 

*.ˆ GGn
P 2 and Au = E[uu*] where u is the 2n 

dimensional vector (x, y)’. So Au has Ax in the 
northwest corner and Ay in the southeast corner. 
The remaining two corners are transpose conjugates 

of each other. The northeast of these is 
^
P /n . G∗. 

The statistical independence among all components 
of the 2n dimensional vector (x, y) is what 
facilitates the explicit computation of  Ax, Ay & Au. 
This is because all entries are variances and 
covariances of Gaussians. Using the relation  

)det(.detdet 1BCADA
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we can write Au as a multiple of det Ax so det Ax 
can be cancelled in (1). After the cancellation the 
numerator in the argument of the logarithm 

becomes[N . In + 
^
P /n . GG∗]. The denominator 

becomes det[N-1.In]. Since the product of 
determinants is the determinant of the product and 

^
P 1/2 . G = P1/2 . H and ρ = P/N, the formula for 
generalized capacity is  

])./(det[log 2
∗+= HHnIC n ρ  bps/Hz  (3) 

A. A brief discussion of [1]: 
This part relies to a great extent on material in [8] 
so it is fair to mention briefly what I understand 
from these two papers. Whereas both [8] and [9] 
discuss capacity limits in a fading wireless channel, 
[9] approaches the problem from an information 
theoretic point of view (it also discusses capacity of 
multi antenna Gaussian channels with fading 
channels as a special case), while [8] looks at it 
from a classical perspective.  
The paper by Foschini and Gans [8] is motivated by 
the need to find limits on data rates that can be 
achieved in a multi element arrangement with 
antennas at both transmitter and receiver. The 
channel model assumed is the same as mentioned 
above. The paper lists capacity expressions for 
different scenarios like the cases with no diversity, 
only receive diversity, only transmit diversity, 
combined transmit and receive diversity (MIMO) 
and spatial cycling using one transmitter at a time. 
The last of these cases is where n transmitters and n 
receivers are used, but only one transmitter is used 
at a time i.e. cycling through all n transmitters one 
at a time.  It then goes on to derive capacity 
                                                 

1 We assume that G is the actual channel response and H is 

the normalized channel response so that 
^
P 1/2 . G = P1/2 . H 

defines the relationship between G and H. 
2 * denotes complex conjugate transpose. 
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expressions for combined transmit receive diversity 
cases (the last two cases). Specifically it derives a 
lower bound on capacity for MIMO channels and 
analyzes the expression for large number of 
antennas (n → ∞). The result indicates that for large 
n, capacity scales at least linearly with increasing n, 
and for ρ large is given by log2(ρ/e). Using the 
expressions for capacity, complementary 
cumulative distribution (ccdf) curves are generated 
for a number of scenarios. The results are discussed 
in detail, underlining the capacity benefits that can 
be achieved using multiple antennas at transmitter 
and receiver. Capacity benefits from using MIMO 
are also compared to receive and transmit diversity 
scenarios and it is shown that MIMO is in fact 
superior to both transmit and receive diversity in 
terms of the data rates that it promises. The paper 
then touches briefly upon 1-D and 2-D codes for 
systems transmitting in a wireless environment and 
analyzes the performance of 1-D codes. It then 
gives a summary of main points and concludes with 
a list of suggestions for future work specially in 
antenna theory to realize the use of multi element 
arrays on transmitters and receivers. 

III. SIMULATIONS: 
What follows are results of simulations for 
obtaining complementary cumulative distribution 
function curves for capacity of a number of MIMO 
systems, as well as comparison of MIMO systems 
with transmit and receive diversity. 
Explanation of Simulation Results: 
Figures 1. (a), (b) & (c) show the complementary 
cumulative distribution function curves for three 
different MIMO systems (having n transmit and 
receive antennas with n = 2, 4 & 8 respectively). 
Capacity is measured in bits/s/Hz or equivalently in 
bits/transmission. The curves have been plotted for 
SNRs ranging from 0 to 21 dB in steps of 3 dB. The 
total transmit power has been kept constant. Each 
figure also includes the baseline case of only one 
transmit and receive antenna for comparison. The 
curves clearly underline the capacity advantage of 
MIMO systems over SISO systems. For example 
for an average received SNR of 21 dB, the plots 
predict that for 99% of the channels the capacity is 
7, 19 & 42 bits/transmission for n = 2, 4 & 8 
respectively whereas it is only about 1 
bit/transmission for the single transmit & receive 
antenna case. The increase in capacity is also 
substantial for Pout’s3 of 5%, though less than that 
for 1%. The plots also indicate the capacity 

                                                 
3 Pout is the outage probability defined as the probability that 

capacity is less than the value on abscissa. 

advantage of going to a higher n, the number of 
transmit and receive antennas.  
The capacities listed here may at first seem 
unreasonably high especially for the case of 8 
transmit and receive antennas. This is because of 
the fact that we are not doing a fair comparison. 
Indeed a better way would be to compare 
capacity/symbol/dimension for the three different 
cases to the baseline case of a single transmit & 
receive antenna. Doing so we find that 7 
bits/transmission for n = 2 correspond to 3.5 
bits/symbol/dimension, 19 bits/transmission for n = 
4 correspond to 4.75 bits/symbol/dimension & 42 
bits/transmission for n = 8 correspond to 5.25 
bits/symbol/dimension, all considerably higher than 
the 1 bits/symbol/dimension for the n = 1 case.    
Figure 2. shows capacity in bits/symbol/dimension 
for n = 4 & 8. Again we see the capacity benefits in 
going to a higher number of transmit and receive 
antennas at small Pout’s.  
 
 

 
(a) 

 

 
(b) 
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(c) 

Figure 1, Average received SNR ranging from 0 to 21 
dB in steps of 3 dB. (a) Two antennas at both 
transmitter and receiver(blue curves). Single antenna 
at both transmitter and receiver (red curves).  (b) 
same as (a) but with four transmit and receive a 

 
Figure 2 Figure 2. Capacity in bits/symbol/ dimension 
for (8x8) & (4x4) MIMO systems. 

IV. MIMO VS. DIVERSITY: 

 
(a) 

 
(b) 

Figure 3 .(a), (b) A comparison of MIMO vs. diversity 

Figure 3(a). shows a comparison between using 4 
antennas both at the transmitter and receiver, using 
a single transmitter and 4 antennas at the receiver 
for diversity and using four transmitters and a 
single antenna at the receiver, again for diversity. 
The curves are plotted for an average received SNR 
of 21 dB. Both selection combining and maximal 
ratio combining are considered for receive 
diversity. The curve farthest to the left is the 
capacity curve for a single transmit & receive 
antenna. The three curves in the middle are the 
diversity curves. It may be assumed that the curves 
for diversity represent the data rates that can be 
achieved for an average received SNR of 21 dB. 
The rightmost curve is the capacity curve for a (4,4) 
MIMO system. 
Looking at the curves, it becomes obvious that 
MIMO is superior to diversity in terms of data rates 
that can be achieved at least theoretically (though 
with the use of strong coding schemes we can get 
data rates close to capacity). Also the benefits of 
MIMO become more pronounced as we increase n 
(fig 3 (b)).  

A. Simulation Setup for correlation performance 
In order to assess the performance of the space time 
codes, we implemented a simulation testbed in 
Matlab. For simplicity, we investigated codes for 
two transmit antennas. We build both space-time 
trellis codes and Alamouti-type block codes as the 
coding mechanism. The trellis code has either 4, 8, 
or 16 states.  
The Rayleigh fading channel model is implemented 
according to [6]. We simulated the performance of 
a given code under the assumption that the channel 
would stay constant over a number of symbols (this 
period is called a “frame”). Then, it would 
randomly change to a different realization. A 
number of these Monte-Carlo runs are performed, 
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and then the symbol error rate and the frame error 
rate are computed as the average over all channel 
realizations. In this paper, we define frame error 
rate as the rate of completely error-free frames. The 
antenna correlation coefficient  is used as the 
parameter in the latter case. 

B. Diversity order of Codes 

 
Figure 4 Varying diversity order of space-time codes 

For the i.i.d. channel case, we could demonstrate 
the well-known result that the diversity order, i.e. 
the slope of the SER (Symbol Error Rate) curve, is 
equal to the product of number of transmit and 
receive antennas.  
It can be seen in Fig. 4 that the (2Tx, 1Rx) (i.e. two 
transmit antennas, one receive antenna) case has the 
lowest SER slope, i.e. the lowest diversity order of 
2. The (2Tx, 2x) has diversity order of 4, its error 
fallow is steeper.  
The (2Tx, 3Rx) case has even steeper fallow with 
diversity order 6. Also included in this graph is 
what happens when some of the antennas are 
correlated: In the (2Tx, 4Rx) case, the transmit 
correlation is set to 1.  
That way, we lose transmit diversity altogether, and 
the overall diversity order becomes 4. Indeed, the 
slope is the same as in the (2Tx, 2Rx) case. 
These results equally apply to the space-time trellis 
codes or to any other class of space-time codes, 
they would only have different coding gain, i.e. the 
curves are shifted up or down. 

C. Performance under Correlation  
The goal of our project was to show the 
disproportionate performance degradation of non-
orthogonal space-time codes under transmit 
correlation. For that reason, we did not plot the 
error rate against the SNR, but against the transmit 
antenna correlation coefficient. It was observed that 
in general for values less up to  = 0.8 the 

performance of both block and trellis codes 
degraded slightly, but without any advantage of 
block codes. The predicted faster degradation of 
non-orthogonal code performance happened only 
above  = 0.8. 
A not immediately obvious phenomenon can be 
observed with respect to the frame error rate: In the 
case of large frame sizes, the symbol error rate 
performance of block codes is better, while at the 
same time the frame error rate performance of the 
trellis codes is superior. This effect can be 
explained by the fact that the trellis codes perform a 
ML sequence detection. Once a symbol is detected 
in error, it is very likely that a whole sequence of 
neighboring symbols is also erroneous. Therefore, 
the errors will appear rather “bursty”, while with 
block codes the errors are more evenly spread out. 
These different error event characteristics explain 
that with trellis codes, the probability of receiving 
an error-free block can be higher than for block 
codes, while the overall symbol error performance 
is nevertheless worse. Hence, there is no simple 
relation between symbol error and frame error rate 
plots, so we provided both in our figures.  
For a fixed SNR value, we compared trellis and 
orthogonal block code performance in the region of 

 = 0.6,…, 1.0. The number of transmit antennas 
was held constant at two, while the number of 
receive antennas was varied from 1 to three, 
yielding more and more diversity advantage in the 
i.i.d. case. 

 
Figure 5 Performance of (2Tx, 1Rx) space time 
codes 

For the case of one receive antenna at SNR = 15 
dB, we found no significant performance 
differences. As can be seen in Fig. 2, the two curves 
run parallelly. 
This observation can be explained by the fact that 
under transmit correlation, nonorthogonal code 
designs degrade the diversity order slightly beyond 
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the drop to d = MR. In the case of MR = 1, we have 
reached the lowest possible diversity order. The 
performance cannot degrade any further, therefore 
it is impossible to see a difference in the 
performance of orthogonal and non-orthogonal 
codes.  

 
Figure 6 Performance of (2Tx, 2Rx) space time 
codes 

However, in cases like this, where diversity order 
breaks down completely, matters become 
complicated by several issues, one of them being 
that union bound concepts do not apply any more in 
fading channels. To our understanding, there are 
still various phenomena in the one receive antenna 
case that cannot be entirely explained. 
When moving to two antennas, the predicted effect 
becomes clearly visible (Fig. 6). In terms of frame 
error rate, the advantage of the trellis code shrinks 
from about 4.5 at = 0.6 to 2 at = 0.999. 
With three receive antennas at SNR = 5.5 dB, the 
effect becomes even more pronounced (Fig. 7). 
We also investigated the performance of the 
different versions of spacetime trellis codes. In 
particular, we compared the 8-state and 16-state 
codes. 

 
Figure 7 Performance of (2Tx, 3Rx) space time 
codes 

It can be seen from Figs. 7 and 8 that the 16-state 
code is more powerful to begin with, but its 
performance degrades to about the same level as 
that of the 8-state codes in high correlation. 
Therefore, the observed effect becomes more 
pronounced with the better 16-state code. 
 

 
Figure 8 Performance of (2Tx, 3Rx) space time 
codes 

V. CONCLUSIONS: 
While it is well known that receive diversity, 
especially MRC, offers significant capacity 
improvement over single antenna reception, in 
contrast, the simultaneous use of transmit and 
receive diversity greatly increases the capacity over 
what is possible with only transmit or receive 
diversity.  Use of multiple antennas greatly 
increases the achievable rates on fading channels if 
the channel parameters can be estimated at the 
receiver and if the path gains between different 
antenna pairs behave independently.  The second of 
these requirements can be met by using strong 
coding strategies. The first requirement, however, is 
difficult to fulfill and can be justified in certain 
communication scenarios and not in others. A more 
realistic assumption is that of a slowly varying 
channel instead of channel state information at the 
receiver. We have shown that non-orthogonal 
space-time codes suffer from more performance 
degradation under transmit-side correlated fading 
than their orthogonal counterparts. These results 
were previously predicted by theory. The more 
receive antennas are used, the more pronounced the 
effect becomes. It is to be believed that the relative 
performance hit that non-orthogonal codes take 
under transmit correlation will also increase with 
the number of transmit antennas. This could be 
subject of future research.  
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