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ABSTRACT 
 

Distributed systems can be very large and complex and the many different considerations which influence 
their design can result in a substantial body of specification, which needs a structuring framework if it is to 
be managed successfully. The purpose of the RM-ODP is to define such a framework. The Reference 
Model for Open Distributed Processing (RM-ODP) provides a framework within which support of 
distribution, inter-working and portability can be integrated. It defines: an object model, architectural 
concepts and architecture for the development of ODP systems in terms of five viewpoints.  However, RM-
ODP is a meta-norm, and several ODP standards have to be defined. Indeed, the viewpoint languages are 
abstract in sense that they define what concepts should be supported and not how these concepts should be 
represented using the UML/OCL meta-modeling approach. In this paper, we report on the definition and 
address of the syntax and semantics for a fragment of ODP object concepts defined in the RM-ODP 
foundations part and in the Engineering language. These concepts are suitable for describing and 
constraining ODP engineering viewpoint specifications. We give new approach and model it by using the 
RM-ODP engineering language. 
 

Keywords: RM-ODP, Engineering Language, Engineering viewpoint, Structural Concepts, Denotational 
Meta-modeling Semantics, UML/OCL. 

 
1. INTRODUCTION 

 
The rapid growth of distributed processing has led 
to a need of coordinating framework for the 
standardization of Open Distributed Processing 
(ODP). The open distributed processing (ODP) 
computational viewpoint describes the functionality 
of a system and its environment in terms of a 
configuration of objects interacting at interfaces, 
independently of their distribution. Quality of 
service (QoS) contracts and service level 
agreements are an integral part of any 
computational specification, which is specified in 
ODP in terms of environment contracts. The 
Reference Model for ODP (RM-ODP) [1-4] 
provides such a framework. It creates an 
architecture supporting distribution, networking and 
portability. The foundations part [2] contains the 
definition of concepts and analytical framework for 
normalized description of (arbitrary) distributed 
processing systems. These concepts are gathered in 

several categories including basic modeling 
concepts, specification concepts, organizational 
concepts, and structuring concepts. The architecture 
part [3] contains specifications of the required 
characteristics that qualify distributed processing to 
be open.  It defines a framework containing: 

• Five viewpoints called: enterprise, information, 
computation, engineering and technology; which 
provide a basis for the ODP systems specification. 

• A language for each viewpoint, defining 
concepts and rules to specify ODP systems from 
the corresponding viewpoint. 

• Specifications of functions required to support 
ODP systems. 

• Transparency prescriptions, showing how to 
use the ODP functions to achieve distribution 
transparency. 

In other words, the first three viewpoints do not 
take into account neither distribution nor 
heterogeneity inherent problems. This principle 
corresponds closely to the concepts of PIM 
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(Platform Independent Model) and PSM (Platform 
Specific Model) models in MDA (Model Driven 
Architecture) architecture [5]. However, RM-ODP 
is a meta-norm [6] and can not be directly applied. 
Indeed, for instance, the viewpoint languages are 
abstract in sense that they define what concepts 
should be supported, not how these concepts should 
be represented. It is important that RM-ODP does 
not use the term language in its largest sense: a set 
of terms and rules for the construction of 
statements from terms; it does not propose any 
notation for supporting viewpoint languages. 

In fact, RM-ODP provides only a framework for 
the definition of new ODP standards. These 
standards include   those for ODP functions [7-8]; 
standards for modeling and specifying ODP 
systems; standards for methodology, programming, 
implementing, and testing ODP systems.  
Elsewhere, the languages Z [9], SDL [10], LOTOS 
[11] and, Esterelle [12] are used in RM-ODP 
architectural semantics part [4] for the specification 
of ODP concepts.  Unfortunately, up to now, no 
formal method is suitable to specify and verify 
every aspect of an ODP system. The inherent 
characteristics of ODP systems imply the need to 
integrate different specification languages and to 
handle non-behavioral properties of ODP systems 
that is the QoS concepts. 

There had been an amount of research to apply 
UML [13] as a syntactic notation for the ODP 
viewpoint language [14-16].  The taken approach is 
to give a meta-model description for the language; 
it is a definition of this language by itself. This is 
presented in terms of three views: the abstract 
syntax, the well-formedness rules and the modeling 
elements semantics. The abstract syntax is 
expressed using a subset of UML static modeling 
notations that are class diagrams.  The well-
formedness rules are expressed in OCL [17], a 
precise language based on first order-logic. OCL is 
used for expressing constraints on objects structure 
which cannot be expressed by class diagrams only. 
We used the meta-modeling approach [18] to 
define syntax of a sub-language for ODP QoS-
aware enterprise viewpoint specifications.  

Furthermore, a part of UML meta-model itself 
has a precise semantic [19] defined using 
denotational meta-modeling approach. The 
denotational approach [20] is realized by defining 
the instance form of every language element and a 
set of rules determining which instances are 
denoted or not by a particular language element. 
There are three main steps through a denotational 
meta-modeling approach to the semantics: 

1. Define the meta-model for the model’s 
language: object template, interface template, 
action template, type, and role. 

2. Define the meta-model for the instances’ 
language: objects, binders, and interfaces. 

3. Define the mapping or the meaning function 
between these two languages. 

There are good reasons for adopting the UML 
meta-modeling approach in context of ODP 
systems.  The UML meta-models provide a precise 
core of any CASE tool.  The tools include a 
consistency checker that makes sure that invariants 
defined on a model do not conflict, a consistency 
checker between meta-models makes sure that 
different system specifications are consistent and 
do not conflict. Besides, for testing ODP systems 
[2, 3], the current techniques [21, 22] are not 
widely accepted.  A new approach for testing, 
named agile programming [23, 24] or test first 
approach [25] is being increasingly adopted. The 
opinion is integrating system model and testing 
model using UML meta-modeling approach [26]. 
This approach is based on the executable UML 
[27]. In this context, OCL is used to specify the 
properties that have to be tested. OCL also serves 
to attach constraints to UML meta-models in order 
to verify the coherence of meta-models and to 
translate the constraints into code to evaluate them 
on instance models. 

 
The part of RM-ODP considered in this paper is 

a subset for describing and constraining the 
structure of ODP Engineering viewpoint 
specifications. It consists of modeling and 
specifying concepts defined in the RM-ODP 
foundations part and concepts in the Engineering 
language. The UML/OCL meta-model developed 
here elaborates the conceptual core of the ODP 
Engineering viewpoint language. We do not 
consider concepts for describing dynamic behavior. 

The rest of the paper is organized as follows. 
Section 2 presents the literature review. Section 3 
describes the subset of concepts considered in this 
work named the object model and Engineering 
viewpoint. Section 4 describes the meta-model for 
generic models, object, action, template, 
type/subtype, class/subclass and basic/derived 
class. Section 5 describes the meta-model for 
models instances, which are essentially object 
diagrams. Section 6 makes the connection between 
models and their instances. This introduces the 
basic form of the semantic approach described 
here. Section 7 we give approaches and model it by 
using the RM-ODP engineering language. A 
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conclusion and perspectives end the paper. 
 
 A conclusion and perspectives finalize the 

paper. 
 

2. LITERATURE OF REVIEW 
 

Behavior models play a central role in system 
specifications. Many specification languages can be 
used to specify the behavior of a business and IT 
systems. A system designer chooses a particular 
language depending on the designer’s experience 
and on the problems he is trying to solve. For 
example, to show the conformance of the 
implementation of a system behavior with its 
specification, a system designer can use formal 
languages (for example, Pi-calculus). To visualize 
the state machine of a developed system, a system 
designer may use a UML statechart diagram or 
activity diagram (a variation of a state machine in 
which the states represent the performance of 
actions or subactivities [34]). The design of 
complex systems requires that a system designer 
solve many problems simultaneously (visualize a 
model, check the conformance of a model, 
etcetera), thus several specification languages 
should be used. This raises a problem: a system 
designer needs to build several independent models 
of the same system. This leads to the duplication of 
the information, which can be an additional source 
of errors: models done in different languages can 
be inconsistent. 

 
The concept from the RM-ODP semantic domain 

that is necessary for the modeling of the behavior 
of systems was considered in [35]. The basic 
concepts that were used in this work are taken from 
the clause 8 “Basic modeling concepts” of the RM-
ODP Part 2. These concepts are: action, time, and 
state. According to [30], these concepts are 
essentially the first-order propositions about model 
elements. Also used, some concepts (type, instance, 
and precondition, postcondition) from the clause 9 
“Specification concepts”. Specification concepts 
are the higher-order propositions applied to the 
first-order propositions about the model elements. 
Wegmann [31] states: “Basic Modeling Concepts 
and generic Specification Concepts are defined by 
RM-ODP as two independent conceptual 
categories. Essentially, they are two qualitative 
dimensions that are necessary for defining model 
elements that correspond to entities from the 
universe of discourse”. 

 
To explain the semantics of the generic model 

more clearly, the Alloy formalism was used. Alloy 
is a simple modeling language that allows a 
modeler to describe the conceptual space of a 
problem domain. Using Alloy, specifying the 
RMODP semantic domain can be obtained. 

 
RM-ODP conceptual elements from the semantic 

domain can be partitioned in the following way: 
model RM-ODP { 
domain {ODP_Concepts} 
state { 
partition … BasicModellingConcepts, 
SpecificationConcepts : static ODP_Concepts 
… 
         } 
Code Fragment 1. RM-ODP model 
 

Let’s consider the minimum set of modeling 
concepts (Basic Modeling Concepts and 
Specification Concepts) necessary for the 
specification of systems behavior. There are a 
number of approaches for specifying the behavior 
of distributed systems coming from people with 
different backgrounds and considering different 
aspects of behavior. “However, they can almost all 
be described in terms of a single formal model” 
[32]. Based on [32], Lamport specifies the behavior 
of a concurrent system. A system designer has “to 
specify a set of states, a set of action and a set of 
behavior”. Each behavior is modeled as a finite or 
infinite sequence of interchangeable states and 
actions.  

 
To describe this sequence there are mainly two 

dual approaches. According to [33] they are: 
1. “Modeling systems by describing their set of 

actions and their behaviors”. 
2. “Modeling systems by describing their state 

spaces and their possible sequences of state 
changes”. 

“These views are dual in the sense that an action 
can be understood to define state changes, and state 
changes occurring in state sequences can be 
understood as abstract representations of actions” 
[33]. In [35] work, he/she considers both of these 
approaches as an abstraction of the more general 
approach based on RM-ODP. 

 
3. RM-ODP 

 
RM-ODP is a framework for the construction of 
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open distributed systems.  It defines a generic 
object model in foundations part, and an 
architecture which contains specifications of the 
required characteristics that qualify distributed 
processing as open. The architecture extends and 
specializes object concepts of foundations part. The 
RM-ODP architecture model consists of a set of 
five viewpoint models, the concepts and rules 
associated with the language of each model, the 
distribution transparency constructs, and the ODP 
functions. The entire RM-ODP model is based on 
the RM-ODP foundations of an object model, rules 
for specification, and rules for structuring  

RM-ODP (Model Reference - Open Distributed 
Processing) [ISO96a] [ISO96b] [ISO98] is an 
international standard published by ISO/IEC. It 
provides a reference model for the specification of 
open distributed applications. The RM-ODP model 
can describe a system according to five viewpoints; 
each viewpoint is interested in a particular aspect of 
the system. These viewpoints are: 

Enterprise. It introduces the concepts necessary 
to represent a system in the context of an enterprise 
on which it operates. It is interested to the objective 
and the policies of a system. A system is then 
represented by a community which is a 
configuration of enterprise objects formed to 
achieve a goal.  

Information. It is focused on the semantics of 
information and the treatment carried out on 
information. A system is then described by 
Engineering objects, relationships and behavior. 
The description is expressed through the use of 
three diagrams named invariant, static and 
dynamic. 

Computational. It allows a functional 
decomposition of the system. The various functions 
are fulfilled by objects that interact thanks to their 
interfaces. The basic concepts define the type of the 
interfaces which the computational objects support, 
the way in which the interfaces can be bound, and 
the forms of interaction which can take place. 
Adaptation management in multi-view systems  

Engineering. It is focused on the deployment 
and communication of a system. It defines 
communication concepts like channel, stub, 
skeleton and deployment concepts like cluster, 
capsule, etc. 

Technology. It describes the implementation of a 
system in term of configuration of technical objects 
representing the hardware and software 
components of the implementation. The goal of 
such a description is to provide additional 
information for the implementation and the test, by 

selecting standard solutions for the components and 
the communication mechanisms. 

 
 RM-ODP OBJECT MODEL 

(FOUNDATIONS PART) 
 

The RM-ODP international standard [5] presents 
a very good architectural framework for modeling 
distributed systems. In our experience, 
unfortunately at the present time not many 
modelers use the standard in their everyday 
practice. It’s a pity, considering the amount of 
highly qualified experts’ knowledge invested in the 
project and the big constructive potential that its 
results might bring to practice if they were 
adequately used. We see one of the ways to 
promote the use of RM-ODP in formalization of its 
framework. The formalization requires a careful 
and attentive translation of the standard definitions 
into formal logical constructions, but once done it 
would allow creation of ODP-based software 
toolsets that could bring to modelers an “easy to be 
applied” version of the standard. 

Generally, the term object model refers to the 
collection of concepts used to describe objects in an 
object-oriented specification (OMG CORBA), 
Object model [5] and RM-ODP object model [4]. It 
corresponds closely to the use of the term data-
model in the relational data model. To avoid 
misunderstandings, the RM-ODP defines each of 
the concepts commonly encountered in object 
oriented models. It underlines a basic object model 
which is unified in the sense that it has successfully 
to serve each of the five ODP viewpoints. It defines 
the basic concepts concerned with existence and 
activity: the expression of what exists, where it is 
and what it does. The core concepts defined in the 
object model are object and action. An object is the 
unit of encapsulation: a model of an entity. It is 
characterized by its behavior and, dually, by its 
states. Encapsulation means that changes in an 
object state can occur only as a result of internal 
actions or interactions. An action is a concept for 
modeling something which happens. ODP actions 
may have duration and may overlap in time. All 
actions are associated with at least one object: 
internal actions are associated with a single object; 
interactions are actions associated with several 
objects.  

Objects have an identity, which means that each 
object is distinct from any other object. Its identity 
implies that there exists a reliable way to refer to 
objects in a model. Depending on the RM-ODP 
viewpoint, the emphasis may be placed on behavior 
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or on states. When the emphasis is placed on 
behavior, an object is informally called to perform 
functions and offer services, these functions are 
specified in terms of interfaces. An interface is a 
subset of interactions where an object can 
participate. Contrary to other object models, ODP 
object can have multiple interfaces. 

The other concepts defined in the object model 
are derived from concepts of object and action; 
those are class, template, type, subtype/ supertype, 
subclass/ superclass, composition and behavioral 
compatibility. Though, the composition of objects 
is a combination of two or more objects yielding a 
new object. An object is behaviorally compatible 
with a second object with respect to a set of criteria 
if the first object can replace the second object with 
no notice by the environment on the difference in 
object behavior on basis of that set of criteria. 

A type (of an $<x>) is a predicate characterizing 
a collection of <x>s. The ODP notion of type is 
much more general than most of object models. 
Also, ODP permits to define several types, and 
dynamically change types. 

A class (of an <x>) defines the set of all <x>s 
satisfying a type. An object class, in the ODP 
meaning, represents the collection of objects that 
satisfy a given type.  Many object models do not 
clearly distinguish between a specification for an 
object and the set of objects that fit the 
specification. ODP makes the distinction between 
template and explicit class. 

An <x> template specifies the common features 
of a collection x in a sufficient detail that an x can 
be instantiated using it.  

 
  RM-ODP ENGINEERING LANGUAGE  

 
The Engineering held by the ODP system about 

entities in real world, including the ODP system 
itself, is modeled in an Engineering specification in 
terms of Engineering objects, and their 
relationships and behaviors. 

Basic Engineering elements are modeled by 
atomic Engineering objects. More complex 
information is modeled as composite Engineering 
objects which, as any other ODP object, exhibit 
behavior, state, identity and encapsulation. Its type 
is a predicate characterizing a collection of 
engineering objects, which their class is the set of 
all Engineering objects satisfying a given type. 

Engineering object template specifies the 
common features of an Engineering objects 
collection in sufficient detail that an Engineering 

object can be instantiated using it. It may reference 
static, invariant and dynamic schema. 

An action is a model of something that happens 
in real world. Actions are instances; their types are 
modeled by ODP action types. An action in the 
information viewpoint is associated with at least 
one Engineering Object Class. It can be either 
internal action or interaction. 

An invariant schema is a set of predicates on one 
or more Engineering objects which must always be 
true. The predicates constrain the possible states 
and state changes of the objects on which they 
apply. 

ODP also notes that an invariant schema can 
specify the types of one or more Engineering 
objects; that will always be satisfied by whatever 
behavior the objects might exhibit. A static schema 
defines the state of one or more Engineering 
objects, at some point in time, subject to the 
constraints of any invariant schema. 

A dynamic schema is a requirement of the 
allowable state changes of one or more Engineering 
objects, subject to the constraints of any invariant 
schema. A dynamic schema specifies how the 
information can evolve as the system operates. In 
addition to describing state changes, dynamic 
schema can also create and delete Engineering 
objects, and allow reclassifications of instances 
from one type to another. Besides, in the 
Engineering language, a state change involving a 
set of objects can be seen as an interaction between 
those objects. Not all the objects involved in the 
interaction need to change state; some of the 
objects may be involved in a read-only manner 
[29].  

 
4. SYNTAX DOMAIN  

 
We define in this section the meta-models for 

concepts presented in the previous section. Figure 1 
defines the context free syntax for the core of 
object concepts, and figure 2 defines the context 
free syntax for the Engineering language. 
In the following, we define context constraints for 
the defined syntax. 
Context m: Model inv: 
m.Specifier->includes All 
(m.EngineeringObjectTemplates. DynamicSchema) 
m.Describer  ->includesAll  
 (m.  EngineeringTemplate.StaticSchema) 
m.Constrainer->includesAll 
(m. EngineeringObject.InvariantSchema) 
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m.ActionTemplates -> includesAll 
(m.EngineeringObjectTemplates.action) 
m.Types->includesAll(m.ActionTemplates. 
Types -> union (m.EngineeringObject.Types) 
We consider the concepts of subtype/supertype 
(RM-ODP 2-9.9) and subclass/superclass (RM-
ODP 2-9.10) as relations between types and classes 
respectively. 
Context m: model inv  
m.types-> forall( t1: Type, t2: Type | t2.subtype -> 
includes(t1) implies  t1.valid_for.satisfies_type=t2) 
m.types-> forall( t1: Type, t2: Type | t1.supertype -
>includes(t2) implies 
t1.valid_for.satisfies_type=t2) 
 
Context a: ActionTemplate inv: 
a.Engineeringobject.StartState <> 
a.Engineeringobject.EndState 
 
Context o: Object Template inv: 
iot (Engineering object template) is not parent of or 
child of itself 
not (iot.parents ->includes(iot ) or iot.children-
>includes(iot)) 

 

 
Figure 1: RM-ODP Foundation Object Model 
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Figure 2 Engineering concepts 
 

5. SEMANTICS DOMAIN 
The semantics of a UML model is given by 

constraining the relationship between a model and 
possible instances of that model (see Figure 3). It 
means constraining the relationship between 
expressions of the UML abstract syntax for models 
and expressions of the UML abstract syntax for 
instances. We define a model to specify the ODP 
Engineering viewpoint. That is, a set of 
Engineering objects, their relationships and 
behaviors. This model defines Semantic Domain 
(figure 3). 

 

 
Figure. 3 Semantic Domain 

 
A system can only be an instance of a single system 
model, because it is self contained and disjoint 
from other models. On the other side, objects are 
instances of one ore more object templates; they 
may be of one or several types. With no further 
constraints, it is possible for an object to change the 
templates of which it is an instance; thus this meta-
model supports dynamic types. 

 
There is one well-formedness rule for instances, 
which are given bellow: 
Context s: system inv: 
The source and target engineering objects of 
s'slinks are engineering objects in s  
s.Engineeringobjects->includesAll(s.links.source-
>union(s.links.target)) 
Links between two Engineering objects are unique 
per role  
s.links->forAll(l|s.links ->select 
(l'|l'.source=l.source&l'.target=l.target&l'.of=l.of)=l
) 
Declaration of "Specification concepts" (RM-ODP 
2.9) in Alloy [28], time dependence. 
Context Time inv: 
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forall(o:EngineeringObject ,t:Time | t.instant -
>notEmpty implies o.state ->notEmpty) 
Context Precondition inv : 
Forall (prec: Dynamicschema.Precondition , o : 
EngineeringObject|exists( s : State) | o.mappedTo = 
prec and o.state_start = s) 
Context  Postcondition inv : 
forall (postc: dynamicschema.Postcondition , o :  
EngineeringObject | exists(s : State) | o.mappedTo 
= postc and a.state_end = s) 
6. MEANING FUNCTION 

Other invariants are required to constraint the 
relationships between models and instances. These 
constitute the semantics which are the subject of 
this section. The semantics for the UML-based 
language defined by the relationship between a 
system model and its possible instances (systems). 
The constraints are relatively simple, but they 
demonstrate the general principle. Firstly there are 
two constraints related to Engineering objects and 
links, respectively. The first shows how inheritance 
relationships can force an Engineering object to be 
of many Engineering Object Template. 

 
Context o: object inv: 
The templates of o must be a single template and 

all the parents of that template 
o.of->exists (t | o.of=t->union (t.parents)) 
The second ensures that a link connects objects 

of templates as dictated by its role. 
Context l: link inv: 
Engineering Objects which are the source/target 

of link have templates which are the source/target 
of the corresponding roles. 

(l.of.source)->intersection (l.source.of ) -> 
notEmpty and  (l.of.target)-
>intersection(l.target.of)->notEmpty 

Secondly, there are four constraints which ensure 
that a model instance is a valid instance of the 
model, it is claimed to be an instance of: 

The first and second ensure that objects and links 
are associated with templates known in the model.  

Context s: system inv: 
The model, that s is an instance of, includes all 

object templates that s.objects are instances of. 
s.of.EngineeringObjectTemplates-

>includesAll(s.EngineeringObjects.of) 
The model, that s is an instance of, includes all 

EngineeringObjectClass that s.EngineeringsObjects 
are instances of s.of.EngineeringObjectClass -
>includesAll(s.s.EngineeringsObjects.of) 

The third ensures that links are associated with 
roles known in the model.  

Context s: system inv: 

The model, that s is an instance of, includes all 
the role that s.links are instances of  

s.of.roles ->includesAll(s.roles.of)  
The fourth constraint ensures that the system 

cardinality constraints on roles are observed.  
Context s: system inv: 
The links of s respect cardinality constraints for 

their corresponding role 
s.links.of -> forAll( r | let links_in_s be 

r.instances ->intersect ( s.links )  in  ( r.upperBound 
-> notEmpty  implies links_in_s ->size  <= 
r.upperBound )  and links_in_s->size >= 
r.upperbound)  

The fifth ensures that reverse links are in place 
for roles with inverses. If a link is of a role with an 
inverse, then there is a corresponding reverse link 

s.links->forAll (l | l.of.role.inverse ->notEmpty 
implies s.links ->select ( l’ | l’.source=l.target & 
l’.target=l.source & l’.of = l..of.inverse)->size=1. 
7. ENGINEERING VIEWPOINT 

MODELING AND RMODP 
SPECIFICATIONS. 

An engineering specification defines the 
infrastructure required to support functional 
distribution of an ODP system by: 
 - Identifying the ODP functions necessary to 
manage physical distribution, communication, 
processing and storage;  
- Identifying the roles of different engineering 
objects supporting the ODP functions. 
In order to do this, we specify:  
1. The activities that occur within those engineering 
objects 
2. The interactions of the engineering objects. 
For achieving that, we respect the engineering 
language rules such as: interface reference rules, 
binding rules, cluster, capsule and node rules, etc 
 ENGINEERING OBJECTS ACTIVITIES 

The functions of a software entity are: 
- Transferring a software entity; 
- Creating a software entity; 
- Providing globally unique agent names and 
locations; 
- Supporting the concept of a region; 
- Ensuring a secure environment for software entity 
operations. 
We specify these functions of a Software entity 
with the ODP functions. 
 ENGINEERING OBJECTS 

INTERACTIONS 
We define three types of interactions related to 
interoperability: 
- Remote software entity creation; 
- Interaction needed for the software entity transfer; 
- Software entity method invocation. 
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Figure 4: organization of the engineering objects 
 
A client could be a non-software entity program or 
a software entity from a software entity having the 
same system type as the destination agent or not. 
This client authenticates itself to the destination 
software entity system and interacts with the 
destination software entity to request the creation of 
a software entity.  
When a software entity transfers to another 
software entity, the software entity system creates a 
travel request providing information that identifies 
the destination place. In order to fulfill the travel 
request, the destination software entity transfers the 
software entity’s state, authority, security credential 
and the code.  
For example in data base System server, a channel 
between system client manager Object and the 
system server Object can be defined as illustrated 
in figure 5. 

Figure.5: An example of a basic system client / system 
server channel. 
 

A system client object invokes a method of another 
system client object or system server object if it has 
the authorization and a reference to the system 
client object. 
 
8. CONCLUSION 

The Reference Model for Open Distributed 
Processing (RM-ODP) provides a framework 
which supports distribution, inter-working and 
portability can be integrated.  However, the ODP 
viewpoint languages define what concepts should 
be supported, not how these concepts should be 
represented. In addition, the UML standard has 
adopted a meta-modeling approach to define the 
abstract syntax of UML. One approach to define 
the formal semantics of a language is denotational: 
essentially elaborating the value or instance 
denoted by an expression of the language in a 
particular context. However, when we use the 
denotational meta-modeling approach in this paper, 
we defined the UML/OCL based syntax and 
semantics of a language for a fragment of ODP 
object concepts described in the foundations part 
and in the Engineering viewpoint language. Indeed, 
these concepts are suitable to define and constrain 
ODP Engineering viewpoint specifications. In 
parallel, we are applying the same approach to 
define a language of concepts characterizing 
dynamic behavior.  
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