
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

1

SPECIFYING BEHAVIORALCONCEPTS BY ENGINEERING
LANGUAGE OF RM-ODP

1JALAL LAASSIRI, 1SAÏD EL HAJJI, 1MOHAMED BOUHDADI
1University Mohammed V-Agdal, Faculty of Sciences, Department of Mathematic and Informatics,

Laboratory of Mathematic and Informatics and Applications, Rabat, Morocco.

ABSTRACT

Distributed systems can be very large and complex and the many different considerations which influence
their design can result in a substantial body of specification, which needs a structuring framework if it is to
be managed successfully. The purpose of the RM-ODP is to define such a framework. The Reference
Model for Open Distributed Processing (RM-ODP) provides a framework within which support of
distribution, inter-working and portability can be integrated. It defines: an object model, architectural
concepts and architecture for the development of ODP systems in terms of five viewpoints. However, RM-
ODP is a meta-norm, and several ODP standards have to be defined. Indeed, the viewpoint languages are
abstract in sense that they define what concepts should be supported and not how these concepts should be
represented using the UML/OCL meta-modeling approach. In this paper, we report on the definition and
address of the syntax and semantics for a fragment of ODP object concepts defined in the RM-ODP
foundations part and in the Engineering language. These concepts are suitable for describing and
constraining ODP engineering viewpoint specifications. We give new approach and model it by using the
RM-ODP engineering language.

Keywords: RM-ODP, Engineering Language, Engineering viewpoint, Structural Concepts, Denotational
Meta-modeling Semantics, UML/OCL.

1. INTRODUCTION

The rapid growth of distributed processing has led
to a need of coordinating framework for the
standardization of Open Distributed Processing
(ODP). The open distributed processing (ODP)
computational viewpoint describes the functionality
of a system and its environment in terms of a
configuration of objects interacting at interfaces,
independently of their distribution. Quality of
service (QoS) contracts and service level
agreements are an integral part of any
computational specification, which is specified in
ODP in terms of environment contracts. The
Reference Model for ODP (RM-ODP) [1-4]
provides such a framework. It creates an
architecture supporting distribution, networking and
portability. The foundations part [2] contains the
definition of concepts and analytical framework for
normalized description of (arbitrary) distributed
processing systems. These concepts are gathered in

several categories including basic modeling
concepts, specification concepts, organizational
concepts, and structuring concepts. The architecture
part [3] contains specifications of the required
characteristics that qualify distributed processing to
be open. It defines a framework containing:

• Five viewpoints called: enterprise, information,
computation, engineering and technology; which
provide a basis for the ODP systems specification.

• A language for each viewpoint, defining
concepts and rules to specify ODP systems from
the corresponding viewpoint.

• Specifications of functions required to support
ODP systems.

• Transparency prescriptions, showing how to
use the ODP functions to achieve distribution
transparency.

In other words, the first three viewpoints do not
take into account neither distribution nor
heterogeneity inherent problems. This principle
corresponds closely to the concepts of PIM

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

2

(Platform Independent Model) and PSM (Platform
Specific Model) models in MDA (Model Driven
Architecture) architecture [5]. However, RM-ODP
is a meta-norm [6] and can not be directly applied.
Indeed, for instance, the viewpoint languages are
abstract in sense that they define what concepts
should be supported, not how these concepts should
be represented. It is important that RM-ODP does
not use the term language in its largest sense: a set
of terms and rules for the construction of
statements from terms; it does not propose any
notation for supporting viewpoint languages.

In fact, RM-ODP provides only a framework for
the definition of new ODP standards. These
standards include those for ODP functions [7-8];
standards for modeling and specifying ODP
systems; standards for methodology, programming,
implementing, and testing ODP systems.
Elsewhere, the languages Z [9], SDL [10], LOTOS
[11] and, Esterelle [12] are used in RM-ODP
architectural semantics part [4] for the specification
of ODP concepts. Unfortunately, up to now, no
formal method is suitable to specify and verify
every aspect of an ODP system. The inherent
characteristics of ODP systems imply the need to
integrate different specification languages and to
handle non-behavioral properties of ODP systems
that is the QoS concepts.

There had been an amount of research to apply
UML [13] as a syntactic notation for the ODP
viewpoint language [14-16]. The taken approach is
to give a meta-model description for the language;
it is a definition of this language by itself. This is
presented in terms of three views: the abstract
syntax, the well-formedness rules and the modeling
elements semantics. The abstract syntax is
expressed using a subset of UML static modeling
notations that are class diagrams. The well-
formedness rules are expressed in OCL [17], a
precise language based on first order-logic. OCL is
used for expressing constraints on objects structure
which cannot be expressed by class diagrams only.
We used the meta-modeling approach [18] to
define syntax of a sub-language for ODP QoS-
aware enterprise viewpoint specifications.

Furthermore, a part of UML meta-model itself
has a precise semantic [19] defined using
denotational meta-modeling approach. The
denotational approach [20] is realized by defining
the instance form of every language element and a
set of rules determining which instances are
denoted or not by a particular language element.
There are three main steps through a denotational
meta-modeling approach to the semantics:

1. Define the meta-model for the model’s
language: object template, interface template,
action template, type, and role.

2. Define the meta-model for the instances’
language: objects, binders, and interfaces.

3. Define the mapping or the meaning function
between these two languages.

There are good reasons for adopting the UML
meta-modeling approach in context of ODP
systems. The UML meta-models provide a precise
core of any CASE tool. The tools include a
consistency checker that makes sure that invariants
defined on a model do not conflict, a consistency
checker between meta-models makes sure that
different system specifications are consistent and
do not conflict. Besides, for testing ODP systems
[2, 3], the current techniques [21, 22] are not
widely accepted. A new approach for testing,
named agile programming [23, 24] or test first
approach [25] is being increasingly adopted. The
opinion is integrating system model and testing
model using UML meta-modeling approach [26].
This approach is based on the executable UML
[27]. In this context, OCL is used to specify the
properties that have to be tested. OCL also serves
to attach constraints to UML meta-models in order
to verify the coherence of meta-models and to
translate the constraints into code to evaluate them
on instance models.

The part of RM-ODP considered in this paper is

a subset for describing and constraining the
structure of ODP Engineering viewpoint
specifications. It consists of modeling and
specifying concepts defined in the RM-ODP
foundations part and concepts in the Engineering
language. The UML/OCL meta-model developed
here elaborates the conceptual core of the ODP
Engineering viewpoint language. We do not
consider concepts for describing dynamic behavior.

The rest of the paper is organized as follows.
Section 2 presents the literature review. Section 3
describes the subset of concepts considered in this
work named the object model and Engineering
viewpoint. Section 4 describes the meta-model for
generic models, object, action, template,
type/subtype, class/subclass and basic/derived
class. Section 5 describes the meta-model for
models instances, which are essentially object
diagrams. Section 6 makes the connection between
models and their instances. This introduces the
basic form of the semantic approach described
here. Section 7 we give approaches and model it by
using the RM-ODP engineering language. A

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

3

conclusion and perspectives end the paper.

 A conclusion and perspectives finalize the

paper.

2. LITERATURE OF REVIEW

Behavior models play a central role in system
specifications. Many specification languages can be
used to specify the behavior of a business and IT
systems. A system designer chooses a particular
language depending on the designer’s experience
and on the problems he is trying to solve. For
example, to show the conformance of the
implementation of a system behavior with its
specification, a system designer can use formal
languages (for example, Pi-calculus). To visualize
the state machine of a developed system, a system
designer may use a UML statechart diagram or
activity diagram (a variation of a state machine in
which the states represent the performance of
actions or subactivities [34]). The design of
complex systems requires that a system designer
solve many problems simultaneously (visualize a
model, check the conformance of a model,
etcetera), thus several specification languages
should be used. This raises a problem: a system
designer needs to build several independent models
of the same system. This leads to the duplication of
the information, which can be an additional source
of errors: models done in different languages can
be inconsistent.

The concept from the RM-ODP semantic domain

that is necessary for the modeling of the behavior
of systems was considered in [35]. The basic
concepts that were used in this work are taken from
the clause 8 “Basic modeling concepts” of the RM-
ODP Part 2. These concepts are: action, time, and
state. According to [30], these concepts are
essentially the first-order propositions about model
elements. Also used, some concepts (type, instance,
and precondition, postcondition) from the clause 9
“Specification concepts”. Specification concepts
are the higher-order propositions applied to the
first-order propositions about the model elements.
Wegmann [31] states: “Basic Modeling Concepts
and generic Specification Concepts are defined by
RM-ODP as two independent conceptual
categories. Essentially, they are two qualitative
dimensions that are necessary for defining model
elements that correspond to entities from the
universe of discourse”.

To explain the semantics of the generic model

more clearly, the Alloy formalism was used. Alloy
is a simple modeling language that allows a
modeler to describe the conceptual space of a
problem domain. Using Alloy, specifying the
RMODP semantic domain can be obtained.

RM-ODP conceptual elements from the semantic

domain can be partitioned in the following way:
model RM-ODP {
domain {ODP_Concepts}
state {
partition … BasicModellingConcepts,
SpecificationConcepts : static ODP_Concepts
…
 }
Code Fragment 1. RM-ODP model

Let’s consider the minimum set of modeling
concepts (Basic Modeling Concepts and
Specification Concepts) necessary for the
specification of systems behavior. There are a
number of approaches for specifying the behavior
of distributed systems coming from people with
different backgrounds and considering different
aspects of behavior. “However, they can almost all
be described in terms of a single formal model”
[32]. Based on [32], Lamport specifies the behavior
of a concurrent system. A system designer has “to
specify a set of states, a set of action and a set of
behavior”. Each behavior is modeled as a finite or
infinite sequence of interchangeable states and
actions.

To describe this sequence there are mainly two

dual approaches. According to [33] they are:
1. “Modeling systems by describing their set of

actions and their behaviors”.
2. “Modeling systems by describing their state

spaces and their possible sequences of state
changes”.

“These views are dual in the sense that an action
can be understood to define state changes, and state
changes occurring in state sequences can be
understood as abstract representations of actions”
[33]. In [35] work, he/she considers both of these
approaches as an abstraction of the more general
approach based on RM-ODP.

3. RM-ODP

RM-ODP is a framework for the construction of

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

4

open distributed systems. It defines a generic
object model in foundations part, and an
architecture which contains specifications of the
required characteristics that qualify distributed
processing as open. The architecture extends and
specializes object concepts of foundations part. The
RM-ODP architecture model consists of a set of
five viewpoint models, the concepts and rules
associated with the language of each model, the
distribution transparency constructs, and the ODP
functions. The entire RM-ODP model is based on
the RM-ODP foundations of an object model, rules
for specification, and rules for structuring

RM-ODP (Model Reference - Open Distributed
Processing) [ISO96a] [ISO96b] [ISO98] is an
international standard published by ISO/IEC. It
provides a reference model for the specification of
open distributed applications. The RM-ODP model
can describe a system according to five viewpoints;
each viewpoint is interested in a particular aspect of
the system. These viewpoints are:

Enterprise. It introduces the concepts necessary
to represent a system in the context of an enterprise
on which it operates. It is interested to the objective
and the policies of a system. A system is then
represented by a community which is a
configuration of enterprise objects formed to
achieve a goal.

Information. It is focused on the semantics of
information and the treatment carried out on
information. A system is then described by
Engineering objects, relationships and behavior.
The description is expressed through the use of
three diagrams named invariant, static and
dynamic.

Computational. It allows a functional
decomposition of the system. The various functions
are fulfilled by objects that interact thanks to their
interfaces. The basic concepts define the type of the
interfaces which the computational objects support,
the way in which the interfaces can be bound, and
the forms of interaction which can take place.
Adaptation management in multi-view systems

Engineering. It is focused on the deployment
and communication of a system. It defines
communication concepts like channel, stub,
skeleton and deployment concepts like cluster,
capsule, etc.

Technology. It describes the implementation of a
system in term of configuration of technical objects
representing the hardware and software
components of the implementation. The goal of
such a description is to provide additional
information for the implementation and the test, by

selecting standard solutions for the components and
the communication mechanisms.

 RM-ODP OBJECT MODEL

(FOUNDATIONS PART)

The RM-ODP international standard [5] presents
a very good architectural framework for modeling
distributed systems. In our experience,
unfortunately at the present time not many
modelers use the standard in their everyday
practice. It’s a pity, considering the amount of
highly qualified experts’ knowledge invested in the
project and the big constructive potential that its
results might bring to practice if they were
adequately used. We see one of the ways to
promote the use of RM-ODP in formalization of its
framework. The formalization requires a careful
and attentive translation of the standard definitions
into formal logical constructions, but once done it
would allow creation of ODP-based software
toolsets that could bring to modelers an “easy to be
applied” version of the standard.

Generally, the term object model refers to the
collection of concepts used to describe objects in an
object-oriented specification (OMG CORBA),
Object model [5] and RM-ODP object model [4]. It
corresponds closely to the use of the term data-
model in the relational data model. To avoid
misunderstandings, the RM-ODP defines each of
the concepts commonly encountered in object
oriented models. It underlines a basic object model
which is unified in the sense that it has successfully
to serve each of the five ODP viewpoints. It defines
the basic concepts concerned with existence and
activity: the expression of what exists, where it is
and what it does. The core concepts defined in the
object model are object and action. An object is the
unit of encapsulation: a model of an entity. It is
characterized by its behavior and, dually, by its
states. Encapsulation means that changes in an
object state can occur only as a result of internal
actions or interactions. An action is a concept for
modeling something which happens. ODP actions
may have duration and may overlap in time. All
actions are associated with at least one object:
internal actions are associated with a single object;
interactions are actions associated with several
objects.

Objects have an identity, which means that each
object is distinct from any other object. Its identity
implies that there exists a reliable way to refer to
objects in a model. Depending on the RM-ODP
viewpoint, the emphasis may be placed on behavior

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

5

or on states. When the emphasis is placed on
behavior, an object is informally called to perform
functions and offer services, these functions are
specified in terms of interfaces. An interface is a
subset of interactions where an object can
participate. Contrary to other object models, ODP
object can have multiple interfaces.

The other concepts defined in the object model
are derived from concepts of object and action;
those are class, template, type, subtype/ supertype,
subclass/ superclass, composition and behavioral
compatibility. Though, the composition of objects
is a combination of two or more objects yielding a
new object. An object is behaviorally compatible
with a second object with respect to a set of criteria
if the first object can replace the second object with
no notice by the environment on the difference in
object behavior on basis of that set of criteria.

A type (of an $<x>) is a predicate characterizing
a collection of <x>s. The ODP notion of type is
much more general than most of object models.
Also, ODP permits to define several types, and
dynamically change types.

A class (of an <x>) defines the set of all <x>s
satisfying a type. An object class, in the ODP
meaning, represents the collection of objects that
satisfy a given type. Many object models do not
clearly distinguish between a specification for an
object and the set of objects that fit the
specification. ODP makes the distinction between
template and explicit class.

An <x> template specifies the common features
of a collection x in a sufficient detail that an x can
be instantiated using it.

 RM-ODP ENGINEERING LANGUAGE

The Engineering held by the ODP system about

entities in real world, including the ODP system
itself, is modeled in an Engineering specification in
terms of Engineering objects, and their
relationships and behaviors.

Basic Engineering elements are modeled by
atomic Engineering objects. More complex
information is modeled as composite Engineering
objects which, as any other ODP object, exhibit
behavior, state, identity and encapsulation. Its type
is a predicate characterizing a collection of
engineering objects, which their class is the set of
all Engineering objects satisfying a given type.

Engineering object template specifies the
common features of an Engineering objects
collection in sufficient detail that an Engineering

object can be instantiated using it. It may reference
static, invariant and dynamic schema.

An action is a model of something that happens
in real world. Actions are instances; their types are
modeled by ODP action types. An action in the
information viewpoint is associated with at least
one Engineering Object Class. It can be either
internal action or interaction.

An invariant schema is a set of predicates on one
or more Engineering objects which must always be
true. The predicates constrain the possible states
and state changes of the objects on which they
apply.

ODP also notes that an invariant schema can
specify the types of one or more Engineering
objects; that will always be satisfied by whatever
behavior the objects might exhibit. A static schema
defines the state of one or more Engineering
objects, at some point in time, subject to the
constraints of any invariant schema.

A dynamic schema is a requirement of the
allowable state changes of one or more Engineering
objects, subject to the constraints of any invariant
schema. A dynamic schema specifies how the
information can evolve as the system operates. In
addition to describing state changes, dynamic
schema can also create and delete Engineering
objects, and allow reclassifications of instances
from one type to another. Besides, in the
Engineering language, a state change involving a
set of objects can be seen as an interaction between
those objects. Not all the objects involved in the
interaction need to change state; some of the
objects may be involved in a read-only manner
[29].

4. SYNTAX DOMAIN

We define in this section the meta-models for

concepts presented in the previous section. Figure 1
defines the context free syntax for the core of
object concepts, and figure 2 defines the context
free syntax for the Engineering language.
In the following, we define context constraints for
the defined syntax.
Context m: Model inv:
m.Specifier->includes All
(m.EngineeringObjectTemplates. DynamicSchema)
m.Describer ->includesAll
 (m. EngineeringTemplate.StaticSchema)
m.Constrainer->includesAll
(m. EngineeringObject.InvariantSchema)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

6

m.ActionTemplates -> includesAll
(m.EngineeringObjectTemplates.action)
m.Types->includesAll(m.ActionTemplates.
Types -> union (m.EngineeringObject.Types)
We consider the concepts of subtype/supertype
(RM-ODP 2-9.9) and subclass/superclass (RM-
ODP 2-9.10) as relations between types and classes
respectively.
Context m: model inv
m.types-> forall(t1: Type, t2: Type | t2.subtype ->
includes(t1) implies t1.valid_for.satisfies_type=t2)
m.types-> forall(t1: Type, t2: Type | t1.supertype -
>includes(t2) implies
t1.valid_for.satisfies_type=t2)

Context a: ActionTemplate inv:
a.Engineeringobject.StartState <>
a.Engineeringobject.EndState

Context o: Object Template inv:
iot (Engineering object template) is not parent of or
child of itself
not (iot.parents ->includes(iot) or iot.children-
>includes(iot))

Figure 1: RM-ODP Foundation Object Model

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

7

Figure 2 Engineering concepts

5. SEMANTICS DOMAIN
The semantics of a UML model is given by

constraining the relationship between a model and
possible instances of that model (see Figure 3). It
means constraining the relationship between
expressions of the UML abstract syntax for models
and expressions of the UML abstract syntax for
instances. We define a model to specify the ODP
Engineering viewpoint. That is, a set of
Engineering objects, their relationships and
behaviors. This model defines Semantic Domain
(figure 3).

Figure. 3 Semantic Domain

A system can only be an instance of a single system
model, because it is self contained and disjoint
from other models. On the other side, objects are
instances of one ore more object templates; they
may be of one or several types. With no further
constraints, it is possible for an object to change the
templates of which it is an instance; thus this meta-
model supports dynamic types.

There is one well-formedness rule for instances,
which are given bellow:
Context s: system inv:
The source and target engineering objects of
s'slinks are engineering objects in s
s.Engineeringobjects->includesAll(s.links.source-
>union(s.links.target))
Links between two Engineering objects are unique
per role
s.links->forAll(l|s.links ->select
(l'|l'.source=l.source&l'.target=l.target&l'.of=l.of)=l
)
Declaration of "Specification concepts" (RM-ODP
2.9) in Alloy [28], time dependence.
Context Time inv:

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

8

forall(o:EngineeringObject ,t:Time | t.instant -
>notEmpty implies o.state ->notEmpty)
Context Precondition inv :
Forall (prec: Dynamicschema.Precondition , o :
EngineeringObject|exists(s : State) | o.mappedTo =
prec and o.state_start = s)
Context Postcondition inv :
forall (postc: dynamicschema.Postcondition , o :
EngineeringObject | exists(s : State) | o.mappedTo
= postc and a.state_end = s)
6. MEANING FUNCTION

Other invariants are required to constraint the
relationships between models and instances. These
constitute the semantics which are the subject of
this section. The semantics for the UML-based
language defined by the relationship between a
system model and its possible instances (systems).
The constraints are relatively simple, but they
demonstrate the general principle. Firstly there are
two constraints related to Engineering objects and
links, respectively. The first shows how inheritance
relationships can force an Engineering object to be
of many Engineering Object Template.

Context o: object inv:
The templates of o must be a single template and

all the parents of that template
o.of->exists (t | o.of=t->union (t.parents))
The second ensures that a link connects objects

of templates as dictated by its role.
Context l: link inv:
Engineering Objects which are the source/target

of link have templates which are the source/target
of the corresponding roles.

(l.of.source)->intersection (l.source.of) ->
notEmpty and (l.of.target)-
>intersection(l.target.of)->notEmpty

Secondly, there are four constraints which ensure
that a model instance is a valid instance of the
model, it is claimed to be an instance of:

The first and second ensure that objects and links
are associated with templates known in the model.

Context s: system inv:
The model, that s is an instance of, includes all

object templates that s.objects are instances of.
s.of.EngineeringObjectTemplates-

>includesAll(s.EngineeringObjects.of)
The model, that s is an instance of, includes all

EngineeringObjectClass that s.EngineeringsObjects
are instances of s.of.EngineeringObjectClass -
>includesAll(s.s.EngineeringsObjects.of)

The third ensures that links are associated with
roles known in the model.

Context s: system inv:

The model, that s is an instance of, includes all
the role that s.links are instances of

s.of.roles ->includesAll(s.roles.of)
The fourth constraint ensures that the system

cardinality constraints on roles are observed.
Context s: system inv:
The links of s respect cardinality constraints for

their corresponding role
s.links.of -> forAll(r | let links_in_s be

r.instances ->intersect (s.links) in (r.upperBound
-> notEmpty implies links_in_s ->size <=
r.upperBound) and links_in_s->size >=
r.upperbound)

The fifth ensures that reverse links are in place
for roles with inverses. If a link is of a role with an
inverse, then there is a corresponding reverse link

s.links->forAll (l | l.of.role.inverse ->notEmpty
implies s.links ->select (l’ | l’.source=l.target &
l’.target=l.source & l’.of = l..of.inverse)->size=1.
7. ENGINEERING VIEWPOINT

MODELING AND RMODP
SPECIFICATIONS.

An engineering specification defines the
infrastructure required to support functional
distribution of an ODP system by:
 - Identifying the ODP functions necessary to
manage physical distribution, communication,
processing and storage;
- Identifying the roles of different engineering
objects supporting the ODP functions.
In order to do this, we specify:
1. The activities that occur within those engineering
objects
2. The interactions of the engineering objects.
For achieving that, we respect the engineering
language rules such as: interface reference rules,
binding rules, cluster, capsule and node rules, etc
 ENGINEERING OBJECTS ACTIVITIES

The functions of a software entity are:
- Transferring a software entity;
- Creating a software entity;
- Providing globally unique agent names and
locations;
- Supporting the concept of a region;
- Ensuring a secure environment for software entity
operations.
We specify these functions of a Software entity
with the ODP functions.
 ENGINEERING OBJECTS

INTERACTIONS
We define three types of interactions related to
interoperability:
- Remote software entity creation;
- Interaction needed for the software entity transfer;
- Software entity method invocation.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

9

Figure 4: organization of the engineering objects

A client could be a non-software entity program or
a software entity from a software entity having the
same system type as the destination agent or not.
This client authenticates itself to the destination
software entity system and interacts with the
destination software entity to request the creation of
a software entity.
When a software entity transfers to another
software entity, the software entity system creates a
travel request providing information that identifies
the destination place. In order to fulfill the travel
request, the destination software entity transfers the
software entity’s state, authority, security credential
and the code.
For example in data base System server, a channel
between system client manager Object and the
system server Object can be defined as illustrated
in figure 5.

Figure.5: An example of a basic system client / system
server channel.

A system client object invokes a method of another
system client object or system server object if it has
the authorization and a reference to the system
client object.

8. CONCLUSION

The Reference Model for Open Distributed
Processing (RM-ODP) provides a framework
which supports distribution, inter-working and
portability can be integrated. However, the ODP
viewpoint languages define what concepts should
be supported, not how these concepts should be
represented. In addition, the UML standard has
adopted a meta-modeling approach to define the
abstract syntax of UML. One approach to define
the formal semantics of a language is denotational:
essentially elaborating the value or instance
denoted by an expression of the language in a
particular context. However, when we use the
denotational meta-modeling approach in this paper,
we defined the UML/OCL based syntax and
semantics of a language for a fragment of ODP
object concepts described in the foundations part
and in the Engineering viewpoint language. Indeed,
these concepts are suitable to define and constrain
ODP Engineering viewpoint specifications. In
parallel, we are applying the same approach to
define a language of concepts characterizing
dynamic behavior.

REFRENCES:

[1] ISO/IEC, Basic Reference Model of Open

Distributed Processing-Part1: Overview and
Guide to Use, ISO/IEC CD 10746-1, July
1994.

[2] ISO/IEC, RM-ODP-Part2: Descriptive Model,
ISO/IEC DIS 10746-2, February 1994.

[3] ISO/IEC, RM-ODP-Part3: Prescriptive
Model, ISO/IEC DIS 10746-3, February 1994.

[4] ISO/IEC, RM-ODP-Part4: Architectural
Semantics, ISO/IEC DIS 10746-4, July 1994.

[5] OMG, the Object Management Architecture,
OMG, 1991. http://www.omg.org

[6] M. Bouhdadi et al. A Methodology for the
Development of Open Distributed Systems,
Proc. JDIR'98, Paris France October 1998, pp.
200-208

[7] ISO/IEC, ODP Type Repository Function,
ISO/IEC JTC1/SC7 N2057, January 1999.

[8] ISO/IEC, the ODP Trading Function, ISO/IEC
JTC1/SC21, June 1995.

[9] J.M. Spivey, The Z Reference manual,
Prentice Hall, 1992.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

10

[10] IUT, SDL: Specification and Description
Language, IUT-T-Rec. Z.100, 1992.

[11] ISO and IUT-T, LOTOS: A Formal
Description Technique Based on the Temporal
Ordering of Observational Behavior, ISO/IEC
8807, August 1998.

[12] H. Bowman et al. FDTs for ODP, Computer
Standards & Interfaces Journal, Elsevier
Science Publishers, Vol.17, No.5-6, 1995, pp.
457-479.

[13] J. Rumbaugh et al., the Unified Modeling
Language, Addison Wesley, 1999.

[14] B. Rumpe, A Note on Semantics with an
Emphasis on UML, Second ECOOP Workshop
on Precise Behavioral Semantics, Technische
Universitaty unchen publisher, 1998.

[15] A. Evans et al., Making UML precise,
OOPSLA'98, October 1998,

[16] A. Evans et al. The UML as a formal notation,
UML'98, France June 1998, LNCS 1618,
Springer Berlin, 1999, pp. 336-348

[17] J. Warner and A. Kleppe, the Object
Constraint Language: Precise Modeling with
UML, Addison Wesley, 1998.

[18] M. Bouhdadi et al, An UML-based Meta-
language for the QoS-aware Enterprise
Specification of Open Distributed Systems,
IFIP TC5/WG5.5 Third Working Conference
on Infrastructures for Virtual Enterprises
(PRO-VE'02), May 1-3 Sesimbra Portugal,
Kluwer Vol. 213 (IFIP Conference Proceeding
series), 2002. Collaborative Business
Ecosystems & Virtual Enterprises IFIP Series
Vol. 85 Springer Boston 2002.

[19] S. Kent, S. Gaito, N. Ross. A meta-model
semantics for structural constraints in UML,,
In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral specifications for
businesses and systems, chapter 9, pages 123-
141. Kluwer Academic Publishers, Norwell,
MA, September 1999.

[20] D.A. Schmidt, Denotational semantics: A
Methodology for Language Development,
Allyn and Bacon, Massachusetts, 1986.

[21] Myers, G. The art of Software Testing, John
Wiley &Sons, New York, 1979

[22] Binder, R. Testing Object Oriented Systems.
Models. Patterns, and Tools, Addison-Wesley,
1999

[23] Cockburn, A. Agile Software Development.
Addison-Wesley, 2002.

[24] Bernhard Rumpe. Agile Modeling with UML.
Habilitation Thesis, Germany, 2003.

[25] Beck K. Column on Test-First Approach.
IEEE Software, 18(5):87-89, 2001

[26] Briand L. and Labiche Y. A UML-based
Approach to System testing. In M. Gogolla and
C. Kobryn (eds): “UML” – The Unified
Modeling Language, 4th Intl. Conference,
LNCS 2185. Springer, 2001 pp. 194-208,

[27] Bernhard Rumpe, Executable Modeling with
UML. A vision or a Nightmare? In Issues &
Trends of Information Technology
Management in Contemporary Associations,
Seattle. Idea group Publishing, Hershey,
London, pp. 697-7001. 2002 Author, Title of
the Book, Publishing House, 200X.

[28] A.Naumenko, A.Wegmann, “Proposal for a
formal foundation of RM-ODP concepts »
conference woodpecker 2001.

[29] ISO/IEC, May 2006, Basic Reference Model
of Open Distributed Processing-Use of UML
for ODP system specifications, ISO/IEC CD
19793.

[30] Naumenko, A., et al. A Viewpoint on Formal
Foundation of RM-ODP Conceptual
Framework, Technical report No.
DSC/2001/040, July 2001, EPFL-DSC ICA.

[31] Wegmann, A. and A. Naumenko. Conceptual
Modeling of Complex Systems Using an RM-
ODP Based Ontology. in 5th IEEE
International Enterprise Distributed Object
Computing Conference - EDOC 2001. 2001.
Seattle, ACTION.

[32] Lamport, L. and N.A. Lynch, Distributed
Computing: Models and Methods, in
Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics.
1990, Elsevier and MIT Press.

[33] Broy, M., Formal treatment of concurrency
and time, in Software Engineer's Reference
Book, J. McDermid, Editor. 1991, Oxford:
Butterworth-Heinemann. p. 23/1-23/19.

[34] OMG, Unified Modeling Language
Specification, v 1.3, 1999.

[35] www.infoscience.epfl.ch/record/464/files/Bala
bkoW03A.pdf

