
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

97

UTRAN CRYPTROGRAPHIC ALGORITHMS
OPERATION AND COMPLEXITY STUDY

1Ghizlane ORHANOU, 2Saïd EL HAJJI

Département Mathématique et Informatique, Laboratoire Mathématiques Informatique et Applications

Université Med V Agdal, Faculté des Sciences, Maroc

ABSTRACT

The Universal Mobile Telecommunications System (UMTS) offers panoply of 3G services that require a
high protection of the transmitted information. In the present paper, we are interested by network access
security, especially the protection of the data integrity and the provisioning of data encryption. A special
interest will be given to the second set of 3GPP cryptographic algorithms UEA2/UIA2 based on the SNOW
3G algorithm. This set was, in fact, a subject only of few research works in comparison with the first one
based on KASUMI algorithm. A closer look is taken at both the encryption algorithm UEA2 and the
integrity algorithm UIA2 operations. The different operation modes of the algorithm SNOW 3G will be
presented as well. A study of the time and space complexity of three algorithms has been carried out.

Keywords: UMTS, Encryption, Integrity, SNOW 3G, UEA2, UIA2, Time complexity, Space complexity

1. UMTS CONFIDENTIALITY AND
INTEGRITY MECHANISMS

The confidentiality mechanism in the UMTS
Access Network (UTRAN) is presented by the
cryptographic function f8. It ensures the protection
of user and signaling data over the air interface. On
the other hand, the UTRAN integrity mechanism is
based on the cryptographic function f9 which
ensures the integrity protection of only signaling
data, user data aren’t integrity protected.

Both mechanisms are implemented in two UMTS
network entities: ME (Mobile Equipment) which
represents the end-user and RNC (Radio Network
Controller) which is responsible of the Radio
Access Network security [1, 2, 3].

1.1. UMTS Encryption Function f8

The user and signaling data confidentiality
mechanism is based on the cryptographic function
f8 [2] which is a symmetric synchronous stream
cipher. This type of ciphering has the advantage to
generate the mask of data before even receiving the
data to encrypt, which help to save time.
Furthermore, it is based on bitwise operations
which are carried out quickly.

“Figure 1” bellow illustrates the Encryption/
Decryption operations using the f8 function.

Figure 1. Encryption/Decryption mechanism

The input parameters of f8 are the following:

 CK : Cipher Key;

 COUNT-C: Frame dependent input,
used to synchronize the sender and the
receiver;

 BEARER: Service bearer identity;

 DIRECTION: Direction of the
transmission;

 LENGTH: Number of bits to be
encrypted/decrypted;

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

98

As mentioned above, there exist nowadays two
encryption algorithms UEA1 and UEA2.
UEA1, which was used since the genesis of the
UMTS network in 1999, is stream cipher based
on KASUMI, a block cipher used under its OFB
operation mode. The second one, UEA2, is also a
stream cipher but based on another stream cipher
named SNOW 3G. It was introduced as 3GPP
standard on 2006.

1.2. UMTS Integrity Function f9

To ensure signaling data protection between the
ME (Mobile Equipment) and the RNC (Radio
Network Controller), a message authentication
function f9 is used. It's a one-way function which
generates a 32-bit output MAC-I under the control
of 128-bit Integrity key IK [1, 3, 4].

“Figure 2” bellow illustrates the calculation of
the message authentication code MAC-I using the
f9 function.

Figure 2. Derivation of MAC-I (or XMAC-I) [1, 2]

The algorithm input parameters are the following
[2] :

 IK: Integrity Key;

 COUNT-I: Frame dependent input;

 FRESH: Random number generated by
the network;

 DIRECTION: Direction of the
transmission;

 MESSAGE: Input bit stream;

Based on these input parameters, the message
authentication code MAC-I is calculated.

Like the algorithm UEA2, the integrity algorithm
UIA2 is based on the stream cipher SNOW 3G, and
was completely standardized on 2005.

In the present paper, we will present in the
following section the SNOW 3G algorithm which
constituted the heart of UEA2 and UIA2 algorithm.
We’ll be interested on its operation modes and its

time and space complexity. After that, we will focus
on studying the algorithms UEA2 and UIA2
operations and their complexities as well. Studying
this later issue gives us a clear idea on the
efficiency of the concerned algorithms.

2. SNOW 3G ALGORITHM

The algorithm SNOW 3G was chosen in 2006 as
the cryptographic engine of the second set of
UMTS confidentiality and Integrity algorithms f8
and f9 (UEA2 and UIA2) used over the air
interface. The reason is that SNOW 3G respects
properly the 3GPP requirements regarding the time
and memory resources.

The stream cipher SNOW 3G is a two
components stream cipher with an internal state of
608 bits initialized by a 128-bit key and a 128-bit
initialization vector IV. In this section, we are
interested in studying the algorithm SNOW 3G
operation and efficiency.

2.1. SNOW 3G Algorithm Structure

SNOW 3G consists of two interacting modules, a
Linear Feedback Shift Register (LFSR) and a Finite
State Machine (FSM). The generated keystream is
the result of the combined LFSR and FSM
operations. Furthermore, the SNOW 3G security
depends on the security of its two components.

The LFSR is constructed from 16 stages, each
holding 32 bits and the feedback is defined by a
primitive polynomial over the finite field GF(232).

 As far as the FSM is concerned, it is based upon
three 32-bit registers R1, R2 and R3 and uses two
substitution box ensembles S1 and S2. The mixing
operations are exclusive-OR and addition modulo
232 [5, 6].

SNOW 3G is first initialized; during this step, the
algorithm is clocked, so it is working without
producing output. After being synchronized, it
produces a sequence of 32-bit words under the
control of 128-bit key. These words are then used
to mask the different blocks of the plaintext in order
to produce the ciphertext.

2.2. Initialization

SNOW 3G is initialized, as illustrated in “Figure
3” bellow, with a 128-bit key consisting of four 32-
bit words k0, k1, k2, k3 and an 128-bit initialization
variable consisting of four 32-bit words IV0, IV1,
IV2, IV3 as follow [5]:

To simplify the formulas, we replace the 32-bit
word 0xffffffff by 1.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

99

s15 = k3 ⊕ IV0 s14= k2 s13 = k1

s12 = k0 ⊕ IV1 s11 = k3 ⊕ 1

s10= k2 ⊕ 1 ⊕ IV2 s9 = k1 ⊕ 1 ⊕ IV3

s8 = k0 ⊕ 1 s7 = k3 s6= k2

s5 = k1 s4 =k0 s3 = k3 ⊕ 1

s2= k2 ⊕ 1 s1 = k1 ⊕ 1 s0 =k0 ⊕ 1

The FSM is initialized with R1 = R2 = R3 = 0.

Then, the cipher runs in a special mode without
producing output:

Repeat 32 times:

{

Step1: The FSM is clocked producing the
32-bit words F.

Step2: Then, the LFSR is clocked in
Initialization Mode consuming F.

}

“Figure 3” bellow represents the Initialization
Mode of SNOW 3G.

Figure 3. SNOW 3G Initialization mode [5]

2.3. Keystream Generation

After being clocked, SNOW 3G enters in its
Keystream generation mode.

First, the FSM is clocked once and the FSM
output word is discarded. Then, the LFSR is
clocked in Keystream mode [5].

After that, n 32-bit words of keystream are
produced [5]:

for t = 1 to n:

{

Step1: The FSM is clocked and produces a
32-bit output word F.

Step2: The next keystream word is
calculated as follow: zt =F ⊕ s0.

Step3: Then, the LFSR is clocked in
Keystream mode.

}

“Figure 4” illustrates SNOW 3G Keystream
Mode.

Figure 4. SNOW 3G Keystream Mode

2.4. Time And Space Complexity

As seen above, SNOW 3G consists of two
interacting modules: an LFSR and a FSM. These
two security modules LFSR and FSM use some
functions and security components to accomplish
their respective tasks.

In order to calculate the complexity, it is
necessary to give a brief description of these
components. More details can be found in 3GPP
specification documents [1, 5].

2.4.1. SNOW 3G functions complexity
We begin by presenting the different functions

used:

 MULx: The function MULx maps 16 bits to 8
bits. Let V and c be 8-bit input values, MULx
is defined as follow:

If the leftmost (i.e. the most significant) bit of V
equals 1, then:

MULx(V, c) = (V <<8 1) ⊕ c,
else

MULx(V, c) = V <<8 1.

 MULxPOW: MULxPOW maps 16 bits and a
positive integer i to 8 bit. MULxPOW(V, i, c)
is recursively defined as follow:

If i equals 0, then:

 MULxPOW(V, i, c) = V,

else

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

100

MULxPOW(V, i, c) =
MULx(MULxPOW(V, i - 1,c), c).

 MULα: The function MULα maps 8 bits to 32
bits. It is defined as follow:

MULα (c) = (MULxPOW(c, 23, 0xA9) ||
MULxPOW(c, 245, 0xA9) || MULxPOW(c, 48,
0xA9) || MULxPOW(c, 239, 0xA9)).

 DIVα: The function DIVα maps 8 bits to 32
bits. It is defined as follow:

DIVα (c) = (MULxPOW(c, 16, 0xA9) || MULx-
POW(c, 39, 0xA9) || MULxPOW(c, 6, 0xA9) ||
MULxPOW(c, 64, 0xA9)).

When calculating the time complexity of a
certain function, if this function receives a finite
number of input data, then its time complexity is
O(1) and this is the case of most the functions used
during SNOW 3G operation.

Propriety 1. The time complexity of the
functions MULx, MULxPOW, MULα and DIVα
is O(1).

Since we are interested in calculating the amount
of temporary storage used by SNOW 3G during its
operation, a simple analysis of its functions
exposed above, shows that they use a constant
temporary storage that doesn’t depend on the
parameter "n" which represent the plaintext (and
the keystream) length.

This leads to the following propierty:

Propriety 2. The space complexity of the
functions MULx, MULxPOW, MULα and DIVα
is O(1).

2.4.2. SNOW 3G security components complexity

As far as the security components are concerned,
the FSM uses two S-boxes S1 and S2 to update the
registers R2 and R3 and that provides a strong
diffusion of the input bits. Besides this, the FSM
uses also two combining functions which are the
bitwise exclusive-OR operation and the addition
modulo 232 [5, 6].

The substitution box S1, based on the bytewise
substitution of Rijndael [7], was carefully selected
to provide strong security. Combined with the good
diffusion properties of the Mix-Column operation
of Rijndael, the S1 construction offers good
protection against many known attacks especially
against differential and linear attacks [5, 6]. It maps
a 32-bit input to a 32-bit output.

Moreover, in order to increase the resistance
against algebraic attacks, the third memory element
which is the 32-bit register R3 and the second
ensemble of S-boxes S2 were introduced in the
FSM-component of SNOW 3G.

The new S-box S2 consists of four new 8-bit to
8-bit substitutions followed by the MixColumn
operation of Rijndael [5, 7]. The S-Box S2 maps a
32-bit input to a 32-bit output.

Furthermore, there is two combining functions
used by the SNOW 3G FSM module.

 The linear function consists on the bitwise
exclusive-OR operation.

 The non-linear combining function of SNOW
3G is the Integer addition modulo 232. This
addition can be implemented in the SNOW3G
algorithm as illustrated in the following
example.

Let X, Y and Z be three integers:
Z = X ⊞ Y means:
Z = (X + Y) & 0xffffffff
with ‘+’ is the normal integer addition and ‘&’
is a bitwise AND operation.

Based on the definition of these components,
given by the 3GPP specifications and their
implementation, we have calculated their time and
space complexity [5, 6].

Propriety 3. The time complexity of the S-
Boxes S1 and S2 and of the addition modulo 232 is
O(1).

Propriety 4. The space complexity of the S-
Boxes S1 and S2 and of the addition modulo 232 is
O(1).

2.4.3. SNOW 3G complexity
As we have seen before, SNOW 3G has two

operation modes: Initialization Mode and
Keystream Mode. These two modes are performed
sequentially, the Initialization Mode, first, to
initialize the components of the two principal
SNOW 3G modules and then during the Keystream
Mode there is the production of the 32-bit output
words.

The number of words to produce as output
depends on the input parameter n. This input
parameter presents the length of the plaintext to
cipher (or the ciphertext to decrypt). When given as
input parameter to SNOW 3G, the algorithm
produces exactly n 32-bit output words which will
be added by an exclusive-OR operation to the n 32-

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

101

bit words of the plaintext (or ciphertext) to obtain
the ciphertext (or the plaintext).

Based on what we have described before
regarding the SNOW 3G operations, the
Initialization Mode can be presented as illustrated
in “Figure 5”.

Figure 5. SNOW 3G Initialization Mode algorithm

We can see that this initialization stage is
composed of some initialization assignments and a
32 time loop of a set of operations based on
functions whose time complexity is O(1).

We will, then, be more interested in the second
stage of SNOW 3G operation which consists on
generating a keystream whose length is n. The
Keystream Mode can be presented as illustrated in
“Figure 6”.

Figure 6. SNOW 3G Keystream Mode algorithm

We note that the Keystream Mode operation is
based on an n loop of functions whose time
complexity is O(1), which leads to a time
complexity O(n).

Theorem 1. SNOW 3G algorithm has a linear
time complexity TSNOW3G = O(n).

On the other hand, whereas the number of steps
taking by an algorithm during its execution is the
primary measure of its efficiency, the amount of
temporary storage used by the algorithm is also a
major concern. Furthermore, in some settings,
space is even more scarce than time.

So, as far as SNOW 3G space complexity is
concerned, and after calculating the space
complexity of the different functions and security
components of the stream cipher algorithm, we can
conclude that the space complexity of SNOW 3G in
its two modes, initialization and keystream modes
is O(1), which leads to the theorem bellow.

Theorem 2. SNOW3G algorithm has a constant
space complexity.

3. ENCRYPTION ALGORITHM UEA2

After studying the stream cipher SNOW 3G, we
will focus now on the confidentiality algorithm
UEA2 which was introduced the UMTS Access
Network security since 2006.

As for SNOW 3G, We will be interested in
UEA2 operation and then in its time and space
complexity.

3.1. UEA2 Algorithm Structure

The confidentiality algorithm UEA2 is a stream
cipher which encrypt/decrypt data blocks (between
1 and 20.000 bits) under the 128-bit cipher key CK.

It is based on the synchronous word-oriented
stream cipher SNOW 3G who produces 32-bit
words as seen above. These words are added by an
exclusive-OR (XOR) operation to the input stream
(the plaintext) to produce the ciphertext [1, 8].

The decryption operation is done in the same
way as the encryption. It is important to note that
the sender and the receiver are synchronized with
each other thanks to the input parameter COUNT-
C.

UEA2 operation is done in three principal
steps, keystream generator initialization, keystream
generation and encryption/decryption.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

102

“Figure 7” bellow shows globally UEA2
operation.

Figure 7. UEA2 Encryption/Decryption mechanism

3.2. Initialization And Keystream Generation

The UEA2 algorithm structure, based on SNOW
3G, is presented in the subsections bellow.

3.2.1. Initialization
All the used variables are 32-bit length and are

presented with the most significant bit on the left
hand side. They are initialized with the input
parameters.

K3 = CK[0] || CK[1] || CK[2] || … || CK[31]

K2 = CK[32] || CK[33] || CK[34] || … || CK[63]

K1 = CK[64] || CK[65] || CK[66] || … || CK[95]

K0 = CK[96] || CK[97] || CK[98] || … || CK[127]

IV3 = COUNT-C[0] || COUNT-C[1] || COUNT-
C[2] || … || COUNT-C[31]

IV2 = BEARER[0] || BEARER[1] || … ||
BEARER[4] || DIRECTION[0] || 0 || … || 0

IV1 = COUNT-C[0] || COUNT-C[1] || COUNT-
C[2] || … || COUNT-C[31]

IV0 = BEARER[0] || BEARER[1] || … ||
BEARER[4] || DIRECTION[0] || 0 || … || 0

3.2.2. Keystream generation
We set L = ⎡LENGTH / 32⎤.

UEA2 uses SNOW 3G to produce the 32-bit
keystream words z1 … zL. z1 is the first word
produced and so on.

The sequence of keystream bits is KS[0] …
KS[LENGTH-1], where KS[0] is the most
significant bit of z1, and KS[31] is the least
significant one and so on.

“Figure 8” bellow presents a summary of the two
first steps, initialization and keystream generation.

Figure 8. UEA2 Keystream generator

3.3. Encryption / Decryption

UEA2 Encryption and Decryption operations are
identical and are performed by the exclusive-OR
operation (XOR) of the input data which represents
the message to encrypt/decrypt with the generated
keystream (KS).

For each integer i with 0 ≤ i ≤ LENGTH-1 we
define:

ciphertext[i] = plaintext[i] ⊕ KS[i]

3.4. UEA2 Time And Space Complexity

In order to calculate the UEA2 time and space
complexity, we propose to reassemble all its
operation steps in the following algorithm
illustrated in “Figure 9”. Thus, we can easily see all
the instructions used and estimate also the memory
space used during the algorithm operation.

Figure 9. UEA2 algorithm

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

103

The UEA2 is based on SNOW 3G algorithm
which has a linear time complexity. Besides this, in
the last step which concern the encryption
(eventually decryption), the number of exclusive-
OR operation execution depends, like SNOW 3G
Keystream generation, on the length of the text to
encrypt or decrypt. These two issues lead to the fact
that the UEA2 time complexity is O(n).

Theorem 3. UEA2 algorithm has a linear time
complexity.

On the other hand, during its operation, UEA2
needs to allocate a memory space whose size is 4*n
for the generated keystream. In addition, SNOW
3G used by UEA2 has a constant space complexity.
So, the UEA2 space complexity is then O(n).

Theorem 4. UEA2 algorithm has a linear space
complexity.

4. INTEGRITY ALGORITHM UIA2
Like UEA2, UIA2 is also based on the stream

cipher SNOW 3G, but uses in addition to the kernel
algorithm, some functions for later processing of
the keystream generated by SNOW 3G [1, 8].

4.1. UEA2 Algorithm Structure

The message authentication function which was
chosen for the new integrity algorithm UIA2 is
based on a universal hash functions and is similar to
Galois Message Authentication Code (GMAC) [9].
The final algorithm design combines the standard
GMAC operation with a last processing step in
order to generate a high level 32-bit MAC-I
security.

“Figure 10” illustrates the global UIA2 algorithm
operation, which will be detailed in the following
subsections.

Figure 10. UIA2 algorithm operation [6]

4.2. Initialization And MAC-I Calculation
4.2.1. Initialization

Before processing the signaling message, SNOW
3G generator is initialized with the integrity key IK
and the initialization vector IV as follow:

K3 = IK[0] || IK[1] || IK[2] || ... || IK[31]

K2 = IK[32] || IK[33] || IK[34] || … || IK[63]

K1 = IK[64] || IK[65] || IK[66] || … || IK[95]

K0 = IK[96] || IK[97] || IK[98] || … || IK[127]

IV3 = COUNT-I[0] || COUNT-I[1] || COUNT-
I[2] || … || COUNT- I[31]

IV2 = FRESH[0] || FRESH[1] || FRESH[2] || … ||
FRESH[31]

IV1 = DIRECTION[0] ⊕ COUNT-I[0] ||
COUNT-I[1] || COUNT-I[2] || … || COUNT-I[31]

IV0 = FRESH[0] || FRESH[1] || … || FRESH[15]
|| FRESH[16] ⊕ DIRECTION[0] || FRESH[17] || …
|| FRESH[31]

Three random values are then generated: two 64-
bit values P and Q, and 32-bit value OTP (One-
Time-Pad) [1, 8]. “Figure 11” shows how SNOW
3G is initialized to produce P, Q and OTP.

Figure 11. UIA2 algorithm 1st processing part

4.2.2. MAC-I calculation

MAC-I calculation is performed in two steps.

At the beginning of UIA2 operation, SNOW 3G
is used to produce five 32-bit keystream words z1,
z2, z3, z4, z5.

We set P = z1 || z2 et Q = z3 || z4.

“Figure 11” above illustrates this.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

104

After that, begins the second step of the UIA2
operation where many operations are performed to
produce the MAC-I (eventually the XMAC-I [1,
2]).

We set D= ⎡ LENGTH/64 ⎤ +1

For 0 ≤ i ≤ D - 3, we set:

Mi = MESSAGE[64i] || MESSAGE[64i+1] ||
... || MESSAGE[64i+63]

and

MD-2 = MESSAGE[64(D-2)] || … ||
MESSAGE[LENGTH-1] || 0 … 0.

We note LENGTH[0], LENGTH[1], … ,
LENGTH[63] the 64 bits of the LENGTH
parameter.

We set then:

MD-1 = LENGTH[0] || LENGTH[1] || … ||
LENGTH[63].

After having defined input parameters of the
different functions of UIA2, we will explicit,
through “Figure 12” bellow, the different operation
steps, the input and the output of each step
until obtaining MAC-I:

Figure 12. UIA2 algorithm 2nd processing part

The MAC-I is the result of an exclusive-OR
operation between the EVAL 32-bit left half (the
most significant 32 bits) and the 32-bit word z5:

For 0 ≤ i ≤ 31, we have:

MAC-I[i] = ei ⊕ OTP[i]

The bits e32, … , e63 are discarded.

4.3. UIA2 Time And Space Complexity

Unlike UEA2, UIA2 uses, in addition to SNOW
3G as a kernel, other functions are used to make the
generated MAC-I as stronger as possible.

So before calculating UIA2 complexity, we will,
first, introduce these functions and calculate their
time and space complexity.

4.3.1. UIA2 functions complexity

We begin by presenting the different functions
used:

 MUL64x: This function maps 128 bits to
64 bits. It has the same definition as the
MULx function used by SNOW 3G and
defined in subsection 2.4.1. of the present
paper. The only difference is that the input
V and c for MUL64x are 64-bit instead of
8-bit and then the output is 64-bit as well.

 MUL64xPOW: This function maps 128
bits and a positive integer i to 64-bit. It is
equivalent to MULxPOW defined for
SNOW 3G except for the input and output
size (64 bits instead of 8 bits).

 MUL64: The function MUL64 maps 192
bits to 64 bits. Let V, P and c be 64-bit
input values, MUL64 is defined as follow:

for 0 ≤ i < 64
{

If the least significant bit of (P>>i)
equals 1, then:
 result = result ⊕ MUL64xPOW(V, i, c);

 }
 mask32bit: This function prepares a 32 bit

mask with required number of 1 bits on the
MSB (most significant bit) side. The input
n is an integer in 1-32.

If n (mod 32) = 0 , then:
return 0xffffffff;

 Tant que n-1 ≠ 0, then:
mask = (mask>>1) ⊕ 0x80000000;

 return mask ;

So, from these definitions, we can see that all the
functions above receive a finite number of input
data, so their time complexity is O(1). Furthermore,
they take a fixed amount of memory during their
operations, so the space complexity is also O(1).
These results lead to the following proprieties.

Propriety 5. The functions MUL64x,
MUL64xPOW, MUL64 and mask32bit have a
constant time complexity.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

105

Propriety 6. The functions MUL64x,
MUL64xPOW, MUL64 and mask32bit have a
constant space complexity.

4.3.2. UIA2 algorithm complexity

After calculating the time and space complexity
of the different parts constituting the UIA2
algorithm, we will be interested, now, in UIA2
complexity itself.

“Figure 13” bellow gives a general overview of
the UIA2 operation.

Figure 13. UIA2 Algorithm

Indeed, the first and second step of UIA2
operation which consist on the algorithm
initialization and the generation of 5 keystream 32-
bit words, don’t depend on the message length and
has a finite number of instructions. Furthermore,
the amount of memory used in this part of UIA2 is
fixed. So the time and space complexity of this part
of the algorithm is O(1).

For the MAC-I calculation step, UIA2 needs to
calculate the V and EVAL values which depend on

the whole concerned message. So, the V and EVAL
calculating instructions depend on the message
length. So, we can conclude that the time
complexity of UIA2 algorithm is O(n).

Theorem 5. UIA2 algorithm has a linear time
complexity.

On the other hand, as we can notice that, in the
UIA2 algorithm, the amount of temporary storage
used doesn’t depend on the message length and the
same parameters are used to store the result of all
the performed operations. So, UIA2 has a constant
space complexity.

Theorem 6. UIA2 algorithm has a constant
space complexity.

5. CONCLUSION
In this paper, a detailed study of the

confidentiality and integrity algorithms UEA2 and
UIA2 based on the stream cipher SNOW 3G has
been carried out. A study of their heart algorithm
has been accomplished as well. The objective is to
understand enough UEA2, UIA2 and SNOW 3G
operations and to study their time and space
complexity. We have found that three algorithms
have a linear time complexity, which guarantee
efficiency and rapidity during the encryption and
the decryption process.

Furthermore, UEA2 has linear space complexity
while SNOW 3G and UIA2 have a constant space
complexity. The two later algorithms consume,
then, a constant and already known amount of
temporary memory which is very useful for systems
with small working memory such as mobile
equipments. The linear space complexity of the
encryption algorithm is also a good result since the
maximum length that a message can have is already
fixed by 3GPP specifications and the Mobile
Equipments can easily handle this amount of
memory.

Finally, from the study of the time and space
complexity of UEA2 an UIA2 especially, we can
conclude that these cryptographic algorithms were
well chosen to be the second set of the
confidentiality and integrity algorithms
(UEA2/UIA2) of the 3rd generation of mobile
Telecommunications since 2006, and also, for the
same efficiency reasons, have been kept as the first
set of security algorithms (EEA1/EIA1) for LTE
(Long Term Evolution).

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

106

6. FUTURE WORK

After studying the operation and complexity of
the two UTRAN cryptographic algorithms UEA2
and UIA2, we will be interested in our future work
in the implementation of these algorithms. In fact,
3GPP specification documents give the algorithm
codes. Our task will be the verification of 3GPP
algorithms code versions, their adaption to meet the
3GPP requirements and finally their
implementation. The Testsets given by 3GPP will
help us to ensure the correctness of our
propositions.

REFRENCES:
[1] 3GPP Specifications site: http://www.3gpp.org

[2] 3GPP TS 33.102: "3rd Generation Partnership

Project; Technical Specification Group Services
and System Aspects; 3G Security; Security
Architecture".

[3] Abdul Bais, Walter T. Penzhorn, Peter Palensky,

“Evaluation of UMTS security architecture and
services”. IEEE International Conference on
Industrial Informatics, 2006.

[4] Ivo Pooters, University of Twente, Faculty of

EEMCS. “An Approach to full User Data
Integrity Protection in UMTS Access
Networks”. 04-2006.

[5] ETSI/SAGE Specification: “Specification of the

3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW 3G
Specification". Version: 1.1. Date: 6th

 September 2006.

[6] ETSI/SAGE Technical report: "Specification of

the 3GPP Confidentiality and Integrity
Algorithms UEA2 & UIA2. Document 5:
Design and Evaluation Report". Version: 1.1.
Date: 6th September 2006.

[7] FIPS Publication 197, Advanced Encryption

Standard (AES). U.S. DoC/NIST, November
26, 2001.

[8] ETSI/SAGE Specification: “Specification of the

3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 1: UEA2 and UIA2

Specification". Version: 1.1. Date: 6th
September 2006.

[9] David McGrew, Cisco Systems, Inc., USA,

“Efficient authentication of large, dynamic data
sets using Galois/Counter Mode (GCM)”.
Proceedings of the Third IEEE International
Security in Storage Workshop, Pages: 89 – 94,
ISBN:0-7695-2537-7, 2005.

