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ABSTRACT 
 

The Universal Mobile Telecommunications System (UMTS) offers panoply of 3G services that require a 
high protection of the transmitted information. In the present paper, we are interested by network access 
security, especially the protection of the data integrity and the provisioning of data encryption. A special 
interest will be given to the second set of 3GPP cryptographic algorithms UEA2/UIA2 based on the SNOW 
3G algorithm. This set was, in fact, a subject only of few research works in comparison with the first one 
based on KASUMI algorithm. A closer look is taken at both the encryption algorithm UEA2 and the 
integrity algorithm UIA2 operations. The different operation modes of the algorithm SNOW 3G will be 
presented as well. A study of the time and space complexity of three algorithms has been carried out. 
 
Keywords: UMTS, Encryption, Integrity, SNOW 3G, UEA2, UIA2, Time complexity, Space complexity 
 
1. UMTS CONFIDENTIALITY AND 
INTEGRITY MECHANISMS  
 

The confidentiality mechanism in the UMTS 
Access Network (UTRAN) is presented by the 
cryptographic function f8. It ensures the protection 
of user and signaling data over the air interface. On 
the other hand, the UTRAN integrity mechanism is 
based on the cryptographic function f9 which 
ensures the integrity protection of only signaling 
data, user data aren’t integrity protected. 

Both mechanisms are implemented in two UMTS 
network entities: ME (Mobile Equipment) which 
represents the end-user and RNC (Radio Network 
Controller) which is responsible of the Radio 
Access Network security [1, 2, 3]. 

1.1.   UMTS Encryption Function f8 

The user and signaling data confidentiality 
mechanism is based on the cryptographic function 
f8 [2] which is a symmetric synchronous stream             
cipher. This type of ciphering has the advantage to             
generate the mask of data before even receiving the 
data to encrypt, which help to save time. 
Furthermore, it is based on bitwise operations 
which are carried out quickly. 

“Figure 1” bellow illustrates the Encryption/ 
Decryption operations using the f8 function. 

 

 
Figure 1. Encryption/Decryption mechanism 

The input parameters of f8 are the following:             

 CK : Cipher Key;  

 COUNT-C: Frame dependent input, 
used to synchronize the sender and the 
receiver; 

 BEARER: Service bearer identity; 

 DIRECTION: Direction of the 
transmission; 

 LENGTH: Number of bits to be 
encrypted/decrypted; 
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As mentioned above, there exist nowadays two 
encryption algorithms UEA1 and UEA2.             
UEA1, which was used since the genesis of the 
UMTS network in 1999, is stream cipher based             
on KASUMI, a block cipher used under its OFB 
operation mode. The second one, UEA2, is also a 
stream cipher but based on another stream cipher             
named SNOW 3G. It was introduced as 3GPP 
standard on 2006. 

1.2.  UMTS Integrity Function f9 

To ensure signaling data protection between the 
ME (Mobile Equipment) and the RNC (Radio 
Network Controller), a message authentication 
function f9 is used. It's a one-way function which 
generates a 32-bit output MAC-I under the control 
of 128-bit Integrity key IK [1, 3, 4]. 

“Figure 2” bellow illustrates the calculation of 
the message authentication code MAC-I using the 
f9 function. 

 
Figure 2. Derivation of MAC-I (or XMAC-I) [1, 2] 

The algorithm input parameters are the following 
[2] :  

 IK: Integrity Key; 

 COUNT-I: Frame dependent input;  

 FRESH: Random number generated by 
the network;  

 DIRECTION: Direction of the 
transmission; 

 MESSAGE: Input bit stream; 

Based on these input parameters, the message 
authentication code MAC-I is calculated. 

Like the algorithm UEA2, the integrity algorithm 
UIA2 is based on the stream cipher SNOW 3G, and 
was completely standardized on 2005. 

In the present paper, we will present in the 
following section the SNOW 3G algorithm which 
constituted the heart of UEA2 and UIA2 algorithm. 
We’ll be interested on its operation modes and its 

time and space complexity. After that, we will focus 
on studying the algorithms UEA2 and UIA2 
operations and their complexities  as well. Studying 
this later issue gives us a clear idea on the 
efficiency of the concerned algorithms. 

2. SNOW 3G ALGORITHM 
 

The algorithm SNOW 3G was chosen in 2006 as 
the cryptographic engine of the second set of 
UMTS confidentiality and Integrity algorithms f8 
and f9 (UEA2 and UIA2) used over the air 
interface. The reason is that SNOW 3G respects 
properly the 3GPP requirements regarding the time 
and memory resources. 

The stream cipher SNOW 3G is a two 
components stream cipher with an internal state of 
608 bits initialized by a 128-bit key and a 128-bit 
initialization vector IV. In this section, we are 
interested in studying the algorithm SNOW 3G 
operation and efficiency. 

2.1. SNOW 3G Algorithm Structure 

SNOW 3G consists of two interacting modules, a 
Linear Feedback Shift Register (LFSR) and a Finite 
State Machine (FSM).  The generated keystream is 
the result of the combined LFSR and FSM 
operations. Furthermore, the SNOW 3G security 
depends on the security of its two components.  

The LFSR is constructed from 16 stages, each 
holding 32 bits and the feedback is defined by a 
primitive polynomial over the finite field GF(232).  

 As far as the FSM is concerned, it is based upon 
three 32-bit registers R1, R2 and R3 and uses two 
substitution box ensembles S1 and S2. The mixing 
operations are exclusive-OR and addition modulo 
232 [5, 6]. 

SNOW 3G is first initialized; during this step, the 
algorithm is clocked, so it is working without 
producing output. After being synchronized, it 
produces a sequence of 32-bit words under the 
control of 128-bit key. These words are then used 
to mask the different blocks of the plaintext in order 
to produce the ciphertext.    

2.2. Initialization 

SNOW 3G is initialized, as illustrated in “Figure 
3” bellow, with a 128-bit key consisting of four 32-
bit words k0, k1, k2, k3 and an 128-bit initialization 
variable consisting of four 32-bit words IV0, IV1, 
IV2, IV3 as follow [5]: 

To simplify the formulas, we replace the 32-bit 
word 0xffffffff by 1. 
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s15 = k3 ⊕ IV0              s14= k2          s13 = k1 

s12 = k0 ⊕  IV1             s11 = k3 ⊕ 1     

s10= k2 ⊕  1 ⊕  IV2      s9 = k1 ⊕ 1 ⊕  IV3   

s8 = k0 ⊕  1                  s7 = k3                   s6= k2      

s5 = k1                        s4 =k0              s3 = k3 ⊕  1 

s2= k2 ⊕ 1              s1 = k1 ⊕ 1            s0 =k0 ⊕ 1 

The FSM is initialized with R1 = R2 = R3 = 0. 

Then, the cipher runs in a special mode without 
producing output: 

Repeat 32 times: 

{ 

Step1: The FSM is clocked producing the 
32-bit words F. 

Step2: Then, the LFSR is clocked in 
Initialization Mode consuming F. 

} 

“Figure 3” bellow represents the Initialization 
Mode of SNOW 3G. 

 
Figure 3. SNOW 3G Initialization mode [5] 

 

2.3. Keystream Generation 

After being clocked, SNOW 3G enters in its 
Keystream generation mode. 

First, the FSM is clocked once and the FSM 
output word is discarded. Then, the LFSR is 
clocked in Keystream mode [5]. 

After that, n 32-bit words of keystream are 
produced [5]: 

for t = 1 to n: 

{ 

Step1: The FSM is clocked and produces a 
32-bit output word F. 

Step2: The next keystream word is 
calculated as follow:  zt =F ⊕ s0. 

Step3: Then, the LFSR is clocked in 
Keystream mode. 

} 

“Figure 4” illustrates SNOW 3G Keystream 
Mode. 

 
Figure 4. SNOW 3G Keystream Mode 

2.4. Time And Space Complexity 

As seen above, SNOW 3G consists of two 
interacting modules: an LFSR and a FSM. These 
two security modules LFSR and FSM use some 
functions and security components to accomplish 
their respective tasks. 

In order to calculate the complexity, it is 
necessary to give a brief description of these 
components. More details can be found in 3GPP 
specification documents [1, 5]. 

2.4.1. SNOW 3G functions complexity 
We begin by presenting the different functions 

used: 

 MULx: The function MULx maps 16 bits to 8 
bits. Let V and c be 8-bit input values, MULx 
is defined as follow: 

If the leftmost (i.e. the most significant) bit of V 
equals 1, then: 

MULx(V, c) = (V <<8 1) ⊕ c, 
else 

MULx(V, c) = V <<8 1. 
 

 MULxPOW: MULxPOW maps 16 bits and a 
positive integer i to 8 bit. MULxPOW(V, i, c) 
is recursively defined as follow: 

If i equals 0, then: 

        MULxPOW(V, i, c) = V, 

else 
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MULxPOW(V, i, c) = 
MULx(MULxPOW(V, i - 1,c), c). 

 MULα: The function MULα maps 8 bits to 32 
bits. It is defined as follow: 

MULα (c) = (MULxPOW(c, 23, 0xA9) || 
MULxPOW(c, 245, 0xA9) || MULxPOW(c, 48, 
0xA9) || MULxPOW(c, 239, 0xA9)). 
 

 DIVα: The function DIVα maps 8 bits to 32 
bits. It is defined as follow: 

DIVα (c) = (MULxPOW(c, 16, 0xA9) || MULx- 
POW(c, 39, 0xA9) || MULxPOW(c, 6, 0xA9) || 
MULxPOW(c, 64, 0xA9)). 
 

When calculating the time complexity of a 
certain function, if this function receives a finite 
number of input data, then its time complexity is 
O(1) and this is the case of most the functions used 
during SNOW 3G operation.  

Propriety 1. The time complexity of the 
functions MULx, MULxPOW, MULα and DIVα 
is O(1). 

Since we are interested in calculating the amount 
of temporary storage used by SNOW 3G during its 
operation, a simple analysis of its functions 
exposed above, shows that they use a constant 
temporary storage that doesn’t depend on the 
parameter "n" which represent the plaintext (and 
the keystream) length. 

This leads to the following propierty: 

Propriety 2. The space complexity of the 
functions MULx, MULxPOW, MULα and DIVα 
is O(1). 

 
2.4.2. SNOW 3G security components complexity 

As far as the security components are concerned, 
the FSM uses two S-boxes S1 and S2 to update the 
registers R2 and R3 and that provides a strong 
diffusion of the input bits. Besides this, the FSM 
uses also two combining functions which are the 
bitwise exclusive-OR operation and the addition 
modulo 232 [5, 6]. 

The substitution box S1, based on the bytewise 
substitution of Rijndael [7], was carefully selected 
to provide strong security. Combined with the good 
diffusion properties of the Mix-Column operation 
of Rijndael, the S1 construction offers good 
protection against many known attacks especially 
against differential and linear attacks [5, 6]. It maps 
a 32-bit input to a 32-bit output. 

Moreover, in order to increase the resistance 
against algebraic attacks, the third memory element 
which is the 32-bit register R3 and the second 
ensemble of S-boxes S2 were introduced in the 
FSM-component of SNOW 3G. 

The new S-box S2 consists of four new 8-bit to 
8-bit substitutions followed by the MixColumn 
operation of Rijndael [5, 7]. The S-Box S2 maps a 
32-bit input to a 32-bit output. 

Furthermore, there is two combining functions 
used by the SNOW 3G FSM module. 

 The linear function consists on the bitwise 
exclusive-OR operation. 

 The non-linear combining function of SNOW 
3G is the Integer addition modulo 232. This 
addition can be implemented in the SNOW3G 
algorithm as illustrated in the following 
example. 

Let X, Y and Z be three integers: 
Z = X ⊞ Y means: 
Z = (X + Y) & 0xffffffff 
with ‘+’ is the normal integer addition and ‘&’ 
is a bitwise AND operation. 

Based on the definition of these components, 
given by the 3GPP specifications and their 
implementation, we have calculated their time and 
space complexity [5, 6].   

Propriety 3. The time complexity of the S-
Boxes S1 and S2 and of the addition modulo 232 is 
O(1). 

Propriety 4. The space complexity of the S-
Boxes S1 and S2 and of the addition modulo 232 is 
O(1). 

2.4.3. SNOW 3G complexity 
As we have seen before, SNOW 3G has two 

operation modes: Initialization Mode and 
Keystream Mode. These two modes are performed 
sequentially, the Initialization Mode, first, to 
initialize the components of the two principal 
SNOW 3G modules and then during the Keystream 
Mode there is the production of the 32-bit output 
words. 

The number of words to produce as output 
depends on the input parameter n. This input 
parameter presents the length of the plaintext to 
cipher (or the ciphertext to decrypt). When given as 
input parameter to SNOW 3G, the algorithm 
produces exactly n 32-bit output words which will 
be added by an exclusive-OR operation to the n 32-
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bit words of the plaintext (or ciphertext) to obtain 
the ciphertext (or the plaintext).   

Based on what we have described before 
regarding the SNOW 3G operations, the 
Initialization Mode can be presented as illustrated 
in “Figure 5”. 

 
Figure 5. SNOW 3G Initialization Mode algorithm 

We can see that this initialization stage is 
composed of some initialization assignments and a 
32 time loop of a set of operations based on 
functions whose time complexity is O(1). 

We will, then, be more interested in the second 
stage of SNOW 3G operation which consists on 
generating a keystream whose length is n. The 
Keystream Mode can be presented as illustrated in 
“Figure 6”. 

 
Figure 6. SNOW 3G Keystream Mode algorithm 

We note that the Keystream Mode operation is 
based on an n loop of functions whose time 
complexity is O(1), which leads to a time 
complexity O(n). 

Theorem 1. SNOW 3G algorithm has a linear 
time complexity TSNOW3G = O(n). 

On the other hand, whereas the number of steps 
taking by an algorithm during its execution is the 
primary measure of its efficiency, the amount of 
temporary storage used by the algorithm is also a 
major concern. Furthermore, in some settings, 
space is even more scarce than time. 

So, as far as SNOW 3G space complexity is 
concerned, and after calculating the space 
complexity of the different functions and security 
components of the stream cipher algorithm, we can 
conclude that the space complexity of SNOW 3G in 
its two modes, initialization and keystream modes 
is O(1), which leads to the theorem bellow. 

Theorem 2. SNOW3G algorithm has a constant 
space complexity. 

3. ENCRYPTION ALGORITHM UEA2 
 

After studying the stream cipher SNOW 3G, we 
will focus now on the confidentiality algorithm 
UEA2 which was introduced the UMTS Access 
Network security since 2006. 

As for SNOW 3G, We will be interested in 
UEA2 operation and then in its time and space 
complexity. 

3.1. UEA2 Algorithm Structure 
 

The confidentiality algorithm UEA2 is a stream 
cipher which encrypt/decrypt data blocks (between 
1 and 20.000 bits) under the 128-bit cipher key CK. 

It is based on the synchronous word-oriented 
stream cipher SNOW 3G who produces 32-bit 
words as seen above. These words are added by an 
exclusive-OR (XOR) operation to the input stream 
(the plaintext) to produce the ciphertext [1, 8]. 

The decryption operation is done in the same 
way as the encryption. It is important to note that 
the sender and the receiver are synchronized with 
each other thanks to the input parameter COUNT-
C.  

UEA2 operation is done in three principal             
steps, keystream generator initialization, keystream             
generation and encryption/decryption. 
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“Figure 7” bellow shows globally UEA2 
operation. 

 
Figure 7. UEA2 Encryption/Decryption mechanism 

 

3.2. Initialization And Keystream Generation 
 

The UEA2 algorithm structure, based on SNOW 
3G, is presented in the subsections bellow. 

3.2.1. Initialization 
All the used variables are 32-bit length and are 

presented with the most significant bit on the left 
hand side. They are initialized with the input 
parameters. 

K3 = CK[0] || CK[1] || CK[2] || … || CK[31] 

K2 = CK[32] || CK[33] || CK[34] || … || CK[63] 

K1 = CK[64] || CK[65] || CK[66] || … || CK[95] 

K0 = CK[96] || CK[97] || CK[98] || … || CK[127] 

IV3 = COUNT-C[0] || COUNT-C[1] || COUNT-
C[2] || … || COUNT-C[31] 

IV2 = BEARER[0] || BEARER[1] || … ||  
BEARER[4] || DIRECTION[0] || 0 || … || 0 

IV1 = COUNT-C[0] || COUNT-C[1] || COUNT-
C[2] || … || COUNT-C[31] 

IV0 = BEARER[0] || BEARER[1] || … ||  
BEARER[4] || DIRECTION[0] || 0 || … || 0 

3.2.2. Keystream generation 
We set  L = ⎡LENGTH / 32⎤. 

UEA2 uses SNOW 3G to produce the 32-bit 
keystream words z1 … zL. z1 is the first word 
produced and so on. 

The sequence of keystream bits is KS[0] …             
KS[LENGTH-1], where KS[0] is the most 
significant bit of z1, and KS[31] is the least 
significant one and so on. 

“Figure 8” bellow presents a summary of the two 
first steps, initialization and keystream generation. 

 
Figure 8. UEA2 Keystream generator 

3.3. Encryption / Decryption 
 

UEA2 Encryption and Decryption operations are 
identical and are performed by the exclusive-OR 
operation (XOR) of the input data which represents 
the message to encrypt/decrypt with the generated            
keystream (KS). 

For each integer i with 0 ≤ i ≤ LENGTH-1 we 
define: 

ciphertext[i] = plaintext[i] ⊕ KS[i] 

3.4. UEA2 Time And Space Complexity 
 

In order to calculate the UEA2 time and space 
complexity, we propose to reassemble all its 
operation steps in the following algorithm 
illustrated in “Figure 9”. Thus, we can easily see all 
the instructions used and estimate also the memory 
space used during the algorithm operation. 

 
Figure 9. UEA2 algorithm 
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The UEA2 is based on SNOW 3G algorithm 
which has a linear time complexity. Besides this, in 
the last step which concern the encryption 
(eventually decryption), the number of exclusive-
OR operation execution depends, like SNOW 3G 
Keystream generation, on the length of the text to 
encrypt or decrypt. These two issues lead to the fact 
that the UEA2 time complexity is O(n). 

Theorem 3. UEA2 algorithm has a linear time 
complexity. 

On the other hand, during its operation, UEA2 
needs to allocate a memory space whose size is 4*n 
for the generated keystream. In addition, SNOW 
3G used by UEA2 has a constant space complexity. 
So, the UEA2 space complexity is then O(n). 

Theorem 4. UEA2 algorithm has a linear space 
complexity. 

4. INTEGRITY ALGORITHM UIA2 
Like UEA2, UIA2 is also based on the stream 

cipher SNOW 3G, but uses in addition to the kernel 
algorithm,  some functions for later processing of 
the keystream generated by SNOW 3G [1, 8]. 

4.1. UEA2 Algorithm Structure 
 

The message authentication function which was 
chosen for the new integrity algorithm UIA2 is 
based on a universal hash functions and is similar to 
Galois Message Authentication Code (GMAC) [9]. 
The final algorithm design combines the standard 
GMAC operation with a last processing step in 
order to generate a high level 32-bit MAC-I     
security.  

“Figure 10” illustrates the global UIA2 algorithm 
operation, which will be detailed in the following 
subsections. 

 
Figure 10. UIA2 algorithm operation [6] 

4.2. Initialization And MAC-I Calculation 
4.2.1. Initialization 
 

Before processing the signaling message, SNOW 
3G generator is initialized with the integrity key IK 
and the initialization vector IV as follow: 

K3 = IK[0] || IK[1] || IK[2] || ... || IK[31] 

K2 = IK[32] || IK[33] || IK[34] || … || IK[63] 

K1 = IK[64] || IK[65] || IK[66] || … || IK[95] 

K0 = IK[96] || IK[97] || IK[98] || … || IK[127] 

IV3 = COUNT-I[0] || COUNT-I[1] || COUNT-
I[2] || … || COUNT- I[31] 

IV2 = FRESH[0] || FRESH[1] || FRESH[2] || … || 
FRESH[31] 

IV1 = DIRECTION[0] ⊕ COUNT-I[0] ||  
COUNT-I[1] || COUNT-I[2] || … || COUNT-I[31] 

IV0 = FRESH[0] || FRESH[1] || … || FRESH[15] 
|| FRESH[16] ⊕ DIRECTION[0] || FRESH[17] || … 
|| FRESH[31] 

Three random values are then generated: two 64-
bit values P and Q, and 32-bit value OTP (One-
Time-Pad) [1, 8]. “Figure 11” shows how SNOW 
3G is initialized to produce P, Q and OTP. 

 
Figure 11. UIA2 algorithm 1st processing part 

 

4.2.2. MAC-I calculation 
 
MAC-I calculation is performed in two steps. 

At the beginning of UIA2 operation, SNOW 3G 
is used to produce five 32-bit keystream words z1, 
z2, z3, z4, z5. 

We set P = z1 || z2 et Q = z3 || z4. 

“Figure 11” above illustrates this. 
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After that, begins the second step of the UIA2 
operation where many operations are performed to 
produce the MAC-I (eventually the XMAC-I [1, 
2]). 

We set D= ⎡ LENGTH/64 ⎤ +1 

For 0  ≤ i  ≤ D - 3, we set: 

Mi = MESSAGE[64i] || MESSAGE[64i+1] || 
... || MESSAGE[64i+63] 

and 

MD-2 = MESSAGE[64(D-2)] || … || 
MESSAGE[LENGTH-1] || 0 … 0. 

We note LENGTH[0], LENGTH[1], … , 
LENGTH[63] the 64 bits of the LENGTH 
parameter. 

We set then: 

MD-1 = LENGTH[0] || LENGTH[1] || … || 
LENGTH[63]. 

After having defined input parameters of the 
different functions of UIA2, we will explicit, 
through “Figure 12” bellow, the different operation 
steps, the input and the output of each step             
until obtaining MAC-I:  

 
Figure 12. UIA2 algorithm 2nd processing part 

The MAC-I is the result of an exclusive-OR 
operation between the EVAL 32-bit left half (the 
most significant 32 bits) and the 32-bit word z5: 

For 0 ≤ i ≤ 31, we have: 

MAC-I[i] = ei  ⊕ OTP[i] 

The bits e32, … , e63 are discarded. 

4.3. UIA2 Time And Space Complexity 
 

Unlike UEA2, UIA2 uses, in addition to SNOW 
3G as a kernel, other functions are used to make the 
generated MAC-I as stronger as possible.  

So before calculating UIA2 complexity, we will, 
first, introduce these functions and calculate their 
time and space complexity. 

4.3.1. UIA2 functions complexity 

We begin by presenting the different functions 
used: 

 MUL64x: This function maps 128 bits to 
64 bits. It has the same definition as the 
MULx function used by SNOW 3G and 
defined in subsection 2.4.1. of the present 
paper. The only difference is that the input 
V and c for MUL64x are 64-bit instead of 
8-bit and then the output is 64-bit as well. 

 MUL64xPOW: This function maps 128 
bits and a positive integer i to 64-bit. It is 
equivalent to MULxPOW defined for 
SNOW 3G except for the input and output 
size (64 bits instead of 8 bits). 

 MUL64: The function MUL64 maps 192 
bits to 64 bits. Let V, P and c be 64-bit 
input values, MUL64 is defined as follow: 

for 0 ≤ i < 64 
{ 

If the least significant bit of (P>>i) 
equals 1, then: 
       result = result ⊕ MUL64xPOW(V, i, c); 

 } 
 mask32bit: This function prepares a 32 bit 

mask with required number of 1 bits on the 
MSB (most significant bit) side. The input 
n is an integer in 1-32. 

If n (mod  32) = 0 , then: 
return 0xffffffff; 

 Tant que n-1 ≠ 0, then: 
mask = (mask>>1) ⊕ 0x80000000; 

 return mask ;   
 

So, from these definitions, we can see that all the 
functions above receive a finite number of input 
data, so their time complexity is O(1). Furthermore, 
they take a fixed amount of memory during their 
operations, so the space complexity is also O(1). 
These results lead to the following proprieties. 

Propriety 5. The functions MUL64x, 
MUL64xPOW, MUL64 and mask32bit have a 
constant time complexity. 
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Propriety 6. The functions MUL64x, 
MUL64xPOW, MUL64 and mask32bit have a 
constant space complexity. 

4.3.2. UIA2 algorithm complexity 

After calculating the time and space complexity 
of the different parts constituting the UIA2 
algorithm, we will be interested, now, in UIA2 
complexity itself. 

“Figure 13” bellow gives a general overview of 
the UIA2 operation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 13. UIA2 Algorithm 

Indeed, the first and second step of UIA2 
operation which consist on the algorithm 
initialization and the generation of 5 keystream 32-
bit words, don’t depend on the message length and 
has a finite number of instructions. Furthermore, 
the amount of memory used in this part of UIA2 is 
fixed. So the time and space complexity of this part 
of the algorithm is O(1). 

For the MAC-I calculation step, UIA2 needs to 
calculate the V and EVAL values which depend on 

the whole concerned message. So, the V and EVAL 
calculating instructions depend on the message 
length. So, we can conclude that the time 
complexity of UIA2 algorithm is O(n). 

Theorem 5. UIA2 algorithm has a linear time 
complexity. 

On the other hand, as we can notice that, in the 
UIA2 algorithm, the amount of temporary storage 
used doesn’t depend on the message length and the 
same parameters are used to store the result of all 
the performed operations. So, UIA2 has a constant 
space complexity.  

Theorem 6. UIA2 algorithm has a constant 
space complexity. 

5. CONCLUSION 
In this paper, a detailed study of the 

confidentiality and integrity algorithms UEA2 and 
UIA2 based on the stream cipher SNOW 3G has 
been carried out. A study of their heart algorithm 
has been accomplished as well. The objective is to 
understand enough UEA2, UIA2 and SNOW 3G 
operations and to study their time and space 
complexity. We have found that three algorithms 
have a linear time complexity, which guarantee 
efficiency and rapidity during the encryption and 
the decryption process.  

Furthermore, UEA2 has linear space complexity 
while SNOW 3G and UIA2 have a constant space 
complexity. The two later algorithms consume, 
then, a constant and already known amount of 
temporary memory which is very useful for systems 
with small working memory such as mobile 
equipments. The linear space complexity of the 
encryption algorithm is also a good result since the 
maximum length that a message can have is already 
fixed by 3GPP specifications and the Mobile 
Equipments can easily handle this amount of 
memory.  

Finally, from the study of the time and space 
complexity of UEA2 an UIA2 especially, we can 
conclude that these cryptographic algorithms were 
well chosen to be the second set of the 
confidentiality and integrity algorithms 
(UEA2/UIA2) of the 3rd generation of mobile 
Telecommunications since 2006, and also, for the 
same efficiency reasons, have been kept as the first 
set of security algorithms (EEA1/EIA1) for LTE 
(Long Term Evolution). 
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6. FUTURE WORK 
 

After studying the operation and complexity of 
the two UTRAN cryptographic algorithms UEA2 
and UIA2, we will be interested in our future work 
in the implementation of these algorithms. In fact, 
3GPP specification documents give the algorithm 
codes. Our task will be the verification of 3GPP 
algorithms code versions, their adaption to meet the 
3GPP requirements and finally their 
implementation. The Testsets given by 3GPP will 
help us to ensure the correctness of our 
propositions.  
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