
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

87

 A PRAGMATIC APPROACH TO SOFTWARE REUSE

 B.JALENDER 1, Dr. A GOVARDHAN 2, Dr.P PREMCHAND 3
1 Asst Professor, Department of IT, VNRVJIET, Hyderabad, India-500090.
2 Principal, JNTU College of Engineering, Jagtial, Karimnagar, AP, India.
3 Professor, Department of CSE, Osmania University, Hyderabad, India.

ABSTRACT

Software reuse has become a topic of much interest in the software community due to its potential benefits,
which include increased product quality and decreased product cost and schedule. The most substantial
benefits derive from a product line approach, where a common set of reusable software assets act as a base
for subsequent similar products in a given functional domain. The upfront investments required for
software reuse are considerable, and need to be duly considered prior to attempting a software reuse
initiative.

Keywords: reuse, components, product cost, quality.

1. INTRODUCTION

1.1 What is Software Reuse?

Software reuse is the process of creating
software systems from existing software rather
than building them from scratch [1]. Software
reuse is still an emerging discipline. It appears in
many different forms from ad-hoc reuse to
systematic reuse, and from white-box reuse to
black-box reuse. Many different products for
reuse range from ideas and algorithms to any
documents that are created during the software
life cycle. Source code is most commonly
reused; thus many people misconceive software
reuse as the reuse of source code alone. Recently
source code and design reuse have become
popular with (object-oriented) class libraries,
application frameworks, and design patterns.
Software components provide a vehicle for
planned and systematic reuse. The software
community does not yet agree on what a
software component is exactly.

1.2 Why Reuse Software?

A good software reuse process facilitates the
increase of productivity, quality, and reliability,
and the decrease of costs and implementation
time. An initial investment is required to start a

software reuse process, but that investment pays
for itself in a few reuses. In short, the
development of a reuse process and repository
produces a base of knowledge that improves in
quality after every reuse, minimizing the amount
of development work required for future projects
and ultimately reducing the risk of new projects
that are based on repository knowledge.

1.3 Types of Reuse

1.3.1 Systematic software reuse

Systematic software reuse and the reuse of
components influence almost the whole software
engineering process (independent of what a
component is) [2]. Software process models were
developed to provide guidance in the creation of
high-quality software systems by teams at
predictable costs. The original models were
based on the (mis)conception that systems are
built from scratch according to stable
requirements. Software process models have
been adapted since based on experience, and
several changes and improvements have been
suggested since the classic waterfall model. With
increasing reuse of software, new models for
software engineering are emerging. New models
are based on systematic reuse of well-defined
components that have been developed in various
projects [2].

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

88

Developing software with reuse requires
planning for reuse, developing for reuse and with
reuse, and providing documentation for reuse.
The priority of documentation in software
projects has traditionally been low [2]. However,
proper documentation is a necessity for the
systematic reuse of components. If we continue
to neglect documentation we will not be able to
increase productivity through the reuse of
components. Detailed information about
components is indispensable.

Although the track record for systematic
software reuse has been rather spotty historically,
several key trends bode well for software reuse
in the future:

• Component- and framework-based
middleware technologies, such as
CORBA, J2EE, and .NET, have become
main stream.

• An increasing number of developers of
projects over the past decade have
successfully adopted OO design
techniques, such as UML and patterns,
and OO programming languages, such
as C++, Java, and C#.

These trends are particularly evident in markets,
such as electronic commerce and data
networking, where reducing development cycle
time is crucial to business success.

Although there is no magic methodology or
process that's guaranteed to foster systematic
reuse, I have personally seen the
recommendations below applied successfully
numerous times over the past decade on many
projects at many companies around the world.

1.3.2 Horizontal reuse

Horizontal reuse refers to software components
used across a wide variety of applications. In
terms of code assets, this includes the typically
envisioned library of components, such as a
linked list class, string manipulation routines, or
graphical user interface (GUI) functions.
Horizontal reuse can also refer to the use of a
commercial off-the-shelf (COTS) or third-party
application within a larger system, such as an e-
mail package or a word processing program. A
variety of software libraries and repositories

containing this type of code and documentation
exist today at various locations on the Internet.

1.3.2 Vertical reuse

Vertical reuse, significantly untapped by the
software community at large, but potentially very
useful, has far reaching implications for current
and future software development efforts. The
basic idea is the reuse of system functional areas,
or domains that can be used by a family of
systems with similar functionality [2]. The study
and application of this idea has spawned another
engineering discipline, called domain
engineering. Domain engineering is "a
comprehensive, iterative, life-cycle process that
an organization uses to pursue strategic business
objectives. It increases the productivity of
application engineering projects through the
standardization of a product family and an
associated production process “[3]. Which brings
us to application engineering, the domain
engineering counterpart: "Application
engineering is the means by which a project
creates a product to meet a customer's
requirements. The form and structure of the
application engineering activity are crafted by
domain engineering so that each project working
in a business area can leverage common
knowledge and assets to deliver a high-quality
product, tailored to the needs of its customer,
with reduced cost and risk" [3]. Domain
engineering focuses on the creation and
maintenance of reuse repositories of functional
areas, while application engineering makes use
of those repositories to implement new products.

1.3.3 Horizontal and Vertical Software Assets:

Many systematic software reuse initiatives in
organizations fail to take off or have a slow
death. There are many factors for this but one
key reason is the pursuit of generic technical
assets. That is what I refer to as horizontal
reuse. Why? Because the focus and intent is to
find software assets that are reusable across most
or all your applications. This is not only limits
the potential for systematic reuse but also makes
your reuse initiative extremely risky. Finding
assets that are universally reusable is not only
difficult but also will make your design overly
complex. Overly generic components might also
end up creating assets that are:

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

89

• hard to test and debug
• difficult to comprehend and maintain
• complex to integrate and configure

In contrast, with systematic reuse the focus is on
building a set of vertical software assets for a
targeted business domain. These software assets
are not meant to be generic for all projects or all
domains. Orthogonal to horizontal assets,
vertical software assets are deliberately
constructed as part of a product line. Take
Microsoft Office as an example. It is made up of
several vertical reusable assets part of the Office
product line. Opening a document, saving
multiple documents, document preview,
clipboard functions (cut, copy, paste), inserting

files and other attachments are all examples of
reusable assets that are common across the
Office product line. Or take Gmail, Orkut, GTalk
as a product line. Logging in with google
credentials, exchanging messages, persisting
chat, broadcasting messages are all examples of
functionality that is common across products.
This is the power and reach of systematic reuse.
In the long haul, vertical domain relevant assets
will help you create new products faster, offer
product variations/flavors, and fetch a higher
return on your software investments over super-
generic horizontal assets.

Characteristic Vertical Reuse Horizontal Reuse

Applicability Only for applications within a
specific domain or closely related
domains. This is the primary
focus when building product lines

Applicable across the board for
applications regardless of
domain. These assets typically
tend to be utilities that are generic
to multiple applications.

Domain relevance High Low and can be non-existent

Availability outside the firm (i.e.
commercial and/or open-source
solutions)

Low. Domain specific assets tend
to be unique and create value by
differentiating your firm from its
competition. Hence, availability
outside the firm tends to be low

High. Domain agnostic assets
don’t tend to be unique to a
particular organization. E.g.
logging or simple data
transformations etc.

Potential to create competitive
advantage

High. Low

Asset Variability Varies from well-defined to
open-ended depending on the
complexity in the domain.
Variations typically aren’t well
understood and even if they are,
they may not be accurately
captured in reusable assets

Tend to be more well-defined
than open-ended. Reason?
Variations are well known, tend
to change less over time, and
have been analyzed several times.

Key stakeholders Has to be a combination of
business stakeholders and
technology. Business knowledge
is fundamental to capturing
domain variations and
relationships and technical
expertise is necessary to produce
executable software.

Tend to be primarily technology.
Some assets may require
operations or production support
teams to provide input as well.
E.g. your firm may have a
logging or error handling
standard that the reusable asset
needs to adhere to

Table (1): Key Differences between Vertical and Horizontal Reuse

Domain engineering is the key concept and focus of
current reuse efforts. The prospect of being able to
reuse entire quality subsystems without change,
especially at today's business speed of "we needed

it yesterday", is a significant gain to both customers
and software organizations. Therefore the rest of
this paper will focus on this current topic.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

90

2. PREREQUISITES TO CREATING
REUSABLE SOFTWARE

Unfortunately, software reuse doesn't just
happen.[4] Ad hoc reuse, (i.e., reusing a function
here, a function there, often times with
modifications), also known as opportunistic reuse,
doesn't reap the same large-scale benefits as a
domain engineering approach. And it's not just a
technical issue; it is highly managerial in nature. As
much as libraries of reusable code and other assets
are important, they will not be fully utilized without
management and process support of reuse.

2.1 Organization and Process

The classical software development process does
not support reuse.[4] Reusable assets should be
designed and built in a clearly defined, open way,
with concise interface specifications,
understandable documentation, and an eye towards
future use. Typically, customer, client, and contract
projects are built as "one-time only," without reuse
in mind, and tend to be tightly bound within
themselves, without the more robust open interfaces
which ease the reuse process. Therefore, in order to
make the most of software reuse, the software
development process must evolve to include reuse
activities.

A strong organizational foundation must exist for
reuse to succeed, since domain engineering
involves a different way of looking at software
products, called a product line approach. A product
line is a family of similar products addressing a
particular market segment, or domain, and provides
a massive opportunity for reuse. With a reuse
process in place, every new system can be built
from a set of core assets rather than rebuilding a
system from scratch for each new customer's
requirements [5]. But this approach adds new
challenges for the management team:

• Defining an organizational structure for
maintaining the product line, including
core assets and the customer specific
products with special non-core
functionality

• Defining a process for producing a new
member of the product line (or upgrading
an old one) from the core assets with
customer specific requirements

• Defining a process for adding functionality
to the core product line assets based on
new customer requirements

• Instituting a training program for reuse
strategies in management, design,
implementation, test-all phases of the
development process[5]

In order to meet these challenges, a software
organization must possess some key abilities and
have a strong commitment to goals of reuse [6].
The goals of reuse, as defined in the Software
Reuse Key Process Area for Level 3 (Defined) of
the Software Engineering Institute's (SEI)
Capability Maturity Model, are to (1) "incorporate
reusable software assets into new or existing
applications," and (2) "collect, evaluate, and make
available to software projects reusable software
assets" [7]. SEI claims that two important
commitments must be made by an organization as
well: (1) to follow a written policy which outlines
the software reuse tasks in the software process and
the methods and tools to identify, build, acquire,
and reuse assets, and (2) to maintain the reusable
assets by storing and providing an identification
mechanism [7]. But in order to reach these goals
and fulfill the commitments, certain organizational
abilities are required:

• Adequate resources and funding must be
provided for performing the software reuse
tasks, including technical skills (domain
analysis, development of reusable assets,
asset storage and identification), tools, and
incentive to build reusable assets as well
as use them.

• Members of the software engineering staff
must receive required training to perform
their technical assignments associated with
software reuse.

• The project manager and all software
managers must receive orientation in the
technical and nontechnical aspects of
software reuse [7].

• A group that is responsible for the
maintenance of the reuse infrastructure
must exist.

• On each project, responsibility must be
assigned for the acquisition and
maintenance of reusable components for
the project [5].

In addition to these abilities, a requisite product
quality and strong configuration management

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

91

practices must exist in order to effectively manage
reuse and profit from its application.

In essence, a strong, quality producing, process-
driven organization must be in place before
attempting to incorporate reuse into the software
life-cycle [8].

2.2 Technical Expertise

Transferring to a product line approach requires
some different technical skills than traditional
software development processes, along with many
of the current familiar techniques, such as layered
architectures, object-oriented programming,
information hiding, and abstract interfaces, to name
a few. One "new" addition, an aspect of domain
engineering, is domain analysis, which involves
producing a domain model of the product line that
identifies common members and allowable
variations for each. A Product line software
architecture is built based on the domain model, the
backbone for all current and future product line
family members. Within the architecture, standard
interfaces must exist, so that if a particular base
component needs to be specialized for a specific
customer, a specialized version will use the
standard interfaces and be able to plug right into the
global architecture. The biggest new technical
challenge on a product line approach is the initial
design of the software architecture for robustness
towards potential future expansions, and its
subsequent maintenance to deal with technology
changes. The domain analysis and the design of the
software architecture should be carried out by
domain experts, people with experience and a solid
understanding of the product line base.

In order to build quality reusable software and
achieve the most gain from reuse, standard coding
practices and code documentation must exist across
the organization. These standards help developers
understand each asset quickly, since each developer
is familiar with the standard, and know exactly
what to expect and look for in each new module he
or she encounters. The higher the quality of the
standards, the higher the quality of the resulting
code and products.

3. REUSE COSTS - THE INVESTMENT

There is no denying the large cost associated with
starting a reuse program. It is an extra cost on top
of the traditional development costs, since

designing reusable assets takes more time and care
than designing a one-time specific system. The
upfront investment spans organizational, technical,
and process changes, as well as the cost of tools to
support those changes, and the cost of training
people on the new tools and changes.

3.1 Process

The software development process must be
enhanced to include reuse activities. A reuse library
or repository must be created and maintained, and
tools must be acquired or developed to access the
assets, and many new procedures must be specified:

• Procedures for developing reusable assets
and inclusion of assets in the repository

• Procedures for domain analysis and
architecture design and modification

• Procedures for configuration management
and control of reusable assets

Project planning should include extra time for
designing, implementing, and testing robust
reusable assets as opposed to system-specific
functionality, since their quality is important not
just to one system, but potentially many future
systems. Time must be allotted to researching
repository assets to be included for reuse and
matching them to requirements. The key activities,
according to the SEI's CMM Level 3, are the
following:

• Software product and/or process
requirements are evaluated to determine if
existing software assets exist that can
fulfill the requirements. (i.e., matching
needs to capabilities)

• Assets are identified and evaluated for
reuse.

• Asset certification requirements are
established to determine asset
completeness, quality, and/or history.

• A library (ies)/repository (ies) of reusable
software assets is established and
maintained.

• The software reuse activities are
maintained, managed, and controlled as
part of the organizations and project's
defined software process.

• Incorporation and/or development of
reusable assets are included in the project's
software costing and sizing practices.[7]

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

92

Reuse must be considered through all phases of a
project life-cycle. Partial adoption of reuse
strategies is not enough. Opportunistic reuse does
not allow for the organization-wide standardization
and control necessary for the maintenance of a true
core repository.

3.2 Domain Analysis and Software Architecture
Design

To implement a product line approach, a group of
domain experts must be established and maintained
to perform domain analysis and develop
architectures for the domain. In their analysis, this
group must partition the domain into segments that
can be developed independently and can evolve for
future changes. This partitioning usually involves
the determination of specific functional areas, along
with roles and responsibilities, within the domain.
As analysis evolves into architecture design, the
group must create interfaces to these encapsulated
functional areas in such a way that a future change
within one area will not require a change
throughout the entire system. Clear and complete
documentation of the software architecture is a
must, and all proposed changes to the architecture
should be filtered through the domain expert group.

An example of a successful implementation of this
approach is seen in CelsiusTech Systems, a
Swedish naval defense contractor that builds a
product line of shipboard command and control
systems [5]. In 1985, the company was awarded
two new contracts, both for larger and more
complex systems than the company had previously
undertaken, to be built in parallel. This prompted
project management to reorganize the development
process for a product line of naval command and
control systems. Specific user requirements not
included in the common base functionality could be
tailor-made while still using most of the common
core of the system. To achieve this end,
CelsiusTech created an architecture team that was
given total ownership and control of the
architecture for the system, ensuring design
consistency and interpretation. The team consisted
of a small group of senior engineers with much
domain-specific engineering experience, and the
team reported directly to the general product line
program manager. The group was responsible for
developing the initial software architecture,
including identification of architecture layers,
defining the functional areas and their interfaces,
allocating system functions (within functional
areas) to appropriate layers, and defining the

general communication mechanisms within the
software, as well as the communication of the
product line principles and ideas to the project staff.
The initial architecture developed by this original
group is still the basis of CelsiusTech's current
product line, and has resulted in the successful
completion of five naval systems, with two in-
progress systems quite predictably on schedule and
within budget. As new ship systems are produced,
improvements in the base architecture and common
core are propagated throughout all systems, after
approval by the architecture team. In this way, the
entire product line evolves, rather than just one
customer's system [6].

3.3 Necessary Tools for Change

Another key for successful reuse is the organization
and accessibility of the common reusable assets.
Asset management tools, such as repositories, for
architectures, designs, documentation, and code
must be developed and maintained. Also needed are
tools to aid in the integration of architecture,
design, and software products, in order to speed
prototyping, full-scale development, modifications,
and maintenance.[8] Along with these tools, a
strong configuration management process must be
in place to work with the architecture team and
track the evolution of the product line. "Automated
browsing tools with sufficient sophistication must
be acquired or developed to facilitate search and
retrieval. After all, if the users cannot find the asset,
they won't use it, and the investment in the
repository has been wasted. Configuration
management tools must be incorporated into asset
repositories in order to trace an asset to the systems
in which it was used. This type of information
assists future users of an asset in deciding its
appropriateness to their situation." [9] The tight
integration of configuration management activities
with the reusable assets assures the validity of the
common core, another definite must while
developing with reusable assets.

Other useful tools for the future are domain
analysis tools, of which a few currently exist, and
procedures for the development and maintenance of
domain architecture. As more research into these
areas continues, further tools will become available,
further streamlining the reuse process.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

93

4. REUSE ADVANTAGES AND FAILURES

With all the costs and prerequisites outlined above,
software reuse may seem like more effort than it is
worth. However, the number of success stories with
increases in productivity, quality, and reliability,
and decreases in production time, hint toward a
goal worth achieving.

Higher quality products are produced due to
repeated use and test, and intentional design for
robustness and reuse. Each successive use of a
given software asset will retest it, and the more
tests performed, the more likely defects will be
found and corrected. Every successful reuse of an
asset increases it reliability level, increases its
usefulness in the reuse repository, and decreases the
risk of failure.

Less development time, and therefore cost, is
necessary because there is a repository of software
assets with which to start. Although time is required
to assess the applicability of a given reusable asset
to a new software system or product, that time is
minimal in comparison to development time for a
new module in the "one-time only" style.

Higher scheduling accuracy is possible due to reuse
of process materials along with a better
understanding of the product domain. Since the
process has been successfully completed before,
project managers should have access to previous
projects' scheduled and actual hours for production,
and can adjust their current schedule based on
previous performance and the amount of reusable
assets they intend to use. Also, as the processes are
reused, more experience and expertise in the
domain are accumulated, and scheduling becomes
more of a known quantity for the particular domain.
Very similar products have been built previously,
so the production time starts to become a standard
along with the core assets for reuse.

Reuse has been a popular topic of debate and
discussion for over 30 years in the software
community. Many developers have successfully
applied reuse opportunistically, e.g., by cutting and
pasting code snippets from existing programs into
new programs. Opportunistic reuse works fine in a
limited way for individual programmers or small
groups. However, it doesn't scale up across business
units or enterprises to provide systematic software
reuse. Systematic software reuse is a promising
means to reduce development cycle time and cost,

improve software quality, and leverage existing
effort by constructing and applying multi-use assets
like architectures, patterns, components, and
frameworks

4.1 Why Software Reuse has Failed Historically

Like many other promising techniques in the
history of software, however, systematic reuse of
software has not universally delivered significant
improvements in quality and productivity. There
have certainly been successes, e.g., sophisticated
frameworks of reusable components are now
available in OO languages running on many OS
platforms. In general, however, these frameworks
have focused on a relatively small number of
domains, such as graphical user-interfaces or C++
container libraries like STL. Moreover, component
reuse is often limited in practice to third-party
libraries and tools, rather than being an integral part
of an organization's software development
processes.

In theory, organizations recognize the value of
systematic reuse and reward internal reuse efforts.
In practice, many factors conspire to make
systematic software reuse hard, particularly in
companies with a large installed base of legacy
software and developers. In my experience, non-
technical impediments to successful reuse
commonly include the following:

• Organizational impediments -- e.g.,
developing, deploying, and supporting
systematically reusable software assets
requires a deep understanding of
application developer needs and business
requirements. As the number of developers
and projects employing reusable assets
increases, it becomes hard to structure an
organization to provide effective feedback
loops between these constituencies.

• Economic impediments -- e.g.,
supporting corporate-wide reusable assets
requires an economic investment,
particularly if reuse groups operate as cost-
centers. Many organizations find it hard to
institute appropriate taxation or charge-
back schemes to fund their reuse groups.

• Administrative impediments -- e.g., it's
hard to catalog, archive, and retrieve
reusable assets across multiple business
units within large organizations. Although
it's common to scavenge small classes or

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

94

functions opportunistically from existing
programs, developers often find it hard to
locate suitable reusable assets outside of
their immediate workgroups.

As if these non-technical impediments aren't
daunting enough, reuse efforts also frequently fail
because developers lack technical skills and
organizations lack core competencies necessary to
create and/or integrate reusable components
systematically. For instance, developers often lack
knowledge of, and experience with, fundamental
design patterns in their domain, which makes it
hard for them to understand how to create and/or
reuse frameworks and components effectively.

Here are some success stories for software reuse:

• The AUTOSAR success story. The
number of electronic components
increases, the software that controls these
components is becoming more complex
and larger. This leads to mounting costs
for manufacturers of vehicle one of the
most significant improvements is the
introduction of the variant handling
concept giving more flexibility in software
reuse s and electronic control units (ECU).
One of the most significant improvements
is the introduction of the variant handling
concept giving more flexibility in software
reuse. AUTOSAR is dedicated to
addressing this problem--by creating a
common specification for onboard
software," said Fujitsu Microelectronics in
a press release [11].

• Win32 threading and messaging code.
This is recently completed a project where
code is reused. The project started out as a
simple Win32 Dialog application, but as is
so often the case expanded. The project
was to create an application that would
upgrade the flash image in the MobiliTV
settop box. The requirements are pretty
simple connect to the box over its USB
interface (unfortunately custom rather than
a serial emulation, but that will become
significant in our reuse story.) retrieving
version information from the box [10].

• In the CelsiusTech example, each
successive ship system took less time to
produce, as more of the common
functionality was developed and reused.

On the latest systems, 70-80% of the
common assets were reused without
modification, dramatically reducing
production time required.[5]

• The Navy experienced a 26% reduction in
required labor hours to develop and
maintain its Restructured Naval Tactical
Data Systems (RNTDS).

• Raytheon saw a 50% increase in
productivity in its Missile Systems
Division.

• Fujitsu's Software Development for
Electronic Switching Systems (ESS) began
delivering 70% of its ESSs on schedule (as
opposed to only 20% before adopting
reuse principles).

• The Army estimates a cost avoidance of
$479.9 million for its Tactical Command
and Control system, allowing additional
mission requirements to be addressed
during a period of funding shortfalls.

• Magnavox developed the Force Fusion
System Prototype (FFSP) in 20% of the
projected, estimated time for a totally new
system development.[11]

So software reuse is possible, and the payoffs are
achievable.

5. CONCLUSION

As the saying goes, "no pain, no gain," and the
reuse of software is no exception. The product line
approach to software reuse requires substantial
upfront investment with substantial, but not
immediate, benefits. Much commitment, planning,
and effort are required to begin a reuse program.
Reuse processes and procedures must be
incorporated into the existing software development
process. Repositories of software assets must be
created and maintained. Reusable assets must be
designed for reusability. People must be trained in
the skills of software reuse. Despite the initial
overhead, there are high benefits to software reuse,
if appropriate processes are invoked and the
requisite planning takes place [11]. Product quality
and reliability can increase. Project development
time can decrease, along with associated project
costs. Project scheduling can become another
standard calculation instead of a guesstimate. All
these benefits, in the long term, can dramatically
increase productivity in an organization, and
decrease the overall risk of project development by

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

95

supplying a solid foundation from which all
subsequent product family members are derived.

6. REFERENCES:

[1] Charles W. Krueger Software Reuse “ACM

Computing Surveys (CSUR) Volume 24, Issue
2 (June 1992) Pages: 131 - 183.

[2] Sametinger, Software Engineering with
 Reusable Components, Springer-Verlag, ISBN
 3-540-62695-6, 1997.

[3] Department of the Navy. DON Software Reuse
 Guide, NAVSO P-5234-2, 1995.

[4] Software Productivity Consortium Services
 Corporation. Reuse-Driven Software Process
 Guidebook Product Description, SPC-93146-N,
 version 01.00.04, Herndon, VA, 1995.

[5] Baragry, Jason. Summary of the ICSE 16 Panel
 on Software Reuse, Sorrento, Italy, 1994.

[6] Brownsword, Lisa and Paul Clements. A Case
 Study in Successful Product Line
 Development, Software Engineering Institute
 Technical Report, CMU/SEI-96-TR-016,
 October, 1996.

[7] Allied Signal. Reuse Key Process Areas,
 August, 1996.)

[8] Software Engineering Institute. Software Reuse
 Key Process Areas, Level 3: Defined, August,
 (1996.)

[9] Villalba, Jose Manuel. ISORUS:
 Implementation and Evaluation of a Software
 Reuse Methodology, ESSI Application
 Experiment 10936 Version 2, December,1995

[10] http://lapel.com/software-reuse-success-
 story.html

[11] http://www.allbusiness.com/technology/softwa
 re-services-applications-embedded-
 systems/12290899-1.html

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

96

AUTHOR PROFILE:

B.Jalender Received the
Bachelor’s Degree in Computer
Science and Engineering from
JNT University Hyderabad in
2003 and Master’s Degree in
Software Engineering from
Kakatiya University Warangal
in 2006.Now pursuing Ph.D in

Computer Science and Engineering from Osmania
University College of Engineering, Hyderabad. He
is presently working as Assistant Professor in IT
Department at VNR VJIET Hyderabad. His current
research interests include software engineering
especially in the areas of reusable software
components and component based software
engineering.

Dr.A.Govardhan did his BE in
Computer Science and
Engineering from Osmania
University College of
Engineering, Hyderabad,
M.Tech from Jawaharlal Nehru
University, Delhi and Ph.D
from Jawaharlal Nehru

Technological University, Hyderabad. He is
presently working as Principal, JNTU Jagtial,
Karimnagar, Andhra Pradesh. He has guided more
than 100 M.Tech projects and number of MCA and
B.Tech projects. He has 63 research publications at
International/National Journals and Conferences.
He has been a program committee member for
various International and National conferences. He
is also a reviewer of research papers of various
conferences. He has delivered number of Keynote
addresses and invited lectures. He is also a member
in various professional bodies. His areas of interest
include Databases, Data Warehousing & Mining,
Information Retrieval, Computer Networks, Image
Processing and Object Oriented Technologies.

Dr.P.Premchand has
graduated in Electrical
Engineering from National
Institute of Technology,
Jamshedpur. He has obtained
his M.E and Ph.D degrees in the
branch of computer science and

engineering from Andhra University,
Visakapatnam.He has joined as lecturer in the
department of CSE of Andhra University,
Visakapatnam.Later he has shifted to Osmania
University, Hyderabad into department of CSE as
Associate professor. He has also served in various
positions such as director at AICTE New Delhi and
as an additional controller of Exams at Osmania
University, hyderabad.Later he is elevated as
Professor in his parent Department at Osmania
university and served as Head of the Department
CSE and chair man Board of Studies and presently
he is serving as Dean Faculty of Informatics at
Osmania university Hyderabad. He is also an active
member of AICTE –NBA, selection committee
member at J.N.T.U, A.U, A.N.U, K.U,
ISRO,NRSA and ADRIN. He is actively involved
in research, supervising 5 research students for the
award of their Ph.D and many more students are
pursuing their Ph.D at O.U, JNTU and A.N.U. He
has presented several papers in national and
international conferences and journals.

