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ABSTRACT 

 
The advantage of the Model Reference Adaptive Scheme is to establish robustness with respect to bounded 
disturbances and unmodeled dynamics. In the model reference adaptive system (MRAS), the desired index 
of performance is given by the reference model. The tracking error represents the deviation of the plant 
output from the desired trajectory. The adaptive control without having robustness property may go 
unstable in the presence of small disturbances or unmodeled dynamics. A new idea is proposed to reduce 
the time for adaptation in MRAC systems. The idea behind to design Robust model Reference Adaptive PI 
control system is by adding the control signal from the PI controller to the control signal from modified 
MRAC. It has been checked with the lateral dynamic model of Boeing 747 airplane. The proposed 
controller is easy to implement and has superior transient behavior as compared to the standard adaptive 
controller and modified adaptive controller. 

 
Index Terms – Model Reference Adaptive Control, Modified Model Reference Adaptive Control, Control 

Systems, MATLAB. 
 

I. INTRODUCTION 
 

     In the sense of control theory and 
engineering, an adaptive controller is an 
"intelligent" controller that can modify its 
behavior in response to the variations in the 
dynamics of the process and the character of the 
disturbances. An adaptive system is any physical 
system that has been designed with an adaptive 
viewpoint.  
     The Model Reference Adaptive Control 
System is an adaptive servo system in which the 
desired performance is expressed in terms of the 
reference model, which gives the desired 
response to the reference signal. Robust Control 
is not considered to be an adaptive system even 
though it can handle classes of parametric and 
dynamic uncertainties. The adaptive law 
introduces a multiplicative non-linearity that 
makes the closed loop plant nonlinear and often 
time varying. Because of this, the analysis and 
understanding of the stability and robustness of 
adaptive control schemes are challenging. Some 
of the basic methods used to design adaptive 
laws are Sensitivity methods, Lyapunov design, 
and Gradient method and Least square methods 
based on estimation error and cost criteria [1]-
[5]. This method of developing adaptive laws is 
based on the direct method of Lyapunov and its 
relationship with positive real functions.  

     The main characteristics of the simple MRAC 
schemes are the adaptive laws driven by the 
estimation error which due to the special form of 
the control law is equal to the regulation or 
tracking error. They are derived using the 
Lyapunov design approach without the use of the 
normalization and a simple Lyapunov function is 
used to design the adaptive law and establish 
boundedness for all signals in the closed loop 
plant [5]. Under certain assumptions on the plant 
and reference model, MRAC schemes are 
designed that guarantee signal boundedness and 
asymptotic convergence of the tracking error to 
Zero [2]. These results however provide little 
information about the rate of convergence and 
the behavior of the tracking error during the 
initial stages of adaptation [10-11]. The 
disadvantage of this MRAC scheme is that it 
takes some time to adapt and some oscillations 
will come after a certain period. Hence modified 
MRAC is designed. In modified MRAC 
adaptation time is decreased but this scheme also 
some oscillation will come after a certain period.  
     The idea behind to design proposed Robust 
model Reference Adaptive control system is by 
adding the control signal from the PI controller, 
to the control signal from modified MRAC. It 
has been checked with the lateral dynamic model 
of Boeing 747 airplane and the adaptation time is 
decreased and has no oscillations will come. The 
proposed controller is easy to implement and has 
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superior transient behavior as compared to the 
conventional adaptive controller. 
     This sophisticated controller can work well 
over a wide range of operating conditions.  This 
can be used for continuous adaptation in 
industrial applications.  
 
II.  STATEMENT OF THE PROBLEM 

 
     Consider the SISO, LTI plant described by 
the vector differential equation  
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     where Zp, Rp are monic polynomials and Kp is 
a constant. The reference model, selected by the 
designer to describe the desired characteristics of 
the plant, is described by the differential 
equation 
 

( )
m

r
mm

0mmmmmm

xCy

x0x,rBxAx

=

=+=
                            

(4) 
 
     where Pm

mx ℜ∈  for some integer 
1

mm r,y;P ℜ∈  and r is the reference input 
which is assumed to be a uniformly bounded and 
piecewise continuous function of time. The 
transfer function of the reference model given by 

r)s(mWmy = is expressed in the 

same form as (3). 
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     where ( ) ( )sR,sZ mm  are monic polynomials 
and km is a constant. 
 
 
 

Assumptions 
  1.  ( )sZP  is a monic  Hurwitz  polynomial  

of degree mp 
  2.  An upper bound n of degree Pn  of ( )sR P

 
  3.  The relative degree PP

* mnn −=  of ( )sG P
, 

and 
  4.  The sign of the high frequency gain Pk  

are known 
  5.  ( ) ( )sR,sZ mm  are monic  Hurwitz  

polynomials of degree mm Pq ,  
respectively, where pm ≤ n 

  6.  The relative degree mmm qPn −=*  of 
( )sWm  is the same as that of ( )sG P , i.e.., 

**
m nn = . 
 

III. STRUCTURE OF AN MRAC DESIGN 
 
     As in Ref. [2, 3&10] the state space 
realization of the control law is used 
The state space realization of the control law: 
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     where F is an ( ) ( )11 −− nXn  stable matrix 
such that ( )FsI −det  is a Hurwitz polynomial 
whose roots include the zeros of the reference 
model, and that (F,g) is a controllable pair We 
define the ‘‘regressor’’ vector as 

[ ]TP21 r,y,,ωω=ω  
     In the standard adaptive control scheme, the 
Control u is structured as ωθ= T

Pu  
     where [ ]T0321 c,,, θθθ=θ  is a vector of 
adjustable parameters, and is considered as an 
estimate of a vector of unknown system 
parameters, *θ  

Obtain the state space representation of the 
overall closed –loop plant by augmenting the 
state xp of the plant (1) with the states ω1,ω2 of 
the controller (6) i.e., 
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  (9)      
and Y0  is the vector with initial conditions. The 
transfer function from r to yp is given by 
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     It is clear that the eigen values of Ac are equal 
to the roots of the polynomialsΛ, Zp, Rm; 
therefore Ac is a stable matrix. The stability of 
Ac and the boundedness of r imply that the state 
vector Yc in (9) is bounded. 
     Since ( ) ( )sWcBAsIC m

*
0c

1
c

T
c =− − , the 

reference model may be realized by the triple 
),,( *

0 ccc CcBA and described by the non minimal 
state space representation 
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     Letting mc YYe −= , to be the state error and 

mP1 YYe −=  the output tracking error, it 
follows from (6) and (9) that   
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i.e.., the tracking error e1 satisfies 
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     Because AC is a stable matrix, ( )te1  
converges exponentially to zero. The rate of 

convergence depends on the location of the eigen 
values of cA , which are equal to the roots of 

( ) ( ) ( ) ( ) 0sRssZs m0P =ΛΛ . The rate of 
convergence by designing to have fast zeros, but 
it is limited by the dependence of Ac on the zeros 
of ( )sZP .which are fixed by the given plant. 
The main characteristics of the simple MRAC 
schemes are: 
(1) The adaptive laws are driven by the 

estimation error, which due to the special 
form of the control law is equal to the 
regulation or tracking error. They are 
derived using the Lyapnuov design approach 
without the use of the normalization. 

(2) A simple Lyapunov function is used to 
design the adaptive law and establish 
boundedness for all signals in the closed 
loop plant. 

Let us assume that the relative degree of the 
plant 
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is 1* =n . The reference model 

( )rsWy mm =  
is chosen to have the same relative degree and 
both ( ) ( )sW,sG mP  satisfy assumptions 1 to 6, 

respectively. In addition ( )sWm  is designed to 
be SPR. 
     A reasonable approach to follow in the 
unknown plant parameter case is to replace (6) 
with the control law 
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     where θ(t) is the estimate of θ* at time t to be 
generated by an appropriate adaptive law. We 
first obtain a composite state space 
representation of the plant and controller, i.e.,  
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and then add and subtract the desired input 
ωθ T*

cB  to obtain  
( )ωθ−+ωθ+= T*

Pc
T*

cC0C uBBYAY&

 
     If we now absorb the term ωθ T*

cB  into the 
homogeneous part of the above equation, we end 
up with the representation 
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     where Ac is as defined in (9).  Let 

mc YYe −=  and mp1 yye −=  where Ym is the 
state of the non minimal representation of the 
reference model given by (10), we obtain the 
error equation 
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bilinear parametric model. 
The estimate ê1(t) of e1(t) based on θ(t), the 
estimate of θ* at time t, is given by 
 ( ) ( )ωθ−ρ= T
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where ρ is the estimate of ρ*. Because the 
control input is given by 
 ( )ωθ= tu T
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     It follows that ( )[ ]0sWê m1 = ; therefore, the 

estimation error 1111 êe, −=εε may be taken to 

be equal to e1, i.e., 11 e=ε . Consequently, (16) 
is not needed and the estimate ρ of ρ* does not 
have to be generated. Substituting for the control 
law in (14), we obtain the error equation 
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the tracking error e1. Because 
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stable, equation (17) is in the appropriate form 
for applying the SPR-Lyapunov design 
approach. 

     We therefore proceed by proposing the 
Lyapunov-like function 
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Equations (18) and (20) imply that V and, 
therefore, e, θ ∈ L∞. 

     Because e = Yc - Ym and Ym ε L∞ we have Yc 
ε L∞ which implies that yp, ω1,ω2 ∈ L∞. Because 
up = θTω and θ, ω ∈ L∞ we also have up ∈ L∞. 
Therefore all the signals in the closed-loop plant 
are bounded. It remains to show that the tracking 
error e1 = yp - ym goes to zero as t → ∞. 
     From (18) and (20) we establish that e and 
therefore e1 ∈ L2. Furthermore, usingθ, ω, e ∈ 
L∞ in (17) we have that ė, ė1 ∈ L∞ . Hence, e1, ė1 
∈ L∞ and e ∈ L2, which, imply that e1(t) → 0 as t 
→ ∞.  
The MRAC scheme guarantees that: 

(i) All signals in the closed-loop plant are 
bounded and the tracking error e1 
converges to zero asymptotically with 
time for any reference input r ∈ L∞. 

(ii) If r is sufficiently rich of order 2n, ŕ ∈ L∞ 
and Zp(s), Rp(s) are relatively coprime, 
then the parameter error *~

θ−θ=θ  and 

the tracking error e1 converge to zero 
exponentially fast. 
 

IV.ROBUST ADAPTIVE CONTROL 
 

The model reference adaptive scheme 
designed for a disturbance free plant model may 
go unstable in the presence of small 
disturbances. The adaptive laws that are to be 
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robust with respect to a wide class of plant 
model uncertainties are developed which are 
referred as Robust Adaptive Laws. These Robust 
adaptive laws are combined with control laws to 
generate robust adaptive control schemes [23,26] 
. 

Under certain assumptions on the plant 
and reference model, MRAC schemes are 
designed that guarantee signal boundedness and 
asymptotic convergence of the tracking error to 
zero. These results however provide little 
information about the rate of convergence and 
the behaviour of the tracking error during the 
initial stages of adaptation. If the reference signal 
is sufficiently rich, the exponential convergence 
and more information about the asymptotic and 
transient behaviour of the scheme can be 
inferred. In most situations, the use of sufficient 
rich reference inputs without violating the 
tracking objective, the transient and asymptotic 
properties of MRAC Schemes in the absence of 
rich input signals are very crucial.A phenomenon 
known as “bursting”, where the tracking error, 
after reaching steady state behavior, bursts into 
oscillations of large amplitude over short 
intervals of time, have often observed in 
simulations. Bursting cannot be excluded unless 
the reference signal is dominantly rich and/or an 
adaptive law with a dead zone is employed. 
Bursting is one of the annoying phenomena in 
adaptive control in simulations and the cause of 
bursting could be the computational error, which 
acts as a small bounded disturbance. To 
eliminate bursting error occurs by modified 
MRAC schemes are designed 
In modified MRAC scheme, the control law 
design is modified to one that takes into account 
the fact that the plant parameters are not exactly 
known and reduces the effect of the parametric 
uncertainty on stability and performance as much 
as possible. This control law, which is robust 
with respect to parametric uncertainty, can then 
be combined with an adaptive law to enhance the 
stability and performance. Illustrate this design 
methodology for the plant   given as follows: 
The Plant is taken as following equation: 
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Reference Model  taken as 
 

Let choose a control law that employs 
no adaptation and meets the control objective of 
stability and tracking  as close as possible even 
though the plant parameters a and b are 
unknown. 

Consider the control law: αθ urcxu ++= 00

                            
 
where 00 c,θ  are constants that depend on some  
nominal known values of a , b, if available  
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 which implies the closed loop transfer function 
is stable and tracking error e1 will converge 
exponentially fast to the residual set whose size 
reduces to zero as  τ   0. and therefore all 
signals in the closed plant are bounded .in the 
absence of the disturbances, i.e.,d=0,the 
modified scheme guarantees that e1  0  as t  
∞.The significance of  the modified adaptive 
control scheme  is that tracking error  can be 
made small  by choosing small design parameter 
τ. By proper choice of τ, bursting can be reduced 
and improve the tracking error performance of 
the adaptive control scheme 
 
V. PI CONTROLLER 
 
     A standard PI controller is two term 
controller, whose transfer function is generally 
written in the in the parallel form given by 
equation or the ideal form given by 
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(21) 
     The proportional term-providing an overall 
control action is proportional to the error signal 
through the all pass gain factor. The integral term 
- reducing steady state errors through low 
frequency compensation is by an integrator. 
 
VI. ROBUST  MODEL REFERENCE 

ADAPTIVE PI CONTROL 
 

     In this section a Robust Model Reference 
Adaptive PI Control (MRAPIC) design is 
introduced. The block diagram of the proposed 
Robust Model Reference Adaptive PI Control 
(Robust MRAPIC) is as shown in the figure1. 
     In proposed Robust MRAPIC the control 
signal from modified MRAC signal is added to 
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the another control signal from PI controller and 
then given to the Plant. The system forms a 
closed loop plant and the error is taken from the 
difference of the plant output to the reference 
model input. The input to the PI system is the 
error. The idea behind using PI Controller is it 
minimizes the steady state error and improves 
the steady state performance. The gain of PI 
controller is tuned according to the plant. 
 

 
 
Fig. 1. Proposed Model Reference Adaptive PI 
Control 
 
The control law is  

PiP uuU +=                                
(22) 

urcyu pp α
θωθωθ ++++= 032211  
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where τ > 0 is a small design constant 
and upi is PI controller output 
The adaptive law is given by 

ωΓ−=θ 1
.

e and ( ) 00 θ=θ   
Where mp yye −=1 , 

[ ]T0321 c,,, θθθ=θ and [ ]Tp21 r,y,,ωω=ω  

where ( )idiag γ=Γ for some γi>0, is a positive 
definite matrix and obtain   decoupled adaptive 
law 

4,...2,1ie ,i1ii
.

=ωγ−=θ  
 

VII. COMPUTER SIMULATION 
 
     In this section, result of computer simulations 
for Conventional MRAC, modified MRAC and 
the proposed   Robust MRAPIC Method is 
reported. The results show the effectiveness of 
the proposed Robust MRAPIC scheme and 

reveal its performance superiority to the 
Conventional MRAC technique and modified 
MRAC. 
     As an example, the system taken for the 
simulation is the Lateral Dynamic Model of a 
Boeing 747 airplane. 
    The liberalized model of the Lateral Dynamics 
of Boeing 747 can be described as 
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     where β is the side-slip angle ,yr  is the yaw-
rate,, p is the roll rate,Φ is the roll angle, y is  the 
system output which  is  the yaw rate in this case, 
and u is the control input vector . 
     From the data provided in horizontal flight at 
40,000 ft and nominal forward speed 774 ft/s, the 
Boeing 747 lateral perturbation dynamics 
matrices are as follows: 

The transfer function for the Lateral 
Dynamic Model of a Boeing 747 airplane 
System is given by  
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     The initial value of the parameters are chosen 
as θ(0)=[ 0.794,2.4772,2.2306,-1.6715}T. The 
simulation is done for Γ = diag {1 0 0 1}. The 
simulation was carried out with MATLAB for 
time duration t [0, 30] s and The input is chosen 
as r(t)=10 +11 sin(0.7t) 
     The adaptive laws and control schemes 
developed are based on a plant model that is free 
of disturbances, noise and unmodelled dynamics. 
These schemes are to be implemented on actual 
plants that most likely deviate from the plant 
models on which their design is based. An actual 
plant may be infinite dimensional, nonlinear and 
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its measured input and output may be corrupted 
by noise and external disturbances [1]. It was 
shown using Conventional MRAC that adaptive 
scheme designed for a disturbance free plant 
model and may go unstable in the presence of 
small disturbances. The disturbances added the 
Conventional MRAC has some oscillations at the 
peak of the signal. For the above example, the 
disturbance is considered as a random noise 
signal. Figure 2 and 3 describes output and error 
for the Conventional MRAC.  
Figure 4 and 5 describes the output and error for 
the modified MRAC method. In modified 
MRAC the oscillation will be reduced and this 
adaptation time is decreased. Figure 6 and 7 
describes the output and error for the proposed 
Robust MRAPIC Method On the contrary, the 
proposed method has much less error than 
conventional method in spite of disturbance. 

 
   
 Fig. 2. Plant output yp and Reference model 
output ym                                          
                      for the conventional MRAC. 
 

 
         Fig.3. Error  for the Conventional  MRAC. 

 

 
Fig. 3. Plant output yp and Reference model 
output ym                                          
                      for the modified MRAC. 
 
     

 
                
Fig. 4   Error  for the modified  MRAC. 
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Fig. 4. Plant output yp  and Reference model 
output ym 
            for the proposed Robust MRAPIC    
 
 
 

 
                             
 

 
 

Fig. 5. Error for the proposed Robust MRAPIC 
 

 
VIII. CONCLUSION 

 
From the above Simulation Results of the plant 
considered, the performance is improved by 
using PI Controller with modified MRAC and 
the tracking error has become zero within 1 
second and no oscillations have occurred.  The 
plant Output has tracked with the reference 
model output. This method is the Better than the 
Conventional MRAC and modified MRAC 
scheme. From the above responses, the 
efficiency is increased for proposed Robust 
MRAPIC. The future research would deserve 
focusing on the proposed controller to 
unmodeled dynamics and delays. Also this 
scheme can be extend to discrete time model 
reference adaptive control system. 
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