
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

23

USING REPLICATED DATA TO REDUCE BACKUP COST
IN DISTRIBUTED DATABASES

1ALIREZA POORDAVOODI, 2MOHAMMADREZA KHAYYAMBASHI, 3JAFAR HAMIN

1, 3 M.Sc. Student, Computer Department, University of Sheikhbahaee, Isfahan, Iran
2 Asstt. Prof., Computer Department, University of Isfahan, Isfahan, Iran

ABSTRACT

To increase fault tolerance in distributed database, it is better to add a backup server for each primary server
in the system. It is clear that the primary server and backup server need to be connected to each other. To
connect these computers to each other when they are in a long distance, it is necessary to use a lease line
which needs to be charged as data is transferred. As more packets are transferred between primary and
backup server, more money need to be paid for charging this line. So if number of transferred packets
between these computers reduces, the company can economize in its expenditures. On the other side, when
number of updating information from the primary server to backup server reduces, the number of
transaction which should be performed in the backup server reduces.

To achieve this goal, we introduce a new method which reduces the number of transferred packet between
primary and backup server. In this method, the replicated data of primary server is used to backup
mechanism. In our method the primary server sends transactions in data which are not replicated in other
computers. So the transactions on the replicated data are not transferred to backup server, and as a result the
numbers of transferred packet get reduce.

Keywords: Distributed database, Fault tolerance, Remote backup, Data replication, Load balancing,
Update filtering

1. INTRODUCTION

One of the non-functional requirements in

distributed databases is performance [1]. A
technique to improve this requirement is data
replication [2-7]. Data replication maintains
multiple copies of data, called replicas, on separate
servers. So the requests to these servers are
answered locally [8, 9]. Replication improves
performance by the following: i) reducing latency,
since users can access replicated data, so it avoids
remote network access; and ii) increasing
throughput, since multiple computers can serve data
simultaneously. When data is replicated in more
than one computer, it is necessary to keep it
consistence. There are some protocols such as
single lock, distributed lock, primary copy, majority
protocol, biased protocol, and quorum consensus
protocol [10] which are responsible to keep data
consistence.

Another non-functional requirement in
distributed system is fault tolerance. It constructs
the system in such a way that it can automatically
recover from partial failures without seriously
affecting the overall performance. So it ensures that

the system can work accurately even in case of
occurrence of faults [11, 12]. We can achieve this
ability by performing transaction processing at one
server, called the primary server, and having a
remote backup server where all data in the primary
server are replicated. The remote server must be
kept synchronized with the primary server, as
updates are performed at the primary. This
synchronization is achieved by sending all log
records from primary server to the remote backup
server. The remote backup server must be
physically separated from the primary, so a disaster
at the primary does not damage the remote backup
server. When a primary server fails, its remote
backup server is responsible to answer the requests
until the primary server come back to stable state
[10, 13]. Figure 1 shows the architecture of a
remote backup system.

Figure 1. Architecture of remote backup system

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

24

In some situations data in the primary server is

replicated in some guest computers. In these
situations replicated data is used to reduce
necessary time to access data. This data can be used
for an extra function; recovering from failure. In
this paper we introduce a method which uses this
data to recover the primary server from failure. This
method causes decreasing traffic between primary
server and backup server, and as a result remote
backup server is updated by a better performance.
On the other side, the numbers of transferred packet
gets reduce and less money needs to be paid for
charging the leased line between primary and
backup servers.

The remainder of paper includes following
sections: Section 2 expresses related work. Section
3 describes how to use replicated data in backup
process. Section 4 includes implementation
remarks. In section 5, we evaluate our method and
in section 6, some constrains in our method is
presented. After that in section 7, we present a
conclusion.

2. RELATED WORKS

One of the goals in using distributed databases is

high availability; that is, the database must function
almost all the time. In particular, since failures are
more likely in large distributed systems, a
distributed database must continue functioning even
when there are various types of failures. The ability
to continue functioning even during failures is
referred to as robustness. For a distributed system to
be robust, it must detect failures, reconfigure the
system so that computation may continue, and
recover when a processor or a link is repaired.

Remote backup systems and replication are two
alternative approaches to provide high availability
in distributed database. Remote backup systems
offer a lower-cost approach to high availability than
replication. On the other hand, replication can
provide greater availability by having multiple
replicas available, and using the majority protocol.

In the majority-based approach, each data object
stores with it a version number to detect when it
was last written to. Whenever a transaction writes
an object it also updates the version number in this
way:

• If data object a is replicated in n different sites,
then a lock-request message must be sent to more
than one-half of the n sites in which a is stored. The
transaction does not operate on a until it has

successfully obtained a lock on a majority of the
replicas of a.
• Read operations look at all replicas on which a
lock has been obtained, and read the value from the
replica that has the highest version number.
(Optionally, they may also write this value back to
replicas with lower version numbers.)

Writes read all the replicas just like reads to find
the highest version number (this step would
normally have been performed earlier in the
transaction by a read, and the result can be reused).
The new version number is one more than the
highest version number. The write operation writes
all the replicas on which it has obtained locks, and
sets the version number at all the replicas to the
new version number.

Failures during a transaction (whether network
partitions or site failures) can be tolerated as long as
(1) the sites available at commit contain a majority
of replicas of all the objects written to and (2)
during reads, a majority of replicas are read to find
the version numbers. If these requirements are
violated, the transaction must be aborted. As long
as the requirements are satisfied, the two-phase
commit protocol can be used, as usual, on the sites
that are available. In this scheme, reintegration is
trivial; nothing needs to be done. This is because
writes would have updated a majority of the
replicas, while reads will read a majority of the
replicas and find at least one replica that has the
latest version [10]. When a transaction needs to
lock data item Q, it simply requests a lock on Q
from the lock manager at one site that contains a
replica of Q. As before, the response to the request
is delayed until it can be granted.

In this special case, there is no need to use
version numbers; however, if even a single site
containing a data item fails, no write to the item can
proceed, since the write quorum will not be
available. This protocol is called the read one; write
all protocol since all replicas must be written.

To allow work to proceed in the event of failures,
we would like to be able to use a read one, write all
available protocol. In this approach, a read
operation proceeds as in the read one, write all
scheme; any available replica can be read, and a
read lock is obtained at that replica. A write
operation is shipped to all replicas; and writes locks
are acquired on all the replicas. If a site is down, the
transaction manager proceeds without waiting for
the site to recover.

While this approach appears very attractive, there
are several complications. In particular, temporary

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

25

communication failure may cause a site to appear to
be unavailable, resulting in a write not being
performed, but when the link is restored, the site is
not aware that it has to perform some reintegration
actions to catch up on writes it has lost. Further, if
the network partitions, each partition may proceed
to update the same data item, believing that sites in
the other partitions are all dead.

The read one, write all available scheme can be
used if there is never any network partitioning, but
it can result in inconsistencies in the event of
network partitions [10].

There are some methods to backup primary
server in different database management systems.
For example, Transaction Replication, Failover
Clustering, Log Shipping, and Database Mirroring
are some backup methods which are used in SQL
Server 2005 [14]. The Database Mirroring method
is one of the best methods for backup data. In the
simplest deployment of database mirroring, there
are two major server-side components, the principal
server instance (principal) and the mirror server
instance (mirror) [14]. The principal, as the name
implies, contains the principal database. This is the
database where you will perform your transactions.

The basic idea behind database mirroring is that
synchronized versions of the database are
maintained on the principal and mirror. If the
principal database becomes unavailable, then the
client application will smoothly switch over to the
mirror database, and operation (from the user’s
point of view) will continue as normal. So, a client
interacts with the principal and submits a
transaction. The principal writes the requested
change to the principal transaction log and
automatically transfers the information describing
the transaction over to the mirror, where it is
written to the mirror transaction log. The mirror
then sends an acknowledgement to the principal.
The mirror continuously uses the remote transaction
log to “replicate” changes made to the principal
database to the mirror database. This relationship
between mirroring components is shown in figure 2
[14].

Figure 2. A database mirroring architecture

3. USING REPLICATED DATA TO REDUCE
BACKUP COST

When data in primary server are replicated in
some guest computers, the guest computers can be
used to recover system from failure. So updating
information from primary server to backup server
can be reduced. As a result, processing load in the
backup server and network traffic between primary
server and backup server are reduced. In this
situation, it is not necessary to transfer the
transactions on the replicated data from the primary
server to the backup server. The primary server
sends to backup server just the transactions on data
which are not replicated to the guest computers. So
all data in the backup server is not updated, and
only the data which is not replicated is updated.
When a crash takes place in the primary server, the
backup server requests other updated data from the
guest computers which have replicated version of
that data. In fact in our method, the replicated data
is used to update backup server.

To apply our method in the distributed database,
some operations in the primary server, backup
server, and guest computer must be changed or
added. In the following sections we describe these
necessary changes.

3.1. Necessary Changes in the Primary Server

As we mentioned, the primary server transfer just
transaction on data which is not replicated in the
guest computers. So the primary server and backup
server should know which data item is replicated in
which guest computer. Hence when the primary
server replicates a data item to a guest computer,
assigns a name to that data and send this name
along data item to the guest computer. After that,
the primary server sends a packet to backup server
which includes name of replicated data and the
guest in which is replicated.

If a guest computer requests a data item which is
named already, the primary server does not name it
again. The primary sends data item with its name to
the guest. It also resends data item name and new
guest computer which requests that data to the
backup server.

3.2. Necessary Changes in the Backup Server

As we mentioned, some data in backup server in
not updated. Instead, it receives from the primary
server name of this data and the guest computer
which has this data. So when the primary server

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

26

fails, backup server has to get these data from
appropriate guest and updates its old data by new
data. If a data item is replicated to more than one
guest, backup server should receive that data item
form a guest which has the last version of that data.

3.3 Necessary Changes in the Guest Computers

When a guest computer requests a data to
replicate form the primary server, it receives name
of that data along with data. The guest computer
should save that name along data. So in the failure
time, if the backup server requests a data item by its
name, the guest computer know which data
corresponds with that name, and transfers those
data to the backup server.

4. IMPLEMENTATION REMARKS

As we mentioned, the primary sever should name
data item which is replicated in the guest
computers. To name data items, primary can use a
counter; a data item is named according to the
counter. After naming a data item, the counter is
increased by one. To assign this name to data items
for example in a relational database, it is better to
add a column named data_name to each table in
database. So name of each record is inserted in this
column. All records in a data item have the same
name and the value of data_name attribute of these
records is equal to each other.

To clarify the issue, suppose a primary server, its
backup server, and two guest computers are
connected to each other like figure 3.

Figure 3. A distributed database architecture

There is a database named Student in the primary
server which some records in it are shown in
table 1.

Table 1. some records in the Student table

Row Name Std_Number data_name
1 Aaaa 1111 -
2 Bbbb 2222 -
3 Cccc 3333 -
4 Dddd 4444 -
5 Eeee 5555 -
6 Ffff 6666 -
7 Gggg 7777 -
8 Hhhh 8888 -
9 Iiii 9999 -

Suppose guest 1 requests records number 1, 3,

and 5 to replicate from the primary server. The
primary server images these records as a data item
and names it Q1. So the value of data_name
attribute for these records is equal to Q1 and this
name is sent to the guest 1 and backup server. This
process is shown in figure 4.

Figure 4. Replicating data to guest 1 from the primary

Now suppose guest 2 request records number 3,
7, 8. Records number 3 is member of data item Q1,
so the primary server send all records in data item
Q1 to the guest 2. After that it assign a name Q2 to
records number 7 and 8, and send them to the guest
2. This process is shown in figure 5.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

27

Figure 5. Replicating data to guest 2 from the primary

So if a guest requests from the primary server
some records which are subset of a data item Q1, all
records in that data item are sent to the guest.

Now suppose the primary server fails. The
backup server knows data item Q2 is replicated in
guest 2, and requests this data item from guest 2.
Data item Q1 is replicated in both guest 1 and 2.
The primary requests this data item from the guest
which has the last version of that data item. So the
primary requests this data item from guest 2 and
updates its data. This process is shown in figure 6.

Figure 6. Transferring data to the backup server

5. EVALUATION

In this section we want to evaluate our method.

As we mention in previous section, when data in
the primary server is replicated in some guest
computers, this replicated data can be used to
recover system form a failure state. As a result
processing load and network traffic between
primary server and backup server decreases. This
improvement, impose a processing load in backup
server and guest computers in the failure time. On
the other side, to apply our method to distributed
database, some additional operations should be
done in the primary server, backup server, and
guest computers. These operations impose some
additional cost to the system.

In this section we want to measure network
traffic cost which is imposed to the system. First we
are going to measure the network traffic between
primary and backup server in mirroring method. In
this method primary server sends the transactions
on data to the backup server in specific interval
time. After that we are going to apply our method to
the system and measure the network traffic which is
imposed to the system. Finally we can compare the
network traffic in our method with mirroring
method.

To evaluate our method we use SQL Server 2005
database system. Our primary server has 200000
records. We replicate 500 records to a guest
computer and perform 50 update transactions to
these records. The network traffic to update backup
server in the mirroring method is equal to 250
Kbyte. If we apply our method to the system, this
value is equal to 55 Kbyte. We continue to increase
replicated data and perform the same 50 update
transaction to them and monitor network traffic in
our method and the mirroring method. The result is
shown in table 2. figure 7 shows this result as a
diagram. As you see, the amount of replicated data
effects in the result. As the replicated data gets
increase, the difference between network traffic in
the mirroring method and our method gets increase.
So the amount of replicated data effects in
performance in our method, and improves it.

Table 2. Relationship between network traffic and

replicated data in the mirroring and our method

Network Traffic between Primary
and Backup Server (MByte)

Number of
Replicated
Records

Our
Method

Mirroring
Method

0.055 0.25 500
0.102 0.25 1000
0.508 3.125 5000
1.016 5.75 10000
3.555 16.812 30000
5.078 30.687 50000

10.148 55.312 100000
20.297 159.812 200000

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

28

Figure 7. Diagram of relationship between network

traffic and replicated data in the mirroring and our

method

6. METHOD CONSTRAINS

There are some constraints in our method. First,
if the primary server and one of the guest computers
which has a data which is replicated only on that
guest computer get fail concurrently, the backup
computer cannot recover all data, and as a result
data may be inconsistent. As you know this
condition takes place very seldom. Second, our
method imposes some over load in the primary
server. So the primary server should have a suitable
hardware to continue its work. Third, the recovering
system from failure needs more time than previous
methods. Because the backup computer should gets
updated information from the guest computers, if
the number of guest computers is high, this process
may needs very much time.

7. CONCLUSION

This paper presents a new method to decrease

network traffic between primary server and backup
server. In this method replicated data is used for
backup process. Transactions on data which is
replicated in the guest computers are not transfer
from primary server to backup server. Instead, in
the primary server failure time, this replicated data
are transferred from the guest computers to the
backup server.

Reduction of network traffic between primary
server and backup server causes fewer transactions
execute in the backup server. In addition, the
company pays less money for charging the link.

REFERENCES:

[1] A. Sleit, W. AlMobaideen, S. Al-Areqi, and A.
Yahya, “A Dynamic Object Fragmentation and
Replication Algorithm in Distributed Database
Systems”, American Journal of Applied
Sciences, Vol. 4, No. 8, 2007, pp. 613-618.

[2] J. Holliday, D. Agrawal, and A. E. Abbadi,
“Partial database replication using epidemic
communication”. In Proceedings of the 22nd
International Conference on Distributed
Computing Systems, pages 485–493. IEEE
Computer Society, 2002.

[3] T. Loukopoulo and I. Ahmad, “Static and
adaptive distributed data replication using
genetic algorithms”, Journal of Parallel and
Distributed Computing, 64(11):1270–1285,
2004.

[4] P. Francis, S. Jamin, V. Paxson, L. Zhang, D.
Gryniewicz, and Y. Jin, “An Architecture for a
Global Internet Host Distance Estimation
Service”, in Proc. of the IEEE INFOCOM '99
Conf., March 1999, pp. 210-217.

[5] A. Vigneron, L. Gao, M. Golin, G. Italiano and
B. Li, “An Algorithm for Finding a k-median
in a Directed Tree”, in Information Processing
Letters, Vol. 74, No (1,2) , April 2000, pp.
81-88.

[6] T. Loukopoulos and I. Ahmad, “Static and
Adaptive Data Replication Algorithms for Fast
Information Access in Large Distributed
systems”, in Proc. of the 20th IEEE Int. Conf.
on Distributed Computing Systems, Taipei,
Taiwan, 2000.

[7] S. Jamin, C. Jin, T. Kurc, D. Raz and Y.
Shavitt, “Constrained Mirror Placement on the
Internet”, in Proc. of the IEEE INFOCOM
2001 Conf., Alaska, USA.

[8] S. Abdul-Wahid, R. Andonie, J. Lemley, J.
Schwing, and J. Widger, “Adaptive Distributed
Database Replication Through Colonies of
Pogo Ants”, Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007.
IEEE International, 2007, pp. 358.

[9] T. Loukopoulos, I. Ahmad, and D. Papadias,
“An Overview of Data Replication on the
Internet”, IEEE Proceedings of the
International Symposium on Parallel
Architectures, Algorithms and Networks, 2002,
pp. 27-32

[10] A. Silberschats, H. F. Korth, S. Sudarshan,
“Database System Concepts”, McGraw-HILL, 2006.

[11] I. Gashi, P. Popov, and L. Strigini, “Fault
tolerance via diversity for off-the-shelf
products: A study with SQL database servers”,

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

29

IEEE Transactions on Dependable and Secure
Computing, Vol. 4, No. 4, Oct./Dec. 2007, pp
280–294.

[12] C. Wang, F. Mueller, C. Engelmann, and S.
Scott, “A job pause service under
lam/mpi+blcr for transparent fault tolerance”,
IEEE In International Parallel and Distributed
Processing Symposium, March 2007, pp. 1-10.

[13] C. Mohan, K. Treiber, and R. Obermarck,
“Algorithms for the management of remote
backup databases for disaster recovery”, In
Proc. Of 9th International Conference on Data
Engineering, 1993, pp 511-518.

[14] T. Rizzo, A. Machanic, J. Skinner, L.
Davidson, R. Dewson, J. Narkiewicz, J. Sack,
and R. Walters, “Pro SQL Server 2005”,
chapter 15, Apress, 2006.

