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ABSTRACT 
 
This paper presents an improved Particle Swarm Optimization (PSO) algorithm for solving Transient 
Stability Constrained Optimal Power Flow (TSCOPF) problem through the application of Gaussian and 
Cauchy probability distributions. The modified PSO approach introduces new diversification and 
intensification strategy into the particles thus preventing PSO algorithm from premature convergence. The 
controllable system quantities are optimized to minimize fuel cost of the power generation. An IEEE 30-
bus test system is taken for investigation. The transient stability constrained optimal power flow results 
obtained using the improved PSO models are compared with those obtained using standard PSO and GA 
algorithms. The investigations reveal that the proposed algorithm is relatively simple, reliable and efficient 
and suitable for on-line applications. 
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1. INTRODUCTION 

Optimal Power Flow (OPF) has been an area of 
active research since it was proposed in the 1960 
[1]. The main objective of an OPF problem is to 
determine the optimal operating state of the power 
system. This is achieved by optimizing the 
objective function while satisfying certain specified 
constraints [2] - [3]. The OPF problem can be 
constructed with a number of different operational 
objectives. The widely considered objective is to 
minimize the fuel cost subject to network and 
generator operation constraints. Several 
mathematical techniques like non linear 
programming (NLP), quadratic programming (QP), 
linear programming (LP), Newton method and 
interior point methods (IPM) have been applied to 
solve the OPF Problem [4]. These classical 
methods are limited in handling algebraic functions 

and unable to consider the dynamic characteristics 
[5]. 

The integration of the economic and security 
aspects of the power system into one mathematical 
formulation has made OPF as a powerful tool in 
both planning and operating stages. Hence many 
researchers and power system planners and 
operators are attracted towards the solution of this 
problem. Momoh [6] in 1995 at IEEE winter power 
meeting in the panel session presented a paper on 
challenges to OPF where the voltage and angle 
stability of the power system were discussed. From 
then on Transient Stability Constrained OPF 
(TSCOPF) was launched and the research is being 
carried on. Generally, TSCOPF problem is 
nonlinear optimization problem with both algebraic 
and differential equations, which are difficult to 
solve even for smaller power systems. The main 
difficulties experienced in solution of TSCOPF are 
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the representation of differential equation which 
describes the dynamic behavior of the power 
system.  The research in TSCOPF problem has 
been carried out in two different directions. In first 
case, the TSCOPF problem is formulated as an 
extended OPF problem with rotor angle inequality 
constraints. Here the position of the rotor angle is 
used to indicate the stability of the system [7] – [8].  
In second case, TSCOPF problem is converted into 
an equivalent optimization problem in Euclidean 
space [8].  From now on TSCOPF can be viewed as 
an initial value problem which can be solved by any 
standard non linear programming technique. As 
indicated in [9], the conventional methods like 
nonlinear programming, linear programming, 
quadratic programming, Newton method and 
interior point methods apply convexity and gradient 
principle to reach the global optimum solution. 
However, the OPF problem in general is a 
nonconvex multimodal problem. When transient 
stability constraints are included on the network, 
further many local minima is introduced in to the 
solution space.  Hence local optimization 
techniques are not suitable for these problems.  

Many Heuristic optimization methods like 
Evolutionary Programming (EP) [9] – [10], 
Simulated Annealing (SA) [11], and Genetic 
Algorithm (GA) [12] have been employed to 
overcome the drawbacks of conventional 
techniques. In 2002, Abido [13] employed a new 
approach called as Particle Swarm Optimization 
(PSO) which was inspired by the social behaviours 
of animals such as fish schooling and bird flocking. 
PSO approach utilizes global and local exploration. 
He has obtained the results for different objective 
function of the OPF problem and compared it with 
the reports available in the literature. The results of 
his work were promising and had shown 
effectiveness and superiority over classical 
techniques and Genetic Algorithms. The other main 
advantage of using PSO algorithm is that it requires 
only few parameters to be tuned.  

In 2008, Coelho and Lee [14] has employed 
chaotic and Gaussian function in the PSO algorithm 
to solve economic load dispatch problem. The 
proposed method was tested on 15 and 20 unit test 
systems and it revealed that the new method has 
outperformed the modern metaheuristic methods. 
Inspired by this technique, the Gaussian and 
Cauchy probability distribution technique has been 
employed in the PSO to solve the transient stability 
constrained optimal power flow problem. The 
proposed method has been tested on IEEE 30-bus 
test system. The simulation results reveal that the 

proposed PSO approaches developed using 
Gaussian and Cauchy distributions helps in 
diversifying and intensifying the search space of the 
particle’s swarm in PSO, thus preventing premature 
convergence to local minima and hence improving 
the performance of PSO. 
2. PROBLEM FORMULATION 

An optimal power solution gives the optimal 
active and reactive power dispatch for a static 
power system loading conditions. It is a valuable 
tool for minimizing the cost of the electric power 
system. The general optimal power flow problem 
may now be expressed as: 

( )uxfMinimise ,     (1) 
Subject to: 
( ) 0, =uxg     (2) 

and 
( ) 0, ≤uxh     (3) 

where, ( )uxf ,  is the objective function to be 
optimized, ( )uxg ,  is the set of equality constraints, 
and ( )uxh ,  is the set of inequality constraints. x  is 
the vector of dependent variable such as slack bus 
power 1GP , load bus voltage LV , generator reactive 
power output GQ and transmission line loadings 

FL . Hence x  can be represented as  
],...,,,...,,,...,[

212121,1 nlNGNL FFFGGGLLLG
T LLLQQQVVVPx =  

where NGNL, and nl  are the number of load 
buses, number of committed generators and number 
of transmission lines respectively. 
u is a set of independent variable like generator 
voltages GV , generator real power outputs 

GP except the slack bus power output, transformer 
tap settings T and shunt Var compensations CQ . 
Hence u  can be represented as  
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where NT and NC  are the number of tap setting 
transformers and Number of shunt compensators 
respectively. 

Assuming second order generator cost curves, 
the total generation cost objective function is 
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where, TF  is the total fuel cost of the generators, 

GiP   is the real power output generated by the thi  
generator, ia , ib , ic are the fuel cost coefficients. 

The equality constraints ( )uxg ,  of the 
optimization problem are the equations defining the 
power flow problem.  As mentioned in [2], Newton 
load flow polar power mismatch formulation is 
particularly suitable for the optimization study. The 
relevant equations are 
( ) 0, =−+ GiDii PPVP θ    (5) 
( ) 0, =−+ GiDii QQVQ θ    (6)  

where, GiQ is the reactive power generations at 
thi bus.  
DiP  and DiQ  are the active and reactive power 

demands at thi  bus. 
iP  and  iQ  are the active and reactive power 

injections at thi  bus .   
The inequality constraints comprises of limits for 

equipment loading and operating requirements. The 
system operation constraints consist of the 
transmission line loadings FL , load bus voltages LV , 
reactive power output of generator GQ , and real 
power generation of slack generator 1GP  

Generator voltages, real power outputs, reactive 
power outputs, transformer taps and transmission 
lines loadings are restricted by their lower and 
upper limits as follows, 

maxmin
GiGiGi VVV ≤≤ ; NGi ,...3,2,1=   (7) 
maxmin

GiGiGi PPP ≤≤ ; NGi ,...3,2,1=   (8) 
maxmin
GiGiGi QQQ ≤≤ ; NGi ,...3,2,1=   (9) 

iii TTT maxmin ≤≤ ; NTi ,...2,1=   (10) 
max,iFiF LL ≤ ; nli ,...2,1=    (11) 

The transient stability problem in a power 
system is described by a set of differential-algebraic 
equations [15], which could be solved in time-
domain simulation. The swing equation set for the 

thi  generator is  

( ) Giieimiii

ii

NiDPPM ,...2,10

0

=−−=
−=

ωωω
ωωδ

&

&

 
(12) 

where 

iδ : Rotor angle of the thi generator  
iω : Rotor speed of the thi generator  
iD : Damping constant of the thi generator  

miP : Mechanical input power of the thi generator 

eiP : Electrical output power of the thi generator 

0ω : Synchronous speed 

For simplicity the criterion for transient stability 
is defined as the rotor angle deviation with respect 
to the centre of inertia (COI), and hence the 
inequality constraints of transient stability are 
formulated as 

maxmax
δδδ ≤− COIi    (13) 

where 
maxCOIi δδ −  corresponds to maximum rotor 

angle deviation of the thi generator from COI, and 
maxδ  is the maximum allowable rotor angle 

deviation. The setting of maxδ  is often based on 
operational experience.  The position of COI is 
defined as  

∑

∑

=
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i
i
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i
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M

M

1

1
δ

δ    (14) 

where iM  is the moment of inertia of the 
thi generator. 

3. PARTICLE SWARM OPTIMIZATION 

3.1 Overview of PSO 

The PSO method was introduced in 1995 by 
Kennedy and Eberhart [16]. The method is 
motivated by social behaviour of organisms such as 
fish schooling and bird flocking. PSO provides a 
population-based search procedure. Here 
individuals called as particles change their positions 
with time. These particles fly around in a 
multidimensional search space. During flight, each 
particle adjusts its position according to its own 
experience, and the experience of neighbouring 
particles. Thus each particle makes use of the best 
position encountered by itself and its neighbours. 
The direction of the particle is given by the set of 
particles neighbouring the particle and its past 
experience. Let ix  and iv  denote the particle 
position and its corresponding velocity in the search 
space. pbest  is the best previous position of the 
particle and gbest  is the best particle among all the 
particles in the group. The velocity and the position 
for each particle is calculated by using the 
following formulae 

( )
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11 ++ += t
i

t
i

t
i vxx     (16)  

where ix  and iv  are the current position and 

velocity of the thi  generation, w  is the inertia 
weight factor, 1ϕ  and 2ϕ  are acceleration 
constants, ()rand is the function that generates 
uniform random number in the range [0,1] and k  is 
the constriction factor introduced by Eberhart and 
Shi to avoid the swarm from premature 
convergence and to ensure stability of the system. 
Mathematically, k  can be determined as follows  

ϕϕϕ 42

2
2 −−−

=k    (17) 

where 21 ϕϕϕ +=  and 4>ϕ   

The selection of w provides a balance between 
global and local explorations. In general, the inertia 
weight w  is set as 

t
t

ww
ww ×

−
−=

max

minmax
max   (18) 

where maxt  is the maximum number of iterations or 
generations and maxw  and minw  are the upper and 
lower limit of the inertia weight. 

3.2 Algorithm for the solution of TSCOPF 
problem using PSO 

The various steps involved for solving the 
TSCOPF problem using the PSO algorithm is given 
below. 

Step 1:  The elements in the swarm are the 
independent variables like real power outputs of the 
generating units excluding the slack bus unit, bus 
voltage magnitudes, switchable shunt capacitors 
and off-nominal transformer tap ratios. The 
particles in the swarm of size pN   is generated 
randomly as follows: 

Consider the thi  particle, 
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 The components of ix are generated as  
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where ),(
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),( min,min, jj TTU  and ),(
max,min, jj cc QQU denotes a 

uniform random variable. 

Load flow is run for each particle ix  and the 
reactive power generations, system transmission 
loss, slack bus generation and line flows are 
calculated.  
Step 2: The fitness function for each particle of the 
swarm is computed as: 
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NPi ,...2,1=      
where 4321 ,,, kkkk  and 5k are penalty factors for 
the constraint violations, TiF is the total fuel cost of 

the thi  particle. 
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To determine the violation in the transient 
stability, transient stability simulation is evaluated 
to obtain the rotor responses of the generator. The 
maximum rotor angle deviation from COI, among 
all the generators and contingencies, is used to 
compute the transient stability violation as follows: 

⎪⎩

⎪
⎨
⎧ >−−

=
otherwise

if COI
i

COI
i

i

,0

, maxlim, δδδδδ
δ  (24) 

Step 3: Compare the evaluated fitness value of each 
particle with its pbest. If current value is better than 
pbest, then set the current location as the pbest 
location. Furthermore, if current value is better than 
gbest, then reset gbest to the current index in 
particle array. 
Step 4: If the maximum iteration number is 
reached, then go to step 9, else increment the 
iteration number 
Step 5: Update the inertia weight according to 
equation (18) 
Step 6: Update the velocity of each particle 
according to equation (15) 
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The particle velocity in thk  dimension is 
restricted by maximum value, max

kv . This limit 
enhances the local exploration of the problem 
space. To ensure uniform velocity through all the 
dimensions, the maximum velocity in the 

thk dimension is proposed as  

N
xxv kk

k

minmax
max −

=  where N is the chosen number 

of intervals. 
Step 7: Update the position of each particle 
according to equation (16) 

If the particle violates the position in any 
dimensions, then set its position at proper limit. 
Step 8: Return to step 2 and repeat the evaluation 
process with the updated position. 
Step 9: The particle that generates the latest gbest is 
the optimal solution. 
 
4. MODIFIED PSO APPROACHES BASED 
ON GAUSSIAN AND CAUCHY 
DISTRIBUTION FOR SOLVING TSCOPF 
PROBLEM 

Coelho and Krohling proposed the use of 
truncated Gaussian and Cauchy probability 
distribution to generate random numbers for the 
velocity updating equation of PSO. In this paper, 
new approaches to PSO are proposed which are 
based on Gaussian probability distribution ( )Gd  
and Cauchy probability distribution ( )Cd . In this 
new approach, random numbers are generated using 
Gaussian probability function and/or Cauchy 
probability function in the interval [0,1].  

The Gaussian distribution ( )Gd , also called 
normal distribution is an important family of 
continuous probability distributions. Each member 
of the family may be defined by two parameters, 
location and scale: the mean and the variance 
respectively.  A standard normal distribution has 
zero mean and variance of one. Hence importance 
of the Gaussian distribution is due in part to the 
central limit theorem.  Since a standard Gaussian 
distribution has zero mean and variance of value 
one, it helps in a faster convergence for local 
search. 

This work proposes new PSO approaches with 
combination of Gaussian distribution and Cauchy 
distribution function.  The modification to the 
conventional PSO (Model 1) proceeds as follows: 

Model 2:  Here the Gaussian distribution, is used 
to generate random numbers in the interval [0, 1], 

in the Cognitive part (Individual Thinking) of the 
particle. The modified velocity equation is given by 

( )
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Model 3: Here the Gaussian distribution Gd, is 
used to generate random numbers in the interval 
[0,1], in the Social Part of the particle. The 
modified velocity equation is given by 

( )
( ) ⎟

⎟
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Model 4: Here the Gaussian distribution Gd, is 
used to generate random numbers in the interval 
[0,1], in the Cognitive and Social Part. The 
modified velocity equation is given by  

( )
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⎟
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Model 5:  Here the Cauchy distribution Cd, is 
used to generate random numbers in the interval 
[0,1], in the Cognitive Part. The modified velocity 
equation is given by 

( )
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Model 6: Here the Cauchy distribution Cd, is 
used to generate random numbers in the interval 
[0,1], in the Social Part. The modified velocity 
equation is given by 

( )
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Model 7: Here the Cauchy distribution Cd, is 
used to generate random numbers in the interval 
[0,1], in the Cognitive and Social Part. The 
modified velocity equation is given by  

( )
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Model 8: Here the Gaussian distribution Gd, is 
used to generate random numbers in the interval 
[0,1], in the Social Part and Cauchy Distribution 
Cd, is used to generate random numbers in the 
interval [0,1] in the Cognitive Part. The modified 
velocity equation is given by 

( )
( ) ⎟

⎟
⎠
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Model 9: Here the Cauchy distribution Cd, is 
used to generate random numbers in the interval 
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[0,1], in the Social Part and Gaussian Distribution 
Gd, is used to generate random numbers in the 
interval [0,1] in the Cognitive Part. The modified 
velocity equation is given by 

( )
( ) ⎟

⎟
⎠

⎞
⎜
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−

+−+
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i

t
i
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()..

2

11
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ϕ
 

The above models that have been developed are 
implemented in the conventional PSO approach and 
their performances were studied. 

5. TEST CASE AND SIMULATION RESULTS 

The standard IEEE 30-bus test system [18] is 
used to test the effectiveness and robustness of the 
proposed models.  

The IEEE 30 – bus test system consists of 6 
generators, 41 transmission lines with a total real 
power demand of 189.2 MW and reactive power 
demand of 107.2 MVAR.  The generation cost data 
and the load data for the IEEE 30-bus test system 
are shown in Table 1 and Table 2 respectively. The 
objective function is the total fuel cost and the fuel 
cost curve of the units is represented by quadratic 
cost functions. The lower voltage-magnitude limits 
at all buses are 0.95 p.u., and the upper limits are 
1.1 p.u. for generator buses and 1.05 p.u. for the 
remaining buses including the slack bus 1. 
 

Table1 Generator data 

Bus No 
min

GP   

Mw 

max
GP  

MW 

min
GQ   

MVAR 

max
GS   

MVA 

Cost coefficients 

a b c 

1 50 200 -20 250 0.0 2.0 0.00375 

2 20 80 -20 100 0.0 1.75 0.0175 

5 15 50 -15 80 0.0 1.0 0.0625 

8 10 35 -15 60 0.0 3.25 0.00834 

11 10 30 -10 50 0.0 3.0 0.025 

13 12 40 -15 60 0.0 3.0 0.025 

 

Table 2 Load data 

Bus No 
Load 

Bus No 
Load 

MW MVAR MW MVAR 
1 0.0 0.0 16 3.5 1.8 
2 21.7 12.7 17 9.0 5.8 
3 2.4 1.2 18 3.2 0.9 
4 7.6 1.6 19 9.5 3.4 
5 0.0 0.0 20 2.2 0.7 
6 0.0 0.0 21 17.5 11.2 
7 22.8 10.9 22 0.0 0.0 
8 30.0 30.0 23 3.2 1.6 
9 0.0 0.0 24 8.7 6.7 

10 5.8 2.0 25 0.0 0.0 
11 0.0 0.0 26 3.5 2.3 
12 11.2 7.5 27 0.0 0.0 
13 0.0 0.0 28 0.0 0.0 
14 6.2 1.6 29 2.4 0.9 
15 8.2 2.5 30 10.6 1.9 
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Two cases are considered to study the effect of 
incorporating the transient stability constraint into 
the OPF problem.  In case 1, basic OPF problem is 
solved using the proposed PSO models. In case 2, a 
disturbance is introduced into the test system and 
the OPF problem is solved with the inclusion of 
transient stability constraint. For analysis purpose a 
disturbance in the form a three phase fault was 

introduced into the system near the bus 2 of line 2 – 
5 at t=0.1 s.  The fault was subsequently cleared at 
t=0.18 s. Each PSO approaches are implemented in 
Matlab. Power system tool box is used to perform 
time domain simulations. All the programs are 
executed on 3 GHz, Pentium Duo processor with 3 
GB RAM. The parameters used in the proposed 
PSO models and GA are shown in Table 3.  

 

Table 3 Parameter settings 

PSO Parameters GA Parameters 

Swarm Size = 50 Population Size = 50 

Initial Inertia weight = 1.5 Crossover rate pc = 0.6 

Acceleration constants  

05.221 ==ϕϕ  
Mutation rate pm = 0.05 

Maximum iteration no =50 Maximum generation no = 50 

 
Table 4 Limit violations corresponding to an  initial trial solution 

Randomly chosen 10 
particles in initial trial 
solution 

Source bus numbers having 
reactive power generation 
limit violation 

Load buses having 
voltage magnitude limit 
violation 

Line numbers 
having limit 
violation 

Particle 1 1,7 26,28,29,30 7 
Particle 2 1,3 10 3 
Particle 3 1 25 4,8 
Particle 4 1,2,3,8 18-28, 30 2,6 
Particle 5 1,15,19 10-25, 29 4,8 
Particle 6 1,8 25-30 3 
Particle 7 1,7 26,28,30 2,5 
Particle 8 1,2,10 - 4 

Particle 9 - 12,13,16, 19, 20-27, 28, 
30 7,9 

Particle 10 10 12 10 
 
5.1 Base-case OPF results 

In this case the OPF problem is solved using the 
proposed PSO models without any disturbance. The 
violations in reactive power generation, load bus 
voltage magnitude and line flow limit in the base 
case for each randomly chosen 10 initial particle 
from the swarm size of 50 are given in Table 4. 
Table 4 reveals that there are several reactive power 
generation, load bus voltage magnitude, and MVA 
line flow limit violations of both maximum and 
minimum limit with each particle. The reactive 
power generation limit violations are found to be in 
the range of 0–95% of its minimum or maximum 
limit. The load bus voltage limit violations are 
found to be in the range of 0–7% of its minimum or 

maximum limit. The line flow limit violations are 
found to be in the range of 0–30% of its line rating.  

To evaluate the performance of the proposed 
models discussed in Section 4, 100 independent 
runs were made involving 100 different initial trial 
solutions. The optimum schedule, total fuel cost 
and transmission loss obtained with the proposed 9 
models are shown in Table 5. From the Table 5 it is 
clear that the results obtained with Model 9 is 
minimum among all other proposed models. This is 
because of the fact that social interaction of the 
particle is enhanced by Cauchy distribution 
function and the individual cognition thinking of 
the particle is improved by Gaussian distribution 
function. Thus the proposed Model 9 has yielded a 
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better performance for the OPF problem. The other 
models which use the combinations of uniform 
probability function, Gaussian probability function 
and Cauchy probability function get struck at 
suboptimal values. The convergence characteristic 
of fitness function for one of the trial solution 
obtained for the proposed 9 models of the PSO are 
shown in Fig. 2. The fitness function convergence 

characteristic is drawn by taking the particle with 
minimum fitness value at the end of every iteration.  

It is seen from Fig. 2, that the fitness function 
converges smoothly to the optimum value without 
any abrupt oscillations for all the proposed 9 
Models. This shows the convergence reliability of 
the proposed models. 

 

Table 5 Optimized schedules using basic PSO 

 
Models PG1 PG2 PG3 PG4 PG5 PG6 

Total Cost  
($/Hr) 

Model 1 42.63 38.05 42.29 34.49 19.04 15.54 579.32 

Model 2 55.60 30.00 35.76 23.35 18,22 29.15 580.35 

Model 3 53.89 59.62 40.84 12.97 11.99 12.73 581.55 

Model 4 63.45 28.47 38.02 15.96 17.67 28.48 580.25 

Model 5 48.03 36.22 25.91 32.26 14.37 36.15 581.07 

Model 6 43.94 53.19 18.91 25.38 20.69 29.93 580.35 

Model 7 49.99 52.78 34.77 25.52 10.45 19.31 581.84 

Model 8 60.25 42.52 45.12 13.08 12.32 18.74 580.95 

Model 9 42.22 55.98 22.83 37.75 15.91 17.35 577.62 
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Figure 1 Convergence characteristics of the proposed models 
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Figure 2 Rotor angle curves for base case 
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Figure 3 Convergence characteristics of the proposed models with inclusion of TSCOPF 
 

With the optimal control variable settings the 
disturbance (fault on line 2) is introduced in the test 
system. The power system tool box is used to 
perform the transient stability analysis of the 
system. The rotor angles relative to COI for all 
generators obtained from the transient analysis 
program is shown in Fig. 2. From the Fig. 2 it is 
observed that conventional OPF solution fails to 
maintain transient stability when subjected to 
disturbances.  

5.2 Transient Stability Constrained OPF 
(TSCOPF) 

From the previous analysis, it is clear that 
conventional OPF technique does not take into 
consideration the transient stability constraint of the 
test system. Hence to overcome the above 
mentioned problem, the transient stability 
constraint has been introduced into the OPF 
problem.  

To evaluate the performance of the proposed 
models discussed in Section 4, 100 independent 
runs were made involving 100 different initial trial 
solutions. The optimum schedule, total fuel cost 

and transmission loss obtained with the proposed 
Model 9 and standard GA are shown in Table 6.  

From the Table 6 it is observed that the results 
obtained with Model 9 are closely matching with 
the standard GA method. The convergence 
characteristic of fitness function for one of the trial 
solution obtained for the proposed 9 models and 
from the standard GA is shown in Fig. 3. It is seen 
from Fig. 3, that the fitness function converges 
smoothly to the optimum value without any abrupt 
oscillations for the TSCOPF problem also. This 
shows the convergence reliability of the proposed 
models. Also from Fig. 3 it can be observed that the 
proposed Model 9 has better convergence when 
compared with the standard GA. 

With the optimal control variable settings the 
disturbance (fault on line 2) is introduced in the test 
system. The power system tool box was used to 
perform the transient stability analysis of the 
system. The rotor angles relative to COI for all 
generators obtained from the transient analysis 
program is shown in Fig 4. From the Fig.4 it is 
observed that introduction of transient stability 
constraint into the OPF problem has secured the 
test system. 
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Table 6 Comparison of model 9 with stanard algorithm 

 

Generators PG1 PG2 PG3 PG4 PG5 PG6 
Total Cost 

($/Hr) 

Model 9 45.21 57.50 22.01 29.12 19.21 18.99 583.17 

Model 1  
(Basic PSO) 43.63 58.05 23.29 32.49 17.04 17.54 585.34 

GA 41.88 56.38 22.94 37.63 16.7 16.53 585.66 
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Figure 4 Rotor angle curves with TSCOPF 

 

6. CONCLUSION 

This paper has explored the feasibility of 
employing gaussian and cauchy probability 
function in the conventional PSO approach for 
solving of TSCOPF problem. To evaluate the 
searching capability of PSO algorithm, different 
PSO models are proposed employing gaussian and 
cauchy probability distribution functions. The PSO 
model which employs, Cauchy distribution function 
in the social part and Gaussian distribution function 
in the cognitive part has introduced the 
diversification and faster convergence into the 
particle thus preventing the PSO algorithm from 
premature convergence.  The result obtained with 
IEEE 30-bus test system  reveal that the proposed 
method is relatively simple, reliable and efficient 
and suitable for on-line application. 
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