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ABSTRACT 
 

The purpose of this paper is to study the Bose, Chaudhuri, and Hocquenghem (BCH) code, with an aim to 
simulate the encoding and decoding processes. The gain of the proposed code in investigated through 
applying it to binary phase sift keying (BPSK) modulation scheme in symmetric additive white Gaussian 
noise (AWGN) channel. The bit error probability (BEP) of coded (63, 36) BCH system was evaluated and 
compared with the performance of un-coded system.  
 

Keywords: BCH Code, Binary PSK, Bit error probability, AWGN. 
 
 
1.    INTRODUCTION  
 

Channel coding for error detection and correction 
helps the communication system designers mitigate 
the effects of a noisy transmission channel. Error 
control coding theory has been the subject of 
intense study since the 1940s and now being widely 
used in communication systems. As illustrated by 
Shannon in his paper published in 1948 [1], for 
each physical channel there is a parametric quantity 
called the channel capacity C  that is a function of 
the channel input output characteristics. Shannon 
showed that there exist error control codes such that 
arbitrary small error probability of the data to be 
transmitted over the channel can be achieved as 
long as the data transmission rate is less than.  

      A generic block diagram of digital 
communication system involving coded waveforms 
is shown in Fig.1 [2]. The binary information 
sequence at the encoder input  has a rate of R  
bits/sec. Mainly there are two types of channel 
encoding techniques. The first is the block coding, 
by which a blocks of k information bits are  

encoded into corresponding n bits blocks. Each n  
burst is called a code word with a total number of 
2k possible code words. The code rate, defined as 
the ratio /cR k n=  is a measure of the amount of 
the redundancy introduced by the specific block 
coding technique.     

     The second type of encoding is the linear 
convolution encoding. A convolution encoder 
converts the entire information sequence stream, 
regardless of its length, into a single code word [3]. 
The encoder output sequence is a set of linear 
combinations of the input sequence that can be 
performed using a finite-state shift register 
approach. The code rate in this case cR  is defined 
as the reciprocal of the number of the shift register 
output bits for each data bit.  

        In both cases, the bit rate at the encoder output 
is / cR R . Another designed parameter associated 
with the coding scheme to be used is the error 
correcting capability of this scheme. That is, how 
many errors that may be introduced by the channel 
can this code guarantee to correct. Hence, a good 
code is the one that insure a certain error correcting 

 

 

 

PERFORMANCE ANALYSIS OF BPSK SYSTEM WITH HARD 
DECISION (63, 36) BCH CODE 

MAHMOUD A. SMADI  
Department of Electrical Engineering  

The Hashemite University  
Zarqa, 13115, JORDAN  
Email: smadi@hu.edu.jo   



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
173 

 

 

 

 

 

 

 

 

Fig.1: Generic digital communication system with channel coding [2].

capability at a minimum cR   or maximum 
output encoder rate / cR R . 

The binary digits from the encoder are fed into 
a modulator, which maps them into one of the 
known digital modulation waveforms, say BPSK 
or BFSK. The channel over which the 
waveforms are transmitted will corrupt the 
waveforms in general by a multiplicative fading 
noise besides the traditional thermal AWGN. 
The resulting received noisy signal is 
demodulated to its binary regime and decoded 
back to the original binary information sequence. 

The decoding decision scheme may be one of 
two possible decoding schemes hard or soft- 
decision scheme. In the hard decision decoding, 
the demodulator quantized the incoming signal 
into two levels, denoted as 0 and 1. The 
information sequence bits are then recovered by 
the decoder that will have a certain error 
correcting capability. On the other hand, if the 
unquantized (analog) demodulator output is fed 
to the decoder we call this decoding scheme soft-
decision decoding. 

In the hard decision case, the typical BPSK or 
BFSK result in a symmetric transmission error 
probability in which the probability that 1 is 
transmitted and 0 is detected ( )0 /1P  is equal to 
the probability that 0 is transmitted and 1 is 
detected ( )1/ 0P = p . This channel is called a 
binary symmetric channel (BSC). 

So many papers deal with the performance 
analysis of coded digital communication 
systems. The authors in [4] and [5] proposed 
several decoding techniques for the BCH codes 
and evaluate their performance. The performance 
of digital radio communication systems with a 
BCH coding scheme under a microwave oven 
interference environment is investigated in [6]. 

The authors found that performance 
improvement could be obtained by combining 
BCH codes with bit interleaving. The problem of 
efficient maximum-likelihood soft decision 
decoding of binary BCH codes is considered by 
the authors in [7]. On the other hand, the BER 
performance of severely punched  codes and the 
equivalent systematic codes is obtained assuming 
maximum likelihood decoding for (63,57) 
Hamming code in [8]. In contrast, the authors in 
[9] proposed an improved Hamming code 
method which is shown to be highly scalable 
without such overhead. Furthermore, the paper 
[10] analyzes the performance of concatenated 
coding systems operating over the BSC by 
examining the loss of capacity resulting from 
each of the processing steps. Finally, two 
schemes for differential encoding of block coded 
M-ary PSK signals are presented and compared 
in [11]. 

In this paper, the performance of BPSK coded 
system will be simulated. We will base our 
analysis on linear BCH block coding scheme 
with a hard decision decoding over AWGN 
binary symmetric channel. The rest of this paper 
is organized as follows. A brief description of 
linear block codes and algebraic field concepts 
will be given in the next section. The BCH codes 
will be treated in deep in section 3. Numerical 
Results are given in section 4. Finally, brief 
conclusions are provided in section 5. 

2. LINEAR BLOCK CODES 

A block code C is constructed by breaking up 
the message data stream into blocks of length k  
has the form{ }0 1 1, ,..., km m m − , and mapping 
these blocks into code words inC . The resulting 
code consists of a set of M  code 
words{ }0 1 1, ,...., MC C C − . Each code word has a 
fixed length denoted by n and has a 
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form ( )0 1 1, ,..., nc c c − . The elements of the code 
word are selected from an alphabet field of 
q elements. In the binary code case, the field 
consists of two elements, 0 and 1. On the other 
hand, when the elements of the code word are 
selected from a field that has q alphabet 
elements, the code is nonbinary code. As a 
special case when q  is a power of 2 (i.e. 2mq = ) 
where m is a positive integer, each element in 
the field can be represented as a set of distinct 
m  bits. 

     As indicated above, codes are constructed 
from fields with a finite number of q  elements 
called Galois field and denoted by GF (q ). In 
general, finite field GF (q ) can be constructed if 
q is a prime or a power of prime number. When 
q is a prime, the GF(q ) consist of the elements 

{ }0,1, 2,.... 1q − with addition and multiplication 
operations are defined as a modulo-q . If q is a 
power of prime (i.e. mq p= where m is any 
positive integer), it is possible to extend the field 
GF ( )p to the field GF ( )mq p= . This is called 

the extension field of GF ( )p and in this case 
multiplication and addition operations are based 
on modulo- p  arithmetic. 

       To construct the elements of the extension 
GF ( )2mq =  from the binary GF(2) with 
elements 0 and 1, a new symbol α  is defined 
with multiplication operation properties as: 
0. .0 0,1. .1i i i i iα α α α α= = = = and

. .i j j i i jα α α α α += = . The elements of the 
GF ( )2mq = that satisfy the above properties 

are{ }20,1, , ,..., ,..jα α α . As the field should has 

2m elements and be closed under multiplication 
α should satisfies the condition 1 1qα − = . Hence; 
the elements of the extension GF ( )2mq = are 

{ }2 20,1, , ,..., qα α α − which is a commutative 
group under an addition and multiplication 
(excluding the zero element) operations. α is 
called a primitive element since it can generate 
all other field elements and it is a root of a 
primitive polynomial ( )p x . As mentioned 
before, each element in the field can be 

represented as a set of m -tuple bits. To make the 
picture clear, Table I shows the three 
representation for the elements of GF( 42 ) with a 
primitive polynomial ( ) 41p x x x= + + [4]. 

Besides the code rate parameter cR  defined 
early, an important parameter of the code word is 
its minimum distance denoted by mind . As the 
code weight defined as the number of nonzero 
elements in the code, the minimum distance of a 
block code is the minimum distance between all 
distinct pairs of code words which is the same as 
the minimum weight of the code. The minimum 
distance is a measure of the separation between 
code words and thus a code with minimum 
distance mind can detect any error pattern of 
weight less than or equal to min 1d −  [3]. 

    The linearity property of a code is fairly a 
simple concept. Suppose that iC and jC  are two 

code words in an ( ),n k block code and let 1α  
and 2α are any two of the field elements over 
where the code is defined, then the code is called 
a linear code if and only if 1 2i jC Cα α+ is also a 
code word in C . 

2.1 The generator matrix and parity check 
matrix  

     let ( )1 2, ,...,m m m mkx x x=X be the k  
information bite at the encoder input and 

( )1 2, ,...,m m m mnc c c=C is the encoder output 
vector. The encoding operation performed in 
linear binary block encoder can be represented in 
matrix form as 

m m=C X G                                                        (1)  

where G is called the generator matrix of the 

code, defined as 

1 11 12 1

2 21 22 2

1 2

.

.
. . . . .

.

n

n

k k k kn

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

g g g g
g g g g

G

g g g g

                  (2) 

and hence; any code word is a linear 

combination of the rows { }ig of G , i.e., 
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Table I: Representations of the elements of GF( 42 ) with ( ) 41p x x x= + + [4]. 

Power representation Polynomial representation 4-Tuple representation 

0 0 (0 0 0 0) 

1 1 (1 0 0 0) 

α  α  (0 1 0 0) 
2α  2α  (0 0 1 0) 

3α  3α  (0 0 0 1) 

4α  1 α+  (1 1 0 0) 

5α  2α α+  (0 1 1 0) 

6α  2 3α α+  (0 0 1 1) 

7α  31 α α+ +  (1 1 0 1) 

8α  21 α+  (1 0 1 0) 

9α  3α α+  (0 1 0 1) 

10α  21 α α+ +  (1 1 1 0) 

11α  2 3α α α+ +  (0 1 1 1) 

12α  2 31 α α α+ + +  (1 1 1 1) 

13α  2 31 α α+ +  (1 0 1 1) 

14α  31 α+  (1 0 0 1) 

1 1 2 2 ...m m m mk kx x x= + + +C g g g                          (3) 

    Since the linear ( ,n k ) code with 2k distinct 
code words is a subset of dimension k , the rows of 
G must be a set of linearly independent rows, and 
hence, G is not unique. Any generator matrix of 
( ,n k ) linear block code can be reduced by row 
operation which will keep the linearly 
independence property of G  to a symmetric form 
given as 

11 12 1,

21 22 2,

1 2 ,

. 1 0 . 0

. 0 1 . 0
. . . . . . . .

. 0 0 . 1

n k

n k
k

k k k n k

p p p
p p p

p p p

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥

⎥⎢ ⎦⎣

G P I                                                                        

(4) 

where I is a k k× identity matrix and P is a 
( )k n k× − matrix that determines the code 

redundant bits. In this case the last k  bits of each 
code word are identical to the k  information bits.                       

Associated with any linear ( ,n k ) block code there 
is a linear  ( ,n n k− ) dual code with 2n k− code 
words which is the null space of the ( ,n k ) code. 
The generator matrix associated with the dual code, 
consists of ( n k− ) linearly independent rows and 
denoted by H . Since G and H are in the null space 
of each other, any code word generated by G is 
orthogonal to every row in H . That is 

ORT T
m = =C H 0 GH 0                                  (5) 

     Now if the block code is in symmetric form, it 
follows from the last equation that  

n k−= ⎡ ⎤⎣ ⎦H I P                                                      (6) 
and since for linear block code the minimum 
distance is equal to the minimum weight of the 
code, another conclusion one can draw from (5) is 
that the minimum distance for a linear block code is 
the minimum number of columns in H  that may 
add up to the zero vector. 
 
2.2 Cyclic codes 
     BCH code is a subset of a general linear block 
codes called cyclic codes. Cyclic codes are a class 
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of linear codes which satisfy the following cyclic 
shift property: if C  is a code word of a cyclic code, 
then any cyclically shifts of C is also a code word. 
In discussing cyclic code and later a BCH code, it's 
more convenient to deal with polynomials 
representation rather than matrices representation of 
the code. So, to develop the algebraic properties of 
a cyclic code, we represent the components of a 
code word ( )0 1 1, ,..., nC c c c −= as the coefficients of 
a polynomial called a code polynomial as follows 
( ) 2 1

0 1 2 1... n
nc x c c x c x c x −
−= + + + +                    (7) 

it can be shown that the code polynomial resulting 
from cyclically shifting the code word C  i -th 
times denoted by ( ) ( )ic x is the remainder resulting 

from dividing the polynomial ( )ix c x by 1nx + [4]. 
      We can generate a binary ( ),n k  cyclic code by 

using a generator polynomial ( )g x of degree 
n k− has the form 
( ) 0 1 ... n k

n kg x g g x g x −
−= + + +                          (8) 

where ig ’s is either 0 or 1 in the binary code case. 
A number of important properties of the generator 
polynomial can be summarized [4]: 
a) The coefficients 0g and n kg −  have to be 1. 
b) Any code word polynomial ( )c x  is multiple 

of ( )g x (i.e. ( ) ( ) ( )c x m x g x= ) where 

( ) 2 1
0 1 2 1... k

km x m m x m x m x −
−= + + + + is the 

message polynomial. 
c) ( )g x is a factor of 1nx + . 
       The last property says that any factor of 

1nx + with degree n k− , generates an 
( ),n k cyclic code. For large n , 1nx + may have 
many factors of degree n k− . Some of theses 
polynomials generate good codes and others 
generate bad codes [4]. To be consistent with the 
matrix representation of a general block code as 
discussed in the pervious subsection, the generator 
matrix for ( ),n k cyclic code can be derived from 
the generator polynomial given in (8) as 

0 1 2

0 1 2

0 1 2

0 1 2

. . 0 0 0 0
0 . . 0 0 0
0 0 . . 0 0
. . . . . . . . . .
0 0 0 0 0 .

n k

n k

n k

n k

g g g g
g g g g

g g g g

g g g g

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G   

                                                                            (9) 

with 0 1n kg g −= = . A symmetric cyclic code can be 
obtained similarly by row operations. 
3. BCH CODES 
 
    BCH codes are a large class of cyclic codes that 
include both binary and non-binary codes. Binary 
( ),n k with any positive integer 3m ≥  BCH codes 
can be constructed with the following parameters 

min

2 1

2 1

mn
n k mt
d t δ

= −
− ≤
≥ + =

                                            (10) 

where t  is the error correcting capability and δ is 
called the code design distance. That is a BCH code 
with specified parameters given in (10), guarantees 
to correct t or less number of errors in the received 
n block bits. The generator polynomial ( )g x of 
the t -error correcting BCH code is the lowest 
degree polynomial over GF (2), which has the 
consecutive 2 2, ,..., tα α α as its roots 
(i.e. ( ) 0 , 1,2,.., 2ig i tα = = ). Let ( )i xφ be the 
minimal polynomial (the minimum degree 
polynomial that has iα and its conjugates as a 
roots) corresponding to iα , the generator 
polynomial must be the least common multiple 
(LCM) of ( ) , 1, 2,..., 2i x i tφ = . That is [4] 

{ }1 2 3 2( ) LCM ( ), ( ), ( ),..., ( )tg x x x x xφ φ φ φ=      (11) 
           All the field elements of the form 

2( ) , 1
lj i lα α= ≥  and i is odd, are called conjugate 

of iα and all of them over the defined field have 
the same minimal polynomial (i.e. ( ) ( )j ix xφ φ= ). 
Hence, every even power of α in (11) has the same 
minimal polynomial as the preceding odd power 
ofα . This reduces the number of terms in (11) to t  
terms, so 

{ }1 3 2 1( ) LCM ( ), ( ),..., ( )tg x x x xφ φ φ −=              (12) 
the BCH codes defined above are called primitive, 
narrow-sense BCH codes. 
Since any code word polynomial 

1
0 0 1( ) ... n

nc x c c x c x −
−= + + +  is a multiple of the 

generator polynomial ( )g x (i.e ( ) ( ) ( )c x m x g x= ), 
( )c x has 2 2, ,..., tα α α as a roots, then 

( 1)
0 1 1( ) ... 0 , 1,2,.., 2i i i n

nc c c c i tα α α −
−= + + + = =  

                                                                         (13) 
or in matrix form 
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2
0 1 1

( 1)

1

( , ,..., )
.

i

i
n

i n

c c c
α
α

α

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0                                (14) 

by combining (14) with (5), the parity check matrix 
of the BCH codes in 'sα form can be written as 

2 1

2 2 2 2 1

3 3 2 3 1

2 2 2 2 1

1 .
1 ( ) ( ) . ( )
1 ( ) ( ) . ( )
. . . . .
1 ( ) ( ) ( )

n

n

n

t t t n

H

α α α
α α α
α α α

α α α

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

              (15) 

which can be written in 0,1 form by represent  
'siα in its m tuples form. 

 
Example: 
Consider a primitive, narrow-sense BCH code with 

42 1n = − =15 and 2t = . It follows from (12) that 
this code is generated by 

{ }1 3( ) LCM ( ), ( )g x x xφ φ=                                (16) 
where 

2 4 8
1

4

3 6 9 12
3

2 3 4

( ) ( )( )( )( )

1
( ) ( )( )( )( )

1

x x x x x

x x
x x x x x

x x x x

φ α α α α

φ α α α α

= + + + +

= + +

= + + + +

= + + + +

      (17) 

since there is no common factor between 
1 3( ) and ( )x xφ φ  

4 6 7 8
1 3( ) ( ) ( ) 1g x x x x x x xφ φ= = + + + +         (18) 

thus the resulting code is a primitive (15,7) BCH 
code with min 2 1 5d t≥ + = . The parity check matrix 
for this code is 

2 3 14

3 6 9 42

1 .
1 .

α α α α
α α α α

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H                         (19) 

     The general definition of binary BCH codes is as 
follow. Let β be an element of GF( 2m ) and b any 
nonnegative integer. Then a binary BCH code with 
design distance δ  has a generator polynomial 

( )g x with the following consecutive powers of 
β as roots 1 2, ,...,b b b δβ β β+ + −  
let ( )i xψ and in be the minimal polynomial and 
the order of  b iβ + , respectively. Then 

{ }1 2 2( ) LCM ( ), ( ),..., ( )bg x x x xψ ψ ψ +=            (20) 
with a code length 

{ }1 2 2LCM , ,..., bn n n n +=                                   (21) 

    The BCH code defined above is called a 
nonprimitive, wide-sense binary BCH code with a 
design distanceδ . As a special cases when 1b =  
the code becomes narrow-sense and if β is a 
primitive element, the code is primitive code. 
 
3.1 Decoding of binary BCH codes 
 
    Decoding process of the BCH codes is the most 
challenging task. Mainly, we have two decoding 
algorithms for BCH codes, namely: Peterson-
Gorentien-Zierler algorithm and Berlekamp-
Massey algorithm. Assume that the received code 
word ( )0 1 1, ,..., nr r r −  is differs from the sent code 

word ( )0 1 1, ,..., nc c c − in 1 2, ,..., ii ix x x ν positions, 
then the error code word will have a nonzero 
elements at these positions and the error polynomial 
can be written as  

1 2( ) ... ii ie x x x x ν= + + +                                    (22) 
    Both of these algorithms need the computation of 
the syndromes of the received code 
polynomial ( )r x . Define the syndrome jS to be 

( ) ( ), 1, 2,..., 2j j
jS r e j tα α= = =                   (23) 

or 
1 1 2

2 2 2
2 1 2

2 2 2
2 1 2

...

...
. . . . .

...t t t
t

S X X X

S X X X

S X X X

ν

ν

ν

= + + +

= + + +

= + + +

                              (24) 

where li
lX α= is the error locations. Defining 

what is called error locator polynomial as 
1

1 1

1 2

( ) ... 1
(1 )(1 )...(1 )

x x x x
xX xX xX

ν ν
ν ν

ν

−
−Λ = Λ + Λ + + Λ +

= − − −
               (25) 

that has zeros at 1
lx X −= . It can be shown that (24) 

and (25) can be coupled together in matrix form 
and written as 

1 2 1

2 3 1 21

1 2 1 21

.

.
. . . . ..

.

t tt

t tt

t t t t

S S S S
S S S S

S S S S

A

+

+ +−

+ −

Λ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥Λ⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

Λ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦144424443

                (26)  

     Peterson’s algorithm is based on solving (26) 
for 'siΛ . If A is found to be singular that means 
we have less than t errors in the received code 
word. In this case we have to reconstruct a new 
syndrome matrix by deleting the two right most 
columns and the two bottom rows from A and 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
178 

 

solve a gain for 'siΛ excluding tΛ and so on. After 
'siΛ are found the error correct polynomial defined 

in (25) is constructed. Finally, the roots of ( )xΛ are 
to be found using Chien’s search algorithm and the 
error locations set to be the reciprocal of these 
roots.  
 
3.1.1 Berlekamp’s decoding algorithm 
 
     Berlekamp’s algorithm is much more difficult to 
understand than Peterson’s approach, but results in 
more efficient implementation. Berlekamp’s 
algorithm for binary BCH codes decoding is a 
recursive algorithm that is summarized in the 
following steps [3] 
a) Define the syndrome polynomial 

( ) 2 2 1
1 2 2 1... ....t

tS x S x S x S x +
+= + + + +  

b) Set the initial conditions 
( ) ( ) ( ) ( )0 00, 1,and 1k x T x= Λ = =  

c) Let ( )2k∆ be the coefficient of 2 1kx + in the 
product ( ) ( ) ( )2 1k x S xΛ +⎡ ⎤⎣ ⎦ . 

d) Compute
( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2.k k k kx x x T x+ ⎡ ⎤Λ = Λ + ∆ ⎣ ⎦ . 

e) Compute 

( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )
( )

( )

( ) ( )

2 22

2

2 2 2
2

2

2

if 0 or

deg

if 0 and

deg

k k

k

k k
k

k

k

x T x

x k

T x x x

x k

+

⎧ ∆ =
⎪
⎪ ⎡ ⎤Λ >⎣ ⎦⎪⎪= ⎨ Λ

∆ ≠⎪
∆⎪

⎪ ⎡ ⎤Λ ≤⎪ ⎣ ⎦⎩

 

f) Set 1.k k= + if k t< then go to step 
g) Determine the roots of ( ) ( ) ( )2kx xΛ = Λ  If the 

roots are distinct, then correct the 
corresponding locations in the received code 
word and STOP. 

h) Declare a decoding failure and STOP. 
 
4. RESULTS 
      The aim of this paper is to simulate the 
performance of BPSK in an AWGN environment 
with hard decision detection using (63,36) binary 
BCH code with error-correcting capability 5t = .  
      The key thing here; as I believe; is to build up 
the alpha table for the code which contains the m -
tuple representation of the elements in GF 
( 62 64= ){ }2 620,1, , ,...,α α α . The power of α  for 
each entry in the table is evaluated using index.m 
function. Note that the indices are 
{ }1,0,1,2,...,62− with –1 refers to the 0 element in 
the field. This is done so that adding two elements 
in the field is performed by adding the  
 

 
Fig.2  Average BEP for BPSK systems. 
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two m -tuple of the elements using the alpha 
table. The index for the resulting tuple will be 
the resulting element. While the multiplication 
operation is performed by adding the two indices 
of the two elements.  
The average BEP for the simulated system is 
shown in Fig.2. For comparison purpose, the 
BEP for un-coded BPSK is also shown using the 

analytical formula ( )1
2b bP erfc γ= , where 

0/b bE Nγ = is the average SNR/bit.  
As we see, for low SNR, the un-coded system 
performance is better than the coded one. That is 
because at low SNR let us say 2 dB, the BEP for 
the encoded case is about 0.04. For coded 
system, the SNR will be reduced by 

/ 0.57k n = so that it will be about     –0.43 dB 
and hence the BEP is around 0.1, which means 
that out of 63 code word bits 6 bits will be in 
error after the hard decision detection. So, the 
decoding algorithm will fail in detecting these 
errors, which leads to worse performance.   

5. CONCLUSIONS 

The BEP for coded BPSK system in symmetric 
AWGN channel based on a hard decision 
decoding was simulated. The coding scheme that 
used is binary BCH code with error-correcting 
capability. The system’s performance 
improvement using channel coding at reasonable 
SNR is considerable in most cases. Since this 
improvement is due to the redundancy that is 
inserted by the coding technique, the price to be 
paid for this improvement is the higher 
transmission data rate and hence higher 
transmission bandwidth is required. Generally, 
analytical evaluation of the coded system 
performance is very tough, so simulation should 
be carried to do that.  
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