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ABSTRACT 
 
The lack of formal semantics in the existing formalisms describing multi-agents models combined with 
multi-agents systems complexity are sources of several problems during their development process. Formal 
methods are known to bring rigorous and precise descriptions. In previous papers, we have proposed a 
formal and generic framework called AUML-Maude allowing formal description and validation of AUML 
model with Maude. This language, based on rewriting logic, offers a rich notation supporting formal 
specification, implementation and verification of concurrent systems. In this paper, we enrich the 
translation AUML-Maude by new ideas and we propose a rewriting logic based tool for the edition and the 
analysis of AUML model. The tool allows to the user to draw AUML system graphically and translates the 
graphical representation to Maude specification for analysis. This tool allows preserving the graphic 
notations offered by AUML model for clarity and getting a formal specification in Maude for formal 
semantics and analysis. 

Keywords: Multi-Agents Systems, AUML Model, Formal Specification, Formal Semantics, Rewriting 
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1. INTRODUCTION  
 

The formalization of multi-agents systems 
(MAS) is not a very recent idea. Many approaches 
aiming MAS’ formal specification have been 
proposed in the literature: graphic methods such 
Petri nets [2], approaches representing an 
adaptation of object-oriented specification methods 
like Lotos [9], and more recently approaches based 
on some kinds of logic like temporal logic [13]. In 
the literature, the proposed approaches aiming 
MAS’ formal specification are often limited to 
some specific aspects. Several notations are often 
used to describe the same MAS. Such combinations 
constitute a serious obstacle to rigorous and 
founded checking of the properties of the described 
systems [10]. 

We showed in previous papers [12] the 
feasibility and the interest to formalize some 
aspects of AUML multi-agents model using Maude 
language. The constructions offered by this 
language are rich enough to capture the multiple 
aspects of the AUML model. Maude [11] is 

considered as one of the most powerful languages 
in description, programming and verification of 
concurrent systems. Maude is a formal language 
based on a sound and complete logic called 
rewriting logic [10]. This logic allows us to reason 
correctly on non-deterministic concurrent systems 
in terms of the “true concurrency” semantics. The 
majority of formal methods used in the framework 
of formalization of MAS do not bring anything 
more in terms of expressivity or verification power 
compared to rewriting logic because they are 
integrated in the rewriting logic [10], [11]. 

In addition to its power of expression, Maude 
offers many possibilities of validation and 
verification. For validation, it supports simulation 
in flexible way. For verification, Maude supports 
Model Checking of invariants and of course the 
known LTL Model Checking. The Maude Model 
Checking of invariants that could work sometimes 
with even infinite systems is based on accessibility 
analysis by creating a part or all the reachabilty 
graph of the system. Model Checking techniques 
are an important issue in the field of concurrent 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
66 
 

systems checking. Model Checking of invariants 
aims detecting some incoherent states by describing 
‘safety properties’ (well known in the literature as 
something bad should never happen). Moreover, 
this kind of Model Checking helps us to be sure 
that some necessary states are really accessible 
from the initial one. The LTL Model Checker is 
more powerful and more flexible. The LTL Model 
Checker of Maude is designed to combine Maude 
and linear temporal logic (LTL) in order to benefit 
from the two formalisms advantages [7], [5]. 

The generated AUML-Maude descriptions have 
been validated by means of simulation and Model 
Checking thanks to the Maude platform. We offer 
to the user to re-use the obtained model AUML-
Maude core. The user can model his application 
directly in Maude by making an import of modules 
implementing AUML-Maude core. 

However, Maude system offers textual way to 
the user to create and deal with AUML model. 
Execution under Maude system is done by using 
command prompt style. In this case, we loose the 
graphical aspect of AUML which is important for 
the clarity, simplicity and readability of a 
preliminary system description. Moreover, AUML 
is a model very adapted to the requirements of 
MAS descriptions, which make easier the 
development of preliminary MAS description. 
However, Maude is a general language; it has not 
specific tools to catch easily MAS’ requirements.  
Also, Maude allows a detailed version from the 
beginning, which is not very recommended for the 
preliminary descriptions of systems. 

The purpose of this paper is double: 
- Proposing new ideas about the translation AUML-
Maude; that update and complete those proposed in 
[12]. 

- An interactive tool to create and analyze MAS 
by using AUML notations. The tool proposed in 
this paper, allows the user to graphically edit an 
AUML system (class diagram, Template (level 1), 
sequence diagram (level 2) and statechart diagram 
(level 3)) and then converts the graphical 
representation to its equivalent description in 
Maude. Thereafter, the tool calls the Maude system 
for the execution (Simulation, Model Checking of 
Invariants or LTL Model Checking) of the obtained 
code and reconverts the obtained result described in 
Maude to a graphical representation. With the help 
of AUML system example, we will show the aim 
functionalities of the tool. 

Let’s note that there is a big number of tools for 
the creation and the manipulation of MAS, most of 
these tools are implemented in the imperative 

languages. Some known ones are AgentTool [6], 
AgentBuilder [1] and MadKit [8]. These tools are 
Java-based graphical development environments to 
help users analyze, design, and implement MAS. 
With regard to these tools only the preliminary 
specification in our application, is diagrammatically 
developed by using the AUML notations, the rest of 
the development process phases is made in Maude: 
formal specification, implementation and validation 
in terms of simulation and verification in terms of 
Model Checking. Our application has not yet 
reached the level of these tools in terms of wide 
offered services. For the moment, it is a preliminary 
version including some services to be completed in 
the future. But, in our knowledge, the tool 
presented in this paper is one of the few analysis 
tool rewriting logic–based for MAS. This tool 
allows us to benefit from the power of rewriting 
logic in specification and analysis of concurrent 
systems in the context of MAS. 

The remainder of this paper is organized as 
follows: In section 2, we present briefly the AUML 
model. In the section 3, we present an example of 
system described by using AUML. In section 4, we 
give a short outline on the rewriting logic. Section 5 
is a general presentation of Maude language; to its 
two levels: specification level and verification. In 
the section 6, we explain our proposed process for 
the formalization of AUML model by using Maude. 
Most important functionalities of our application 
are illustrated in section 7 with the help of the 
example. Finally, we discuss our current work and 
give some conclusions and future work in section 8. 

2. AUML MODEL 
 

AUML(Agent Unified Modelling Language)  is 
a very famous Multi-agent model. AUML is an 
extension of the UML (AUML = Agent + UML), 
adapted to the analysis and the agent-oriented 
design. It supports all UML diagrams (analysis, 
design) by modifying and adapting them to describe 
the agents such that: 

- Objects in UML are replaced by agents 
and roles in AUML; 

- New notations in AUML to represent 
complex interactions between agents; 

- Embedded protocols are supported by 
AUML; 

AUML allows representing and describing 
interactions protocols between agents (AIP), it 
allows describing inter and intra-agents behaviour. 
AUML focuses on: 

- Agents classes’ representation; 
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- Description of the interactions between 
agents. 

2.1. Agents Class Diagram 
This diagram is composed of some agent classes, 

each class is a collection of agents that play a role 
and they have the same behaviour. 

2.1.1. Elements of Agent Class 
 
Agent Role. A role is a characteristic of a 
collection of agents having same properties, 
interfaces, services and specific behaviour. The 
general form is: agent class name / role1, ... , rolen 
 
Internal Agent State Description. Definition of 
instances variables that express the agent state. It is 
the attribute concept of the object approach which 
is often used. For each attribute, some 
characteristics (ex: visibility (public, private), ..) are 
defined. 
 
Actions. It could be pro-active or reactive. Pro-
active means that the agent itself which provokes 
the action. On the other hand, reactive means that 
the agent waits for another agent to provoke this 
action for it. 
An action is defined through a signature and 
semantic: 
Signature: visibility + name + list of parameters.  
Semantic: pre-conditions + post-conditions + 
invariants. 
 
Note. Pre-condition is the condition that must be 
checked before the execution of the method or the 
creation of an element and Post-Condition is the 
condition that must be checked after the execution 
of the method or the destruction of an element. 

 
Methods. Every method is described by using pre-
conditions and post-conditions. 
 
Services. Provided services are described 
informally. 
 
Exchanged Messages. Description of the sent and 
received messages through the specification of the 
protocols. An exchanged message between agent is 
composed by a communication acts. In fact, an 
agent does a local work by executing its internal 
behaviour (which expressed by a statechart 
diagram: composed by actions and states). When an 
agent arrived at a given state, it sends a message to 
the other agent (which is in communication with it), 
at the reception, the message invokes some actions 

of the agent receiver which will continue doing its 
local work. 
 
2.2. AUML Levels 

A hierarchical view is adopted in AUML. The 
first level gives a global view, and the last level is a 
detailed view on intra-agent behaviour. Here, we 
present briefly all the levels and we leave details to 
the next section. 
 
First Level. It’s a representation of the global 
protocol. It is generally described by using 
sequence diagram, package or template. This level 
gives some details comparing to the element 
‘Exchanged messages’ of the class diagram. But, 
the representation of this level will be detailed more 
in the next level. 
 
Second Level. This level focuses on the different 
inter-agents interactions. It can be described by 
using sequence, collaboration, state, or activity 
diagrams. 
 

Third Level. This level gives some tools to allow a 
detailed description of each intra-agent behaviour.  
An activity or statechart diagrams are often used in 
this level. 

 
2.3. Detailed Description of Levels 

In this section, we will present in detail each 
level and the tools used in it. But, we focus only on 
tools that we adapted to be translated to Maude 
language in this project. 
 
2.3.1. First Level: Template 

The template is just a global specification of the 
protocol by indicating the communicating agents 
and the messages that will be exchanged between 
them. The basic idea oh the template is to give a 
reusable component that will be specialized and 
detailed in the second level by using for instance 
sequence diagram. 
 
2.3.2. Second Level: Sequence Diagram 
 
Actors Naming. agent class name/role1, …, rolen  
 
Exchanged Messages. Here, messages are 
composed of communication acts.  In the figure 1, a 
part example of sequence diagram, where the 
Agent1 sends a message (composed of the 
communication act CA-1) to Agent2 which answers 
by sending the message CA-2. 
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On another hand, a message is not always 

simple like that; it can be composed of many 
communications acts that are connected to each 
other by some ‘connectors’. In AUML, three 
connectors are defined to allow concurrent threads 
of interaction between agents (figure 2): 
a. ‘AND’ Connector: Concurrent sending of CA-1, 
…, CA-n, the figure 2.a shows the notation of the 
‘AND’ connector. 
b. ‘OR’ Connector: Concurrent sending of 0 or 
more CA-1, …, CA-n. So, there is a need of 
mechanism to decide which CA-i sequence will be 
sent.  The figure 2.b depicts how the ‘OR’ 
connector is represented in AUML. 
c. ‘XOR’ Connector: sending only one CA-i (i=1, 
..,n) at the same time. A notation of this connector 
is depicted the figure 2.c. 

 

 

 

 

 

 

 

 

 

2.3.3. Third Level: Statechart Diagram 
This diagram allows changing states of an agent 

during messages (communication acts) between 
agents. It allows expressing some constraints on 
protocols. Moreover, it allows a layered view on 
states to cope with state explosion problem. In 
figure 3, we find an example of statechart diagram 
and the coming of a communication act (CA). 

When the agent is the initial state (black circle) and 
action Action-1 occurs, the agent changes its state 
to S0. But, when the agent in state S0, it invokes 
the execution of the method Method-1. At the end 
of the execution of  Method-1, the agent continues 
changing its state to S1 if the action Action-2 
appears. The appearance of an action depends on its 
kind if it is pro-active or reactive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. EXAMPLE 
 

In this section, we present a known example in 
the literature which is ‘System of Service 
Information Integrated on the Mobile’, (SSII), but 
here, we took this system and we brought some 
modifications to it. This example will help us 
explaining our tool.  
 
3.1. System Presentation 

A user sends a request to the system SSII to 
provide him some information on his mobile. The 
system responses the request of the user by looking 
for in its data base which is integrated with many 
sites web sources and selected automatically 
information that needs the user. 
 
3.2. System Agents Modelling 

Here, we determine the agents of the system, 
relationships between them and the roles of each 
agent. Three agents are distinguished: 
 
Server: it communicates with the user to receive 
from him the demand and sends him he result. It 

CA-2 

CA-1 

Agent1:class/Role Agent2:class/Role 

Figure 1. Basic form of agent’s communication 

Figure 3. Typical form of statechart diagram 
with the arrival of communication act 

… 

Action-3 

CA 
Action-2 

Action-1 

S0 

Method-1 

S1 

S2 

c. ‘XOR’ 
Connector 

b. ‘OR’ 
Connector 

a. ‘AND’ 
Connector 

CA-1 

CA-2 
… 

CA-n 

CA-1 

CA-2 
… 

CA-n 

CA-1 

CA-2 
… 

CA-n 

Figure 2. Concurrent threads of interaction 
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controls all the system and contacts the distributor 
agent. 
 
Distributor: this agent creates requests that are 
appropriate to the capacities of the wrappers on 
each web site.  
Wrapper: this extracts automatically necessary 
information; it answers directly the demand of the 
distributor. 
 
3.3. Classes Modelling/Class Diagram Creation 

Three classes are defined: server, distributor and 
wrapper that are connected via communication 
protocol. The figure 6 shows the class diagram 
system with the three classes with their protocol 
and cardinalities. For explanation reasons, we take 
server class, 

- First box: the class name is server and the 
role is receiver; 

- Second box: attributes, only one attribute 
(adressIP); 

- Third box: Methods, two methods are 
defined: create-sub-demand and integrate-
response-distributor(); 

- Fourth box: actions (reactive and proactive); 
- Fifth box: communication acts. The server 

receives demand (on the left) and sends sub-
demand (on the right). 

 
3.4. Intra-Agents Behaviour 
Modelling/Statechart Diagrams Creation 

The statechart diagrams of the three agent’s 
classes are described in the figure 9. We explain 
here only the Server Statechart Diagram. 
 
Server Statechart Diagram. 

- First, the server agent is in InitialState; 
- Then it changes its state to receivedemand 

after receiving initiation-state from the 
user; 

- When a receive-demand comes (a demand 
form the user), it consumes this action and 
it changes the state to ‘create-sub-
demands’; here it executes its method 
create-sub-demand; 

- Now, the agent has sub-demands; 
- The agent sends the communication act 

‘sub-demand’ to the distributor and the 
action send-sub-demand to it-self, so it 
will enter in the state wait-server until 
receiving the answer from the distributor; 

- The server receives the communication act 
‘response-distributor’, which invokes the 
action receive-response-distributor 
allowing it to change the state to 

‘integrateresponsedistributor’; here the 
server agent execute its method ‘integrate-
response-distributor()’ to integrate the 
distributor answer and create the final 
result. 

- It sends this answer to the user by creating 
‘send-response-distributor’ and it switches 
to FinalState. 

 
3.4. Protocols Modelling/Sequence Diagram 
Creation  

In the figure 8, we show how the three agents 
communicate via sending and receiving 
communications acts. 
 
3.5. Global Protocol Modelling/Template 
Creation 

Template is used to create global protocol 
between agents. In this system, two templates of are 
created; the template describing the general 
protocol between sender, distributor and the other 
one between distributor and wrapper. We do not 
have a DeadLine because of the simplicity of the 
example. 

 
4. REWRITING LOGIC REVIEW 
 

In rewriting logic, each concurrent system is 
represented by a rewrite theory ℜ = (Σ, E, L, R). Its 
static structure is described by the signature (Σ, E), 
whereas its dynamic structure is described by the 
set of labelled rewrite rules R, which are applied 
modulo the equation E. An important consequence 
of the rewriting logic definition is that a rewrite 
theory ℜ = (Σ, E, L, R) can be viewed as an 
executable specification of the concurrent system 
that it formalizes. In this section we recall the basic 
definitions of the rewriting logic. 

A labelled rewrite theory ℜ is a 4-tuple ℜ = (Σ, 
E, L, R) where (Σ, E) is a signature;  Σ is the sorts 
set and operators and E is a set of Σ-equations. The 
signature (Σ, E) is an equational theory which 
describes the particular algebraic structure of the 
states of a system (multiset, binary tree, etc.) which 
are distributed according to this same structure. R ⊆ 
L × (TΣ,E(X))2 is the set of pairs whose first 
component is a label and the second is a pair of E-
equivalence classes of terms, with X = 
{x1,…,xn,…}a countable infinite set of variables. 
The elements of R are called conditional rewrite 
rules. They describe the elementary and local 
transitions in a concurrent system. Each rewrite rule 
corresponds to an action being able to occur, 
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simultaneously, with other actions. The rewriting 
will operate on equivalence classes of terms, 
modulo the set of equations E. For a rewrite rule (r, 
([t],[t’]), ([u1],[v1]),….,([uk],[vk]) ) we use the 
notation, r: [t]→[t’] if [u1]→[v1] ∧…∧ [uk]→[vk], 
where [t] represents the equivalence class of the 
term t. A rule r expresses that the equivalence class 
containing the term t is changed to the equivalence 
class containing the term t’ if the conditional part of 
the rule, [u1]→[v1] ∧…∧ [uk]→[vk], is verified. 

Given a labeled rewrite theory ℜ, we say that  ℜ 
entails a sequent r: [t]→[t’], or that r: [t]→[t’] is a 
(concurrent) ℜ-rewrite and write ℜ |- r : [t] → [t’]  
iff  [t]→ [t’] is derivable from the rules in ℜ by a 
finite application of the deduction rules (reflexivity, 
transitivity, congruence, and replacement) of 
rewriting logic. 

A rewrite theory is a static description of a 
concurrent system. Its semantics is defined by a 
mathematical model which describes its behavior. 
The model for a given labelled rewriting theory ℜ = 
(Σ, E, L, R) is a category τℜ(X) whose objects 
(states) are equivalence classes of terms [t]∈TΣ,E(X) 
and whose morphisms (transitions) are equivalence 
classes of proof-terms representing proofs in 
rewriting deduction .  
• Reflexivity. For every ][t  ∈ TΣ,E(X) : 

][][ tt →
 

• Congruence. For every f  ∈  Σn, n ∈ N : 

)],...,([)],...,([
][][...][][

''
11

''
1

nn

nnn

ttfttf
tttt

→

→→
 

• Replacement. For every rewriting rule 

)],...,('[)],...,([: 11 nn xxtxxtr →  in R, 

)]/'('[)]/([

]'[][...]'[][ 1
−−−−

→

→→

xwtxwt

wwww nnn ,  such that 

)/(
−−
xwt indicates the simultaneous substitution 

of iw  for ix  in t . 

• Transitivity.  
][][

][][][][

31

3221

tt
tttt

→
→→

 

5. MAUDE LANGUAGE 
 

Maude is a specification and programming 
language based on rewriting logic [11], [5].  Maude 

is simple, expressive and efficient. It is rather 
simple to program with Maude, considering that it 
belongs to the declarative programming languages. 
It is possible to describe using Maude different 
types of applications, from prototyping ones to high 
concurrent applications. Maude is a competitive 
language in terms of execution and simulation with 
imperative programming languages. In Maude 
language, two levels of specification are defined. 
The first level is related to the specification of the 
system while the second is related to the 
specification of the properties. 

5.1 System Specification Level 
This level is based on rewriting theory. It is 

mainly described by system modules. Three types 
of modules are, in fact, defined in Maude. The 
functional modules allow defining data types. The 
system modules define the dynamic behavior of a 
system. Lastly, the object-oriented modules which 
can, in fact, be reduced to system modules. 
However, they offer explicitly the advantages of the 
object paradigm. 
 
Functional Modules. The functional modules 
define data types and related operations, which are 
based on equations theory. By using equations like 
simplification rules, each expression called term 
could be evaluated to its reduced form called 
canonical representation. All the equal terms by 
means of equations form an equivalence class. The 
canonical form represents all the terms of the same 
equivalence class. The set of all the equivalence 
classes of the ground (i.e, variable-free) terms 
constitutes a denotational model for a functional 
module (initial algebra). Equations in a functional 
module are oriented. They are used from left to 
right and the final result of the simplification of an 
initial term is unique independently of the order in 
which these equations are applied. In addition to 
equations, this type of modules supports 
membership’s axioms. These axioms impose 
constraints so that a term is of a particular type if a 
certain condition is satisfied. This condition is a 
conjunction of equations and unconditional tests of 
memberships. 

 
System Modules. The system modules define the 
dynamic behavior of a system. This type of module 
augments the functional modules by the 
introduction of rewriting rules. This type of module 
offers a maximum degree of concurrency. A system 
module describes a “rewriting theory” which 
includes kinds, operations and three types of 
statements: equations, memberships and rewriting 
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rules. These three types of statements can be 
conditional. A rewriting rule specifies a “local 
concurrent transition” which can proceed in a 
system. The execution of such transition, specified 
by the rule, can take place when the left part of a 
rule matches to a portion of the global state of the 
system and the condition of the rule is valid. 
 
Object-Oriented Modules. Although an object-
oriented module can be specified by a system 
module, the object-oriented module offers syntax 
more suitable compared to the system module to 
describe the basic entities of the object paradigm 
like, for an instance, objects, messages and 
configuration. To make easier the description to a 
user of Maude, the predefined object-oriented 
module CONFIGURATION is introduced, 
encapsulating the basic concepts of object-oriented 
programming. A part of this module is described in 
section 4.1. The remainder of this module will be 
presented thereafter. A typical form of a 
configuration is: Ob-1… Ob-m M-1… M-n 

Such that Ob-1… Ob-m are objects, M-1… M-n 
are messages, it does not matter the order 
(commutativity). In general, a rewriting rule has the 
following form: 

rl Ob-1… Ob-k M-1… M-n => Ob-1' … Ob-j’ 
Ob-K+1… Ob-m M-1'… M-n’ 

Such that Ob-1' … Ob-j’ are updated versions to 
the objects Ob-1 … Ob-j  if j ≤  k, and Ob-k+1… 
Ob-m are new created objects. If a left part of a rule 
contains only one object and only one message, this 
rule is known as asynchronous. On the other hand, 
the rule is known as synchronous if its left hand 
side contains several objects. The remainder of the 
module CONFIGURATION defines the syntax of 
the objects as follows: 
sorts Oid Cid .  
sorts Attribute AttributeSet . subsort Attribute < 
AttributeSet . 
op none : -> AttributeSet . op _,_ : AttributeSet 
AttributeSet -> AttributeSet [ctor assoc comm id: 
none] . 
op <_:_ | _> : Oid Cid AttributeSet -> Object [Ctor 
object] . 
 In this syntax, the objects have the following 
general form: < O: C | att-1,…, att-k > such that O 
is an identifier of object, C is an identifier of a 
class, and att-1,…, att-k are attributes of objects. 
Only one rewriting rule makes it possible to express 
at the same time: consumption of certain floating 
messages, sending of new messages, destruction of 

the objects, creation of new objects, changes of 
certain objects states, etc. 

5.2 Properties Specification Level 
This level of properties specification in Maude 

defines the properties of the system to be checked. 
By evaluating the set of states that are reachable 
from an initial state, Model Checking allows the 
verification a given property in a state or a set of 
states. According to the kind of the property, two 
kinds of Model Checking are defined: Model 
Checking Invariants and the well known LTL 
Model Checking. 
 
5.2.1. Model Checking of Invariants 

In this Kind of Model Checking, the property is 
specified as an invariant. Through the utilization of 
the command search, Maude system goes over all 
states accessible from initial state to prove that such 
invariant is  violated or not by detecting some 
incoherent states describing ‘safety properties’ 
(well known in the literature as something bad 
should never happen). The syntax of the command 
search is as follows: 
search in [Module-Name] : Initial-State =>* Any-
State [such that Condition] . 

If we instantiate Any-State by the general 
principal state of the specification, for instance 
CF:Configuration (CF is a variable of type 
Configuration) without indicating any condition, 
search command returns the accessibility graph of 
the specification, i.e. all reachable states from 
Initial-State. But, if we give a more detailed form of 
configuration or a condition, search command 
returns only states that match such form of 
configuration or verify such condition. That’s the 
way we will use this command to check necessary 
reachable configurations. If we give a condition we 
do not want it to be true in any accessible state, and 
if search command returns some states, that means 
the presence of some incoherent states. That’s the 
way we will use this command to check if there is 
or not incoherent states. 
 
5.2.2. LTL Model Checking 

A property is expressed in a temporal logic LTL 
(Linear Temporal Logic). Model Checking 
supported by the Maude’s platform uses LTL logic 
for its simplicity and the well defined procedures of 
decision which it offers (for more details, see [7], 
[5]). In a predefined module LTL, one finds the 
definition of operators for the construction of a 
formula (property) in linear temporal logic. By 
hiding certain details of implementation, one finds 
part of LTL operators in the syntax of Maude. LTL 
operators are represented in Maude by using a 
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syntactic form similar to their original form. For 
example, the operation [] is defined in Maude to 
implement the operator (always). An operator is 
applied to a formula to give a new formula.  
fmod LTL is 
… 
----- Defined LTL operators 
 op <>_ : Formula -> Formula .       ----- eventualy 
 op []_ : Formula -> Formula .          ----- always 
 op _=>_ : Formula Formula -> Formula .     
 ----- strong implication 
 op _<=>_ : Formula Formula -> Formula .   
 ----- strong equivalence 
… 
endfm 

In addition to that, there is a need to an operator 
indicating when a given formula is true or false in a 
certain state. Such operator (|=) is found in the 
predefined module SATISFACTION. 
fmod SATISFACTION is 
 protecting LTL . sort State .   
 op _|=_ : State Formula ~> Bool . 
endfm 

The state State is generic. After specifying the 
behavior of a system in a Maude system module, 
the user can specify several predicates expressing 
certain properties related to the system. These 
predicates are described in a new module which 
imports two others: the module SATISFACTION 
and the one describing the dynamic aspect of the 
system. Assume for example, M-PREDS the name 
of the module describing the predicates on the 
states of the system. M is the name of the module 
describing the behavior of the system. The user 
must specify that the selected state (configuration in 
this example and the rest of the paper) for its own 
system is sub-type of the sort State. At the end, we 
find the module MODEL-CHECKER which offers 
the Model-Check function. The user can call this 
function by specifying a given initial state and a 
formula. Maude Model Checker checks if this 
formula is valid (according to the nature of the 
formula and the procedure of Model Checker 
adopted by the Maude system) in this state or the 
set of all accessible states from the initial state. If 
the formula is not valid, a counterexample is 
displayed. The counterexample concerns a state in 
which the formula is not valid. 
mod M-PREDS is 
protecting M .  including SATISFACTION . 
subsort Configuration < State . 
… 
endm 
fmod MODEL-CHECKER is  
 including SATISFACTION . 

 … 
op counterexample : TransitionList TransitionList 
 -> ModelCheckResult [ctor] . 
op modelCheck : State Formula  
~> ModelCheckResult . 
… 
endfm 
 
6. AUML-MAUDE TRANSLATION  

In this section, we explain some ideas about our 
proposed translation from AUML to Maude that we 
use to create the tool AUML-Maude. The 
translation can not be completely automatic 
because of the some informal aspects of Maude. So 
we open the code to the user to add some rewriting 
rules concerning in particular intra-agent behaviour. 
The proposed translation touches some aspects of 
class diagram, sequence diagram and statechart 
diagram. 
 
6.1. Class Diagram Translation 

We used the concept of object to implement the 
AUML agent. Then, a class agent in AUML will be 
represented by an object class of Maude. Object 
concepts such attribute and method in AUML will 
be represented naturally by attribute and message 
concepts of Maude. In the sequel, we will explain 
in detail how we describe every concept of AUML 
by using Maude concepts.  
 
Class Agent. We used class object in Maude to 
describe it. 
 
Attribute. We used also attribute concept. 
 
Method. It will be implemented by using message 
concept of Maude. 
 
Action. Basically, an action will be represented by 
a message also Maude, but we created two kinds of 
messages: Pro-Active and Rea-Active, as follows: 
sort Pro-Active .  sort Rea-Active . subsort Pro-
Active < Msg . subsort Rea-Active < Msg . 
 
Communication-Acts. It is a message too, and 
here also we created a special kind of message that 
we called Comunication-Acts: sort Comunication-
Acts . subsort Comunication-Acts < Msg . 
 
Identification Mechanism. The 
CONFIGURATION module in Maude, offers the 
sort Oid as a generic mechanism of identification.  
We create for each class C translated, a space for 
the identification of its objects, that we called COid 
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(class name+Oid). To be a valid identification 
space, COid should be a sub-sort of Oid: 
subsort COid < Oid . 

For simplicity, we have chosen the string as 
mechanism identification, so we add:  
subsort String < COid .  
 
Role. Fisrt, we create a generic sort called Role and 
a generic attributed called CurrentRole of sort Role. 
This attribute will contain the current role of the 
agent.  
op CurrentRole  :_ :  Role -> Attribute . 

 
Of course, for more than one role, we count the 

maximal roles defined for an agent class, for 
instance n, and during the translation, we create 
new attributes CurrentRole1, .., CurrentRole(n-1) 
(in addition to CurrentRole which already exists).  
op role-1 : -> Role . op role-2 : -> Role .   …   op 
role-(n-1) : -> Role . 

For the use of these attributes inside an object:   
< A : C | CurrentRole : role-1, CurrentRole1: role-
2,  …, CurrentRole(n-1) : role-n , serveurState : 
InitialState , Atts >.... 
 
Cardinalies. To implement cardinalities, first we 
propose the module ACQ-LIST to create a special 
data type list that we called Acq-List. This data 
type will hep us specifying acquaintances of an 
agent.  
fmod ACQ-LIST is sorts Acq-Elt Acq-List . subsort 
Acq-Elt < Acq-List . 
op empty : -> Acq-List [ctor] . 
op _;_ : Acq-Elt Acq-List -> Acq-List [ctor] . 
op error-Acq-Elt : -> Acq-Elt [ctor] . op error-Acq-
List : -> Acq-List [ctor] . 
var E : Acq-Elt . var L : Acq-List . 
eq E ; empty = E . 
-------------------------------------------------- 
op head-Acq : Acq-List -> Acq-Elt . 
eq head-Acq(empty) = error-Acq-Elt .  
eq head-Acq(E ; L) = E . eq head-Acq(E) = E . 
-------------------------------------------------- 
op tail-Acq : Acq-List -> Acq-List . 
eq tail-Acq(empty) = error-Acq-List .  
eq tail-Acq(E ; L) = L . eq tail-Acq(E) = empty . 
… 
endfm 
 

Depending on the number of links that an agent 
of a class, gets with others agents of other classes, 
we create a number of attributes equal to the 
number of links. We discuss cardinalities of the 
form n..m: 

So, the agents of class Cl, have n..m cardinality  
with agents of class C,   

The agents of class Cl, have n1..m1 cardinality  
with agents of class C1,   
… 

The agents of class Cl, have nk..mk cardinality  
with agents of class Ck,   

After that, we create attributes Acquaintance, 
Acquaintance-1, …, Acquaintance-n-1: 
op Acquaintance  :_ :  Acq-List -> Attribute .  
op Acquaintance-1  :_ :  Acq-List -> Attribute . 
… 
op Acquaintance-n-1  :_ :  Acq-List -> Attribute . 
 

Such that Acquaintance is a list containing 
between n and m elements, every element is an 
agent identifier of class C, every attribute 
Acquaintance-i is a list containing between n1 and 
m1 agent identifier of class C1, .., 
and every attribute Acquaintance-i is a list 
containing between ni and mi agent identifier of 
class Ci, 
In fact, we preferred offering Acquaintance as 
generic attribute and the others are created in the 
moment of the translation according of maximal the 
number of links that can have a class agent with 
others. 

But in the sequel and for simplicity reasons, we 
consider only cardinalities of the form 0..1. 
 
6.2. Third Level (Statechart Diagram) 
Translation 

This diagram has already a representation in 
Maude language. To describe agent state in Maude, 
we use an attribute. First, we create a general sort 
we called GeneralState and two specific values of 
this sort: InitialState and FinalState to describe 
initial and final state of any agent.  In the moment 
of the translation, for any class agent C, we create: 

- A sort CStateKind (class 
name+”StateKind”): the type of all agent 
states, we have to put: subsort CStateKind 
< GeneralState. 

- A state in Maude:  op S : -> CStateKind . 
For every state S occurring in the agent 
state-transition diagram.   

- An attribute CState (class name+”State”): 
op CState  :_ :  GeneralState -> Attribute . 
So, the value of this attribute are 
InitialState, FinalState and all states S of 
the agent state-transition diagram. 

Let’s take the statechart diagram of the figure 3, 
we focus only on the consumption the actions, and 
not how the action is created. That depends on the 
nature of the actions if it is reactive or proactive; 
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which will be discussed later. Then, when the agent 
is in its initial state and the occurrence of Action-1 
allows it to change this state to S0: 
rl [rule-name] : Action-1 < A : Class1 | 
Class1State : InitialState, atts1 > => 
< A : Class1 | Class1State : S0, atts1 > . 

 
Also, if the agent is the state S0 and the arrival 

of Action-2 allows it to change its state to S1, etc. 
rl [rule-name] : Action-2  < A : Class1 |  
Class1State : S0, atts1 > => < A : Class1 | 
Class1State : S1, atts1 > . 
… 
 
6.3. Second Level (Sequence Diagram) 
Translation 

To allow two or many agents communicating 
via a protocol, we created some operations: 
op _,_ : Configuration Configuration -> 
Configuration [assoc comm id: none] . 
op [_] : Configuration -> Configuration . 
op AgentProtocol : Configuration -> Msg  . 

The operation [_] allows us to encapsulate an 
agent with its floating messages (actions, …), for 
instance : 
[Action1 … Actionn < A : Class1 |  Class1State : 
S0, atts1 >] 
The operation AgentProtocol encapsulates all 
agents that are communicating via a protocol. If we 
get only two agents A and B communicating, we 
have the form: 
AgentProtocol([ … < A : Class1 | atts1 >], [ … < 
B : Class2 | atts2 >] ) 

But if we get three agents A, B and 
communicating, so can get the form: 
AgentProtocol([ … < A : Class1 | atts1 >], [ … < 
B : Class2 | atts2 >], [ … < C : Class3 | atts3 >] ) 

That’s why, we proposed the operation _,_ 
which allows to the operation AgentProtocol to 
have an extensible number of configuration as 
parameters.  
 
Note. Let’s note that when an agent is encapsulated 
inside a protocol, it does not mean that it can not 
work individually by consuming its own actions 
and changing its state.  

Before translation, we need some information 
from the user. He should precise in what state of the 
agent sender a communication act will be sent and 
what action of the receiver agent this 
communication act will invoke. In general way, to 
send a communication act CA to agent B, the agent 
A prepares it locally by executing the following 
rewriting rule: 

rl [rule-name] : < A : Class1 |  Class1State : S0, 
Acquaintance-i : B, atts1 > =>  
CA (Operation-A < A : Class1 | Class1State : S0, 
Acquaintance-i : B, atts1 >) .    [1] 

According to AUML model, when the agent 
creates a communication act, it activates also an 
operation Operation-A which could be a method or 
an action.  

If the occurred operation is a method 
(Operation-A=Method-A) the consumption of 
Method-A needs some other rules that could change 
internal state of the agent.  

But, we do not have such method behaviour in 
formal way that we could translate it automatically 
to Maude. All what we can do is creating 
automatically a rule which allows the consumption 
of the method obviously and creating the next 
action Action-A according to the statechat of the 
agent A: 
rl [rule-name] : Method -A < A : Class1 |  
Class1State : S0, atts1 > =>  
Action-A < A : Class1 | Class1State : S0, atts1 > . 
Note. Here Action-A is pro-active action, so the 
agent creates it by itself. But if the action is 
reactive, the agent waits the action coming from 
another agent which could be the user. In this case, 
the reactive action is put from the beginning (initial 
configuration) in the space accorded to the agent 
between []. 

In this rule, Method -A does not infect the state 
of the agent; it is just a bridge to invoke the 
corresponding action in the statechart. But we do 
not stop here; we propose opening a window to the 
user to complete the behaviour of the method. Even 
he does not add any other rule, he has at least an 
executable Maude code that validate some aspects 
expressed by class, sequence and statechart 
diagrams. 

In both cases, the operation is a method or 
action; at the end we get an action. This action is 
consumed by using the rewriting rules 
implementing statechart diagram. Such 
consumption makes the agent changing its state 
from S0 to S1 and makes it ready to send the CA to 
the corresponding agent B. The following rule 
allows passing CA from the space of A to the space 
of B:  
rl [rule-name] : AgentProtocol([ CA  < A : Class1 | 
Class1State : S1, Acquaintance-i : B, atts1 >],  
[ < B : Class2 | Class2State : S2, Acquaintance-j : 
B, atts2 >], CF) 
=> AgentProtocol([< A : Class | Class-State : S1, 
Acquaintance-i : A, atts1 >],  
[CA < B : Class2 |  Class2State : S2, Acquaintance-
j : B, atts2 > ], CF ) .     [2] 
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CF is a variable of sort Configuration indicating 
the remaining of agents involved in the protocol, or 
CF is none (empty). 

When B receives the message composed of CA, 
it continues its work by creating the appropriate 
action which is précised by the user Operation-B: 
rl [rule-name]: CA < B : Class2 |  Class2State : S2, 
Acquaintance-j : B, atts2 >  
=> Operation-B < B : Class2 |  Class2State : S2, 
Acquaintance-j : B, atts2 >    [3] 
… 

When the three connectors ‘AND’, ‘OR’, and 
‘XOR’ appear in the messages, we keep the form of 
these rules ([1], [2] and [3]) with only some little 
changes. Let’s explain how we adapt these rules 
[1], [2] and [3] to translate messages containing one 
of the three connectors ‘AND’, ‘OR’, and ‘XOR’.  
 
‘AND’ Connector Translation. To send CA-1 
CA-2 … CA-n concurrently, we translate this in the 
same way as the rule [1], but instead of creating 
only one communication act CA, the agent A 
creates all the sequence as: 
rl [rule-name] : < A : Class1 | At : Vi,  Class1State : 
S0, Acquaintance-i : B, atts1 > =>  
CA-1 CA-2 … CA-n  (ActionA < A : Class1 | At : 
Vi, Class1State : S0, Acquaintance-i : B, atts1 >) .  

After that, the agent A passes this sequence to 
the agent B, we change the rule [2] to the following 
rule: 
rl [rule-name] : AgentProtocol([ CA-1 CA-2 … 
CA-n  < A : Class1 | Class1State : S1, 
Acquaintance-i : B, atts1 >], [ < B : Class2 | 
Class2State : S2, Acquaintance-j : B, atts2 >], CF) 
=> AgentProtocol([< A : Class | Class-State : S1, 
Acquaintance-i : A, atts1 >],  
[CA-1 CA-2 … CA-n  < B : Class2 |  Class2State : 
S2, Acquaintance-j : B, atts2 > ], CF ) . 
… 
‘XOR’ Connector Translation. Here, we give the 
hand to the user, to choose an attribute and 
according to a value of this attribute, one of the 
CA-i will be sent. Let the At is the attribute chosen 
by the user, and after that, he has to indicate for 
every value which CA-i must be sent. Suppose that 
for the value Vi, it’s CA-i that will be sent, we get 
the following rules: 
rl [rule-name] : AgentProtocol([CF1 CA-1  < A : 
Class1 | At : V1, Class1State : S1, Acquaintance-i :  
B, atts1 >] , [ < B : Class2  | Class2State : S2, 
Acquaintance-j : B, atts2 >], CF)  
 => AgentProtocol([< A : Class1 | At : V1, 
Class1State : S1, Acquaintance-i : B, atts1 >],  
[CA-1 < B : Class2  | Class2State : S2, 
Acquaintance-j : B, atts2 >], CF)  

… 
rl [rule-name] : AgentProtocol([CA-n < A : Class1 | 
At : Vn, Class1State : S1, Acquaintance-i : B, atts1 
>] , [< B : Class2  | Class2State : S2, Acquaintance-
j : B, atts2 >], CF)  
 => AgentProtocol([ < A : Class1 | At : Vn, 
Class1State : S1, Acquaintance-i : B, atts1 >],   
[CA-1 < B : Class2  | Class2State : S2, 
Acquaintance-j : B, atts2 > ], CF)  
 
‘OR’ Connector Translation. The user must 
indicate the value Vi of an attribute to send some 
CA-i: 
rl [rule-name] : AgentProtocol([CA-i1 CA-i2 … 
CA-ik < A : Class1 | At : Vi, | Class1State : S1, 
Acquaintance-i : B, atts1 >] ,  
[ < B : Class2  | Class2State : S2, Acquaintance-j : 
B, atts2 >], CF)  
 => AgentProtocol([< A : Class1 | At : Vi, | 
Class1State : S1, Acquaintance-i : B, atts1 >],  
[CA-i1 CA-i2 … CA-ik  < B : Class2  | Class2State : 
S2, Acquaintance-j : B, atts2 >], CF)  
Such that ij = 1, .., n 
… 
 
6.4. First Level (Template) Translation 

We do not need the translation of the template, 
because all details appear in the sequence diagram 
of level 2 that we will translated in the next section. 

 
6.5. Generic Module 

We regrouped all generic elements (sorts, 
attributes, actions and operations) that we proposed 
in one module (called GENERIC-PROTOCOL) to 
be included in any generated Maude code: 
mod GENERIC-PROTOCOL is 
pr ACQ-LIST . including CONFIGURATION . 
sort GeneralState . sort Comunication-Acts .  
sort Role . sort Pro-Active . sort Rea-Active . 
subsort Pro-Active < Msg . 
subsort Rea-Active < Msg .  
subsort Comunication-Acts < Msg .  
subsort Oid < Acq-Elt .  
op CurrentRole  :_ :  Role -> Attribute .  
op Acquaintance  :_ :  Acq-List -> Attribute . 
op InitialState : ->  GeneralState . op FinalState : ->  
GeneralState . 
op _,_ : Configuration Configuration -> 
Configuration [assoc comm id: none] . 
op [_] : Configuration -> Configuration .  
op AgentProtocol : Configuration -> Msg  . 
endm 
 
 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
76 
 

7. DESCRIPTION OF THE AUML-MAUDE 
TOOL 

In this section and through the previous 
example, we will explain some aim functionalities 
of the AUML-Maude application.  
 
7.1. General Description and Architecture of the 
Tool 

As described in figure 4, the most principal 
working steps of the AUML-Maude Edition and 
Generation tool. The figure 5 summarizes the 
principal steps of the AUML-Maude LTL Properties 
Checker. The architecture of this last is similar to 
‘AUML-Maude Simulator’ and ‘AUML-Maude 
Invariants Properties Checker’. 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, trough the previous example, we explain 
in following sections the main options of the 
application. 

7.2. Main Functionalities of AUML-Maude Tool 
 
7.2.1. Functional Module Editor 

Types should be created in Maude. So, we 
provide a simple text editor to the user create his 
specific data types. But, a little library containing 
the classical basic data types is available; this 
library containing some data types supported by 
Maude or we developed; it includes: Float, Int, 
String, List, Queue, Stack … etc. After creating a 
new data type, the user can add it to the library. 
7.2.2. AUML Graphical Edition (Modelling) 

We give to the user a battery of tools to create 
and manipulate different AUML diagrams. Of 
course, there are some classical accessories buttons 
for zoom in, zoom out, background colour change,  
… 
 
Class Diagram Tools. As showed in the figure 6, 
necessary tools to create and update class diagram 
and its elements are available including tools to 
create and update agent class: agent role, state 
(attribute), actions, communication actions; general 
protocol, cardinalities, .. 

 
Figure 6. Class Diagram menu and SSII-Example 

Creation 

 
First Level Tools. The figure 7 depicts the 
interface of the set of tools we provided to the user 
to create agents templates. In this figure, we created 
the two templates of the example, the template 
describing the general protocol between sender, 
distributor and the other one between distributor, 
wrapper. 
 

Figure 4. Methodical view on AUML-Maude 
Edition and Generation Tools
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Figure 7. First Level menu and SSII-Example Template 

Creation 

Second Level Tools. In the figure 8, one finds 
second level interface with necessary tools to create 
sequence diagram. The figure contains also the 
sequence diagram of the SSII example. 

 
Figure 8. Second Level menu and SSII-Example Sequence 

Diagram Creation 
 
Third Level Tools. In the figure 9, one finds third 
level interface with necessary tools to create 
statecharts of agents’ classes. The figure contains 
also the statcharts of the three agents’ classes of the 
SSII example. 
 

 
Figure 9. Third Level menu and SSII-Example Statechart 

Diagram Creation 
 
7.2.3. Maude Code Generation  

According to the translation strategy that we 
proposed in the section 6, when the user asks for 
‘Code generation’ in ‘Maude Code’ menu, he gets 
first a space to add some rewriting rules completing 

the agent’s behaviour and after that he gets his the 
equivalent Maude code.  The figure 10 shows a part 
of Maude code equivalent to the SSII example. 

 

 
Figure 10. Maude Code Generation of the SSII system 

 
7.2.4. Analysis Tools 

In this section, we explain how every analysis 
tool works and the Maude code generated for every 
part.  
 
Initial Configuration Creation. Indeed, an initial 
state is constituted of instances of different classes 
and some floating messages. Then, we give to the 
user a graphical way to create its initial 
configuration.  In the window of figure 11, we 
show how the user can create his instances of class, 
we give display to him: 

- List of actions that must appear form the 
beginning (those invoked by the user); 

- List of existent classes, the user chooses a 
class to create instances of this class, to 
instantiate a class, the user should fill: 
‘instance name’ (of type String), 
‘attributes values’ and ‘initial state’. 

After instantiating a class, the information 
available like: Instance name: CName; each 
Attribute Ati is Vi; ClassState : S; allow us to 
create the initial configuration. If the user gives all 
the values of the attribute, so we create in Maude, 
the instance: < CName : Class | At1 : V1, …, Atn : 
Vn, ClassState : S > 

But if the user does not fill all the attributes 
values, we add in the instance: 
< CName : Class | …, Atj : Vj, ClassState : S, atts 
>. 

 
Finally, the initial configuration of all system is 

composed of all these instances and some floating 
actions encapsulated as parameter of the function 
AgentProtocol and every instance is encapsulated 
between [] with ists appropriate actions: 
AgentProtocol([Action1 … Actionm < CName : 
Class | …, Atj : Vj, ClassState : S, atts >], …). 
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Consequently, the initial configuration of the 
SSII example is as follows: 
op Initial-Configuration : -> Configuration . 
eq Initial-Configuration = 
 AgentProtocol([initiation-server receive-demand < 
"ser" : server | adressIP : 10 , CurrentRole : receiver 
, serverState : InitialState , Acquaintance : "dis" > ] 
, [ < "dis" : distributor | quantum-duration : 1 , 
CurrentRole : sender , distributorState : InitialState 
, Acquaintance : "wrap" , Acquaintance-1 : "ser" > ] 
, [ < "wrap" : wrapper | data-base : "data" , 
CurrentRole : catcher , wrapperState : InitialState , 
Acquaintance : "dis" > ]) . 
 
 

 
Figure 11. An Example of class instance creation 

 
Simulation. The simulation consists of 
transforming the initial state to another by doing 
one or many rewriting actions.  To do simulation, 
the simulator needs from the user the initial state of 
the AUML model.  The user may give to the 
simulator the number of rewriting steps if he wants 
to check intermediary states. If this number is not 
given, the simulator continues the rewriting 
operation until reaching final state. In figure 12, 
one asked the application to perform the simulation 
on the previous initial configuration without 
indicating the number of rewriting steps (0). After 
validation, the code Maude generator creates: rew 
Initial-Configuration . 
 

 
                         Figure 12. Simulation window 

We notice that infinite case is possible. Let’s get 
back to the example, after displaying the Maude 
code equivalent to AUML model; we can now 
execute the code by clicking ‘Simulation’ option of 
‘Analysis’ menu. In our case, the unlimited 
rewriting of the example under Maude system gives 
the result in the figure 13 Let’s note that we 
exposed the result configuration in textual way in 
Maude language and in graphical manner when we 
shows every class instance is showed in a window. 

 
Figure 13. Simulation of the SSII example under Maude 

system 

 
Model Checking of Invariants. We give the 
interface to the user, to seize the necessary 
parameters as described in the figure 14 we make 
the work of the user as easy as possible. 
Source State: The user can put any configuration 
but we give him the obvious choice which is Initial-
Configuration. 
States Number: natural number N which could be 
optional. 
Rewriting Proof Steps:  It could be *, +, ! or 
natural number. 
Target State: We give to the user the obvious 
choice which is C:Configuration. 
Condition: It’s optional. 

 
After validating, the tool creates the code and 

calls Maude system for execution. For the 
translation, for instance, if  State Number and 
Condition are empty, we get the code: 
search  SourceState =>SP  TargetState . 
Such that SP is Rewriting proof steps, and N is 
State Number. Otherwise, we get: 
search  [N] SourceState =>SP  TargetState  such 
that Condition . 
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Figure 14. Model Checking of invariants Window 

LTL Model Checking. In the option ‘Analysis’ of 
the main menu, we choose ‘LTL Model Checking’ 
option which contains three options that are: 
‘Predicate’, ‘Property’ and ‘Model Check’ to 
create respectively predicates, properties and to 
model check some created properties. 
 
Predicates. When the user chooses to create a 
predicate, a window opens and the user should 
seize ‘Predicate Name’ and to add ‘Variables’, 
‘Signature’ and ‘Equations’ by clicking 
respectively on ‘Add Variables’, ‘Add Signature’ 
and ‘Add Equations’.  
 

 
Figure 15. Predicate main window 

 
When the user clicks on ‘Add Variables’, 

another window will be opened entitled 
‘Variables’ as described in the figure 16, to fill all 
needed variables (if there are variables) concerning 
this predicate. The user can add as many variables 
as he needs. For sorts, the user chooses only a sort 
from a list of valid already defined sorts. 

 
Figure 16. Variables creation window 

 
In this case, the code that will be generated is: 

var ser : serverOid . var wrap : wrapperOid … 
If the user clicks on ‘Add Signature’, another 
window will appear to complete the ‘Signature’ 
(figure 17) of the predicate. For signature, the user 
needs only entering the list of the ‘Sorts’ that are 
the domains of the predicate, because the co-
domain of any predicate is predefined and it is 
‘Prop’. Of course, the user has a limited list of valid 
already defined sorts to choose among them.  For 
instance, the signature example of the figure … will 
be translated to:  op Actions-Not-Consumed :  
serverOid wrapperOid distributorOid -> Prop . 

 
Figure 17. Signature predicate creation window 

 
Finally, the window of the ‘Equations’ will be 
opened when clicking on ‘Add Equations’. For an 
equation, we need the parameters in the figure 18. 

 
Figure 18. Predicate equation creation window 
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In general way, only Condition is optional, if 
Condition is not empty, so we get the generated 
code equivalent to the equation: ceq State |= 
Formula = TruthValue if Condition . 

Otherwise, we get: eq State |= Formula = 
TruthValue . 
So, the equation example (figure 18) will be 
translated in Maude: 
eq Message < ser : server | serverState : FinalState 
> < wrap : wrapper | wrapperState : FinalState >  
< dis : distributor | distributorState : FinalState > |= 
Actions-Not-Consumed(ser, wrap, dis) = true . 
 
Properties. To create a property, the user needs 
‘Property Name’ and ‘Property Contents’. We 
give buttons containing all LTL operators to make 
filling ‘Property Contents’ easy. The figure 19 
shows a property creation example. 

 
 

Figure 19. Property creation window 
 

The property example of figure 19 will be 
translated in Maude as: 
op Actions-Consumed : -> Prop .  
eq Actions-Consumed = []~ Actions-Not-
Consumed("ser", "wrap", "dis") . 
 
Model Check. A list of all created properties is 
given to the user in a window (figure 20); he can 
choose one or many of them to model check. After 
he makes his choice, the tool creates the appropriate 
code of all the parts (predicates, properties and 
Model Check) and calls the Maude LTL Model 
Checker to verify the properties. The code will be 
in a file, and it is composed of two modules. The 
module MODULE-PREDICATS which contains 
the definition of predicates, such MODULE is the 
name of module containing the Maude code 
generated for the user AUML models. The second 
module is called MODULE-PREDICATS-CHECK 
which contains the definition of Initial-
Configuration and the LTL properties. The previous 
created LTL properties example will invoke the 
creation of a file containing the following Maude 
code: 
in model-checker.maude --- To add automatically 
in ssii.maude ----- File containing the Maude code 
of SSII example 

mod SSII-PREDICATS is  pr SSII . pr MODEL-
CHECKER . subsort Configuration < State . 
-------- Variables  
var ser : serverOid . var wrap : wrapperOid . var dis 
: distributorOid . 
… 
-------- Predicates 
op Actions-Not-Consumed :  serverOid wrapperOid 
distributorOid -> Prop . 
eq Message < ser : server | serverState : FinalState 
>  < wrap : wrapper | wrapperState : FinalState >  
< dis : distributor | distributorState : FinalState > |= 
Actions-Not-Consumed(ser, wrap, dis) = true . 
… 
endm 
mod SSII-PREDICATS-CHECK is 
including SSII-PREDICATS . including MODEL-
CHECKER . including LTL-SIMPLIFIER . 
op Initial-Configuration : -> Configuration . 
… 
------- Properties 
op Actions-Consumed : -> Prop .  
eq Actions-Consumed = []~ Actions-Not-
Consumed("ser", "wrap", "dis") . 
… 
endm 
------- LTL Model Checking of properties 
red in SSII-PREDICATS-CHECK : 
modelCheck(Initial-Configuration , Actions-
Consumed) . 

 

 
Figure 20. Model Check window 

 

The execution of this generated code for LTL 
properties under Maude system gives the result 
described in the figure 21. 
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Figure 21. Properties verification under Maude system 

 
7.3. Technical Aspect of the AUML-Maude Tool 

This tool is implemented under MS-Windows 
XP with the following tools:  

- The programming language Eclipse 3.4 is 
used for implementing the graphical 
editor, and the translation of graphical 
representation of a AUML model to its 
equivalent Maude description; 

- The version 2.0.1 of Maude system is used 
for the simulation and Model Checking of 
invariants of the generated description of 
the AUML model; 

- The Maude LTL Model Checking. 
For graphic modelling reason, we held the 

Eclipse language with regard to the other languages 
for its graphics power, its capacity to manipulate 
objects and its compatibility with the other 
languages. 
 
8. CONCLUSION & FUTURE WORK 
 In this paper, we have proposed some ideas 
about translation of AUML concepts to Maude 
language; also we have shown the outline of a 
graphical application for AUML model. This tool 
allows using AUML model in simple manner by 
introducing a graphical interface. This is not new, 
but in our knowledge; our proposed application is 
among few tools that allow the translation of this 
graphic representation to a Maude code. We take 
advantage of Maude system to run, simulate and 
verify the obtained AUML-Maude code.  

We consider this work as an important 
investigation way, because the creation of a formal 
version of AUML multi-agents model and its 
verification by using the same language (Maude), 
allows us to give sound and complete semantics to 
AUML model in individual way. On other hand, it 
allows its integration with other multi-agents 
models (that we described in Maude before ([3], 
[4]) in one language and so their interoperability. 
Consequently, several models developed initially 
on different plate-forms can now communicate 
easily thanks to their formal versions Maude-based. 
Also these different multi-agents models can be 

described and checked by using only a logic which 
allows a rigorous and founded formal verification.  
The work presented in this paper constitutes the 
first step in the construction of a rich environment 
for edition and analysis AUML model. The analysis 
techniques including simulation, Model Checking 
of invariants and LTL Model Checking allow the 
verification of the ‘correctness of a specification’. 
On another hand, Maude offers other techniques to 
check the ‘correctness of the semantic of 
specification’. We plan integrating to the proposed 
environment these techniques supported by Maude.  
In our sense, Maude offers an environment 
presenting enough possibilities for specification, 
programming, validation and verification of MAS. 
Consequently, we do not need the hybrid 
integration of many methods which often causes 
complexity of description, confusion, semantic loss 
and not rigorous checking. 
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