
Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

65

EDITING AND ANALYZING AUML MODEL: A MAUDE
BASED TOOL

1NOURA BOUDIAF, 2KAMEL BENSABER, 3KARIMA SID, 4RADIA SAHBI

1Assoc. Prof., Department of Computer Science, University of Oum El Bouaghi, Algeria
2Phd., Eurofunk Kappacher GmbH Company, Salzburg, Austria

3Engeenier., Department of Computer Science, University of Oum El Bouaghi, Algeria
4Engeenier., Department of Computer Science, University of Oum El Bouaghi, Algeria

E-mail: boudiafn@gmail.com , kbensaber@yahoo.de , sidkarima87@gmail.com , sahbi.r@hotmail.com

ABSTRACT

The lack of formal semantics in the existing formalisms describing multi-agents models combined with
multi-agents systems complexity are sources of several problems during their development process. Formal
methods are known to bring rigorous and precise descriptions. In previous papers, we have proposed a
formal and generic framework called AUML-Maude allowing formal description and validation of AUML
model with Maude. This language, based on rewriting logic, offers a rich notation supporting formal
specification, implementation and verification of concurrent systems. In this paper, we enrich the
translation AUML-Maude by new ideas and we propose a rewriting logic based tool for the edition and the
analysis of AUML model. The tool allows to the user to draw AUML system graphically and translates the
graphical representation to Maude specification for analysis. This tool allows preserving the graphic
notations offered by AUML model for clarity and getting a formal specification in Maude for formal
semantics and analysis.

Keywords: Multi-Agents Systems, AUML Model, Formal Specification, Formal Semantics, Rewriting
Logic, Maude, Graphical Interface, Edition, Analysis

1. INTRODUCTION

The formalization of multi-agents systems
(MAS) is not a very recent idea. Many approaches
aiming MAS’ formal specification have been
proposed in the literature: graphic methods such
Petri nets [2], approaches representing an
adaptation of object-oriented specification methods
like Lotos [9], and more recently approaches based
on some kinds of logic like temporal logic [13]. In
the literature, the proposed approaches aiming
MAS’ formal specification are often limited to
some specific aspects. Several notations are often
used to describe the same MAS. Such combinations
constitute a serious obstacle to rigorous and
founded checking of the properties of the described
systems [10].

We showed in previous papers [12] the
feasibility and the interest to formalize some
aspects of AUML multi-agents model using Maude
language. The constructions offered by this
language are rich enough to capture the multiple
aspects of the AUML model. Maude [11] is

considered as one of the most powerful languages
in description, programming and verification of
concurrent systems. Maude is a formal language
based on a sound and complete logic called
rewriting logic [10]. This logic allows us to reason
correctly on non-deterministic concurrent systems
in terms of the “true concurrency” semantics. The
majority of formal methods used in the framework
of formalization of MAS do not bring anything
more in terms of expressivity or verification power
compared to rewriting logic because they are
integrated in the rewriting logic [10], [11].

In addition to its power of expression, Maude
offers many possibilities of validation and
verification. For validation, it supports simulation
in flexible way. For verification, Maude supports
Model Checking of invariants and of course the
known LTL Model Checking. The Maude Model
Checking of invariants that could work sometimes
with even infinite systems is based on accessibility
analysis by creating a part or all the reachabilty
graph of the system. Model Checking techniques
are an important issue in the field of concurrent

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

66

systems checking. Model Checking of invariants
aims detecting some incoherent states by describing
‘safety properties’ (well known in the literature as
something bad should never happen). Moreover,
this kind of Model Checking helps us to be sure
that some necessary states are really accessible
from the initial one. The LTL Model Checker is
more powerful and more flexible. The LTL Model
Checker of Maude is designed to combine Maude
and linear temporal logic (LTL) in order to benefit
from the two formalisms advantages [7], [5].

The generated AUML-Maude descriptions have
been validated by means of simulation and Model
Checking thanks to the Maude platform. We offer
to the user to re-use the obtained model AUML-
Maude core. The user can model his application
directly in Maude by making an import of modules
implementing AUML-Maude core.

However, Maude system offers textual way to
the user to create and deal with AUML model.
Execution under Maude system is done by using
command prompt style. In this case, we loose the
graphical aspect of AUML which is important for
the clarity, simplicity and readability of a
preliminary system description. Moreover, AUML
is a model very adapted to the requirements of
MAS descriptions, which make easier the
development of preliminary MAS description.
However, Maude is a general language; it has not
specific tools to catch easily MAS’ requirements.
Also, Maude allows a detailed version from the
beginning, which is not very recommended for the
preliminary descriptions of systems.

The purpose of this paper is double:
- Proposing new ideas about the translation AUML-
Maude; that update and complete those proposed in
[12].

- An interactive tool to create and analyze MAS
by using AUML notations. The tool proposed in
this paper, allows the user to graphically edit an
AUML system (class diagram, Template (level 1),
sequence diagram (level 2) and statechart diagram
(level 3)) and then converts the graphical
representation to its equivalent description in
Maude. Thereafter, the tool calls the Maude system
for the execution (Simulation, Model Checking of
Invariants or LTL Model Checking) of the obtained
code and reconverts the obtained result described in
Maude to a graphical representation. With the help
of AUML system example, we will show the aim
functionalities of the tool.

Let’s note that there is a big number of tools for
the creation and the manipulation of MAS, most of
these tools are implemented in the imperative

languages. Some known ones are AgentTool [6],
AgentBuilder [1] and MadKit [8]. These tools are
Java-based graphical development environments to
help users analyze, design, and implement MAS.
With regard to these tools only the preliminary
specification in our application, is diagrammatically
developed by using the AUML notations, the rest of
the development process phases is made in Maude:
formal specification, implementation and validation
in terms of simulation and verification in terms of
Model Checking. Our application has not yet
reached the level of these tools in terms of wide
offered services. For the moment, it is a preliminary
version including some services to be completed in
the future. But, in our knowledge, the tool
presented in this paper is one of the few analysis
tool rewriting logic–based for MAS. This tool
allows us to benefit from the power of rewriting
logic in specification and analysis of concurrent
systems in the context of MAS.

The remainder of this paper is organized as
follows: In section 2, we present briefly the AUML
model. In the section 3, we present an example of
system described by using AUML. In section 4, we
give a short outline on the rewriting logic. Section 5
is a general presentation of Maude language; to its
two levels: specification level and verification. In
the section 6, we explain our proposed process for
the formalization of AUML model by using Maude.
Most important functionalities of our application
are illustrated in section 7 with the help of the
example. Finally, we discuss our current work and
give some conclusions and future work in section 8.

2. AUML MODEL

AUML(Agent Unified Modelling Language) is
a very famous Multi-agent model. AUML is an
extension of the UML (AUML = Agent + UML),
adapted to the analysis and the agent-oriented
design. It supports all UML diagrams (analysis,
design) by modifying and adapting them to describe
the agents such that:

- Objects in UML are replaced by agents
and roles in AUML;

- New notations in AUML to represent
complex interactions between agents;

- Embedded protocols are supported by
AUML;

AUML allows representing and describing
interactions protocols between agents (AIP), it
allows describing inter and intra-agents behaviour.
AUML focuses on:

- Agents classes’ representation;

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

67

- Description of the interactions between
agents.

2.1. Agents Class Diagram
This diagram is composed of some agent classes,

each class is a collection of agents that play a role
and they have the same behaviour.

2.1.1. Elements of Agent Class

Agent Role. A role is a characteristic of a
collection of agents having same properties,
interfaces, services and specific behaviour. The
general form is: agent class name / role1, ... , rolen

Internal Agent State Description. Definition of
instances variables that express the agent state. It is
the attribute concept of the object approach which
is often used. For each attribute, some
characteristics (ex: visibility (public, private), ..) are
defined.

Actions. It could be pro-active or reactive. Pro-
active means that the agent itself which provokes
the action. On the other hand, reactive means that
the agent waits for another agent to provoke this
action for it.
An action is defined through a signature and
semantic:
Signature: visibility + name + list of parameters.
Semantic: pre-conditions + post-conditions +
invariants.

Note. Pre-condition is the condition that must be
checked before the execution of the method or the
creation of an element and Post-Condition is the
condition that must be checked after the execution
of the method or the destruction of an element.

Methods. Every method is described by using pre-
conditions and post-conditions.

Services. Provided services are described
informally.

Exchanged Messages. Description of the sent and
received messages through the specification of the
protocols. An exchanged message between agent is
composed by a communication acts. In fact, an
agent does a local work by executing its internal
behaviour (which expressed by a statechart
diagram: composed by actions and states). When an
agent arrived at a given state, it sends a message to
the other agent (which is in communication with it),
at the reception, the message invokes some actions

of the agent receiver which will continue doing its
local work.

2.2. AUML Levels

A hierarchical view is adopted in AUML. The
first level gives a global view, and the last level is a
detailed view on intra-agent behaviour. Here, we
present briefly all the levels and we leave details to
the next section.

First Level. It’s a representation of the global
protocol. It is generally described by using
sequence diagram, package or template. This level
gives some details comparing to the element
‘Exchanged messages’ of the class diagram. But,
the representation of this level will be detailed more
in the next level.

Second Level. This level focuses on the different
inter-agents interactions. It can be described by
using sequence, collaboration, state, or activity
diagrams.

Third Level. This level gives some tools to allow a
detailed description of each intra-agent behaviour.
An activity or statechart diagrams are often used in
this level.

2.3. Detailed Description of Levels

In this section, we will present in detail each
level and the tools used in it. But, we focus only on
tools that we adapted to be translated to Maude
language in this project.

2.3.1. First Level: Template

The template is just a global specification of the
protocol by indicating the communicating agents
and the messages that will be exchanged between
them. The basic idea oh the template is to give a
reusable component that will be specialized and
detailed in the second level by using for instance
sequence diagram.

2.3.2. Second Level: Sequence Diagram

Actors Naming. agent class name/role1, …, rolen

Exchanged Messages. Here, messages are
composed of communication acts. In the figure 1, a
part example of sequence diagram, where the
Agent1 sends a message (composed of the
communication act CA-1) to Agent2 which answers
by sending the message CA-2.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

68

On another hand, a message is not always

simple like that; it can be composed of many
communications acts that are connected to each
other by some ‘connectors’. In AUML, three
connectors are defined to allow concurrent threads
of interaction between agents (figure 2):
a. ‘AND’ Connector: Concurrent sending of CA-1,
…, CA-n, the figure 2.a shows the notation of the
‘AND’ connector.
b. ‘OR’ Connector: Concurrent sending of 0 or
more CA-1, …, CA-n. So, there is a need of
mechanism to decide which CA-i sequence will be
sent. The figure 2.b depicts how the ‘OR’
connector is represented in AUML.
c. ‘XOR’ Connector: sending only one CA-i (i=1,
..,n) at the same time. A notation of this connector
is depicted the figure 2.c.

2.3.3. Third Level: Statechart Diagram
This diagram allows changing states of an agent

during messages (communication acts) between
agents. It allows expressing some constraints on
protocols. Moreover, it allows a layered view on
states to cope with state explosion problem. In
figure 3, we find an example of statechart diagram
and the coming of a communication act (CA).

When the agent is the initial state (black circle) and
action Action-1 occurs, the agent changes its state
to S0. But, when the agent in state S0, it invokes
the execution of the method Method-1. At the end
of the execution of Method-1, the agent continues
changing its state to S1 if the action Action-2
appears. The appearance of an action depends on its
kind if it is pro-active or reactive.

3. EXAMPLE

In this section, we present a known example in
the literature which is ‘System of Service
Information Integrated on the Mobile’, (SSII), but
here, we took this system and we brought some
modifications to it. This example will help us
explaining our tool.

3.1. System Presentation

A user sends a request to the system SSII to
provide him some information on his mobile. The
system responses the request of the user by looking
for in its data base which is integrated with many
sites web sources and selected automatically
information that needs the user.

3.2. System Agents Modelling

Here, we determine the agents of the system,
relationships between them and the roles of each
agent. Three agents are distinguished:

Server: it communicates with the user to receive
from him the demand and sends him he result. It

CA-2

CA-1

Agent1:class/Role Agent2:class/Role

Figure 1. Basic form of agent’s communication

Figure 3. Typical form of statechart diagram
with the arrival of communication act

…

Action-3

CA
Action-2

Action-1

S0

Method-1

S1

S2

c. ‘XOR’
Connector

b. ‘OR’
Connector

a. ‘AND’
Connector

CA-1

CA-2
…

CA-n

CA-1

CA-2
…

CA-n

CA-1

CA-2
…

CA-n

Figure 2. Concurrent threads of interaction

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

69

controls all the system and contacts the distributor
agent.

Distributor: this agent creates requests that are
appropriate to the capacities of the wrappers on
each web site.
Wrapper: this extracts automatically necessary
information; it answers directly the demand of the
distributor.

3.3. Classes Modelling/Class Diagram Creation

Three classes are defined: server, distributor and
wrapper that are connected via communication
protocol. The figure 6 shows the class diagram
system with the three classes with their protocol
and cardinalities. For explanation reasons, we take
server class,

- First box: the class name is server and the
role is receiver;

- Second box: attributes, only one attribute
(adressIP);

- Third box: Methods, two methods are
defined: create-sub-demand and integrate-
response-distributor();

- Fourth box: actions (reactive and proactive);
- Fifth box: communication acts. The server

receives demand (on the left) and sends sub-
demand (on the right).

3.4. Intra-Agents Behaviour
Modelling/Statechart Diagrams Creation

The statechart diagrams of the three agent’s
classes are described in the figure 9. We explain
here only the Server Statechart Diagram.

Server Statechart Diagram.

- First, the server agent is in InitialState;
- Then it changes its state to receivedemand

after receiving initiation-state from the
user;

- When a receive-demand comes (a demand
form the user), it consumes this action and
it changes the state to ‘create-sub-
demands’; here it executes its method
create-sub-demand;

- Now, the agent has sub-demands;
- The agent sends the communication act

‘sub-demand’ to the distributor and the
action send-sub-demand to it-self, so it
will enter in the state wait-server until
receiving the answer from the distributor;

- The server receives the communication act
‘response-distributor’, which invokes the
action receive-response-distributor
allowing it to change the state to

‘integrateresponsedistributor’; here the
server agent execute its method ‘integrate-
response-distributor()’ to integrate the
distributor answer and create the final
result.

- It sends this answer to the user by creating
‘send-response-distributor’ and it switches
to FinalState.

3.4. Protocols Modelling/Sequence Diagram
Creation

In the figure 8, we show how the three agents
communicate via sending and receiving
communications acts.

3.5. Global Protocol Modelling/Template
Creation

Template is used to create global protocol
between agents. In this system, two templates of are
created; the template describing the general
protocol between sender, distributor and the other
one between distributor and wrapper. We do not
have a DeadLine because of the simplicity of the
example.

4. REWRITING LOGIC REVIEW

In rewriting logic, each concurrent system is
represented by a rewrite theory ℜ = (Σ, E, L, R). Its
static structure is described by the signature (Σ, E),
whereas its dynamic structure is described by the
set of labelled rewrite rules R, which are applied
modulo the equation E. An important consequence
of the rewriting logic definition is that a rewrite
theory ℜ = (Σ, E, L, R) can be viewed as an
executable specification of the concurrent system
that it formalizes. In this section we recall the basic
definitions of the rewriting logic.

A labelled rewrite theory ℜ is a 4-tuple ℜ = (Σ,
E, L, R) where (Σ, E) is a signature; Σ is the sorts
set and operators and E is a set of Σ-equations. The
signature (Σ, E) is an equational theory which
describes the particular algebraic structure of the
states of a system (multiset, binary tree, etc.) which
are distributed according to this same structure. R ⊆
L × (TΣ,E(X))2 is the set of pairs whose first
component is a label and the second is a pair of E-
equivalence classes of terms, with X =
{x1,…,xn,…}a countable infinite set of variables.
The elements of R are called conditional rewrite
rules. They describe the elementary and local
transitions in a concurrent system. Each rewrite rule
corresponds to an action being able to occur,

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

70

simultaneously, with other actions. The rewriting
will operate on equivalence classes of terms,
modulo the set of equations E. For a rewrite rule (r,
([t],[t’]), ([u1],[v1]),….,([uk],[vk])) we use the
notation, r: [t]→[t’] if [u1]→[v1] ∧…∧ [uk]→[vk],
where [t] represents the equivalence class of the
term t. A rule r expresses that the equivalence class
containing the term t is changed to the equivalence
class containing the term t’ if the conditional part of
the rule, [u1]→[v1] ∧…∧ [uk]→[vk], is verified.

Given a labeled rewrite theory ℜ, we say that ℜ
entails a sequent r: [t]→[t’], or that r: [t]→[t’] is a
(concurrent) ℜ-rewrite and write ℜ |- r : [t] → [t’]
iff [t]→ [t’] is derivable from the rules in ℜ by a
finite application of the deduction rules (reflexivity,
transitivity, congruence, and replacement) of
rewriting logic.

A rewrite theory is a static description of a
concurrent system. Its semantics is defined by a
mathematical model which describes its behavior.
The model for a given labelled rewriting theory ℜ =
(Σ, E, L, R) is a category τℜ(X) whose objects
(states) are equivalence classes of terms [t]∈TΣ,E(X)
and whose morphisms (transitions) are equivalence
classes of proof-terms representing proofs in
rewriting deduction .
• Reflexivity. For every][t ∈ TΣ,E(X) :

][][tt →

• Congruence. For every f ∈ Σn, n ∈ N :

)],...,([)],...,([
][][...][][

''
11

''
1

nn

nnn

ttfttf
tttt

→

→→

• Replacement. For every rewriting rule

)],...,('[)],...,([: 11 nn xxtxxtr → in R,

)]/'('[)]/([

]'[][...]'[][1
−−−−

→

→→

xwtxwt

wwww nnn , such that

)/(
−−
xwt indicates the simultaneous substitution

of iw for ix in t .

• Transitivity.
][][

][][][][

31

3221

tt
tttt

→
→→

5. MAUDE LANGUAGE

Maude is a specification and programming
language based on rewriting logic [11], [5]. Maude

is simple, expressive and efficient. It is rather
simple to program with Maude, considering that it
belongs to the declarative programming languages.
It is possible to describe using Maude different
types of applications, from prototyping ones to high
concurrent applications. Maude is a competitive
language in terms of execution and simulation with
imperative programming languages. In Maude
language, two levels of specification are defined.
The first level is related to the specification of the
system while the second is related to the
specification of the properties.

5.1 System Specification Level
This level is based on rewriting theory. It is

mainly described by system modules. Three types
of modules are, in fact, defined in Maude. The
functional modules allow defining data types. The
system modules define the dynamic behavior of a
system. Lastly, the object-oriented modules which
can, in fact, be reduced to system modules.
However, they offer explicitly the advantages of the
object paradigm.

Functional Modules. The functional modules
define data types and related operations, which are
based on equations theory. By using equations like
simplification rules, each expression called term
could be evaluated to its reduced form called
canonical representation. All the equal terms by
means of equations form an equivalence class. The
canonical form represents all the terms of the same
equivalence class. The set of all the equivalence
classes of the ground (i.e, variable-free) terms
constitutes a denotational model for a functional
module (initial algebra). Equations in a functional
module are oriented. They are used from left to
right and the final result of the simplification of an
initial term is unique independently of the order in
which these equations are applied. In addition to
equations, this type of modules supports
membership’s axioms. These axioms impose
constraints so that a term is of a particular type if a
certain condition is satisfied. This condition is a
conjunction of equations and unconditional tests of
memberships.

System Modules. The system modules define the
dynamic behavior of a system. This type of module
augments the functional modules by the
introduction of rewriting rules. This type of module
offers a maximum degree of concurrency. A system
module describes a “rewriting theory” which
includes kinds, operations and three types of
statements: equations, memberships and rewriting

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

71

rules. These three types of statements can be
conditional. A rewriting rule specifies a “local
concurrent transition” which can proceed in a
system. The execution of such transition, specified
by the rule, can take place when the left part of a
rule matches to a portion of the global state of the
system and the condition of the rule is valid.

Object-Oriented Modules. Although an object-
oriented module can be specified by a system
module, the object-oriented module offers syntax
more suitable compared to the system module to
describe the basic entities of the object paradigm
like, for an instance, objects, messages and
configuration. To make easier the description to a
user of Maude, the predefined object-oriented
module CONFIGURATION is introduced,
encapsulating the basic concepts of object-oriented
programming. A part of this module is described in
section 4.1. The remainder of this module will be
presented thereafter. A typical form of a
configuration is: Ob-1… Ob-m M-1… M-n

Such that Ob-1… Ob-m are objects, M-1… M-n
are messages, it does not matter the order
(commutativity). In general, a rewriting rule has the
following form:

rl Ob-1… Ob-k M-1… M-n => Ob-1' … Ob-j’
Ob-K+1… Ob-m M-1'… M-n’

Such that Ob-1' … Ob-j’ are updated versions to
the objects Ob-1 … Ob-j if j ≤ k, and Ob-k+1…
Ob-m are new created objects. If a left part of a rule
contains only one object and only one message, this
rule is known as asynchronous. On the other hand,
the rule is known as synchronous if its left hand
side contains several objects. The remainder of the
module CONFIGURATION defines the syntax of
the objects as follows:
sorts Oid Cid .
sorts Attribute AttributeSet . subsort Attribute <
AttributeSet .
op none : -> AttributeSet . op _,_ : AttributeSet
AttributeSet -> AttributeSet [ctor assoc comm id:
none] .
op <_:_ | _> : Oid Cid AttributeSet -> Object [Ctor
object] .
 In this syntax, the objects have the following
general form: < O: C | att-1,…, att-k > such that O
is an identifier of object, C is an identifier of a
class, and att-1,…, att-k are attributes of objects.
Only one rewriting rule makes it possible to express
at the same time: consumption of certain floating
messages, sending of new messages, destruction of

the objects, creation of new objects, changes of
certain objects states, etc.

5.2 Properties Specification Level
This level of properties specification in Maude

defines the properties of the system to be checked.
By evaluating the set of states that are reachable
from an initial state, Model Checking allows the
verification a given property in a state or a set of
states. According to the kind of the property, two
kinds of Model Checking are defined: Model
Checking Invariants and the well known LTL
Model Checking.

5.2.1. Model Checking of Invariants

In this Kind of Model Checking, the property is
specified as an invariant. Through the utilization of
the command search, Maude system goes over all
states accessible from initial state to prove that such
invariant is violated or not by detecting some
incoherent states describing ‘safety properties’
(well known in the literature as something bad
should never happen). The syntax of the command
search is as follows:
search in [Module-Name] : Initial-State =>* Any-
State [such that Condition] .

If we instantiate Any-State by the general
principal state of the specification, for instance
CF:Configuration (CF is a variable of type
Configuration) without indicating any condition,
search command returns the accessibility graph of
the specification, i.e. all reachable states from
Initial-State. But, if we give a more detailed form of
configuration or a condition, search command
returns only states that match such form of
configuration or verify such condition. That’s the
way we will use this command to check necessary
reachable configurations. If we give a condition we
do not want it to be true in any accessible state, and
if search command returns some states, that means
the presence of some incoherent states. That’s the
way we will use this command to check if there is
or not incoherent states.

5.2.2. LTL Model Checking

A property is expressed in a temporal logic LTL
(Linear Temporal Logic). Model Checking
supported by the Maude’s platform uses LTL logic
for its simplicity and the well defined procedures of
decision which it offers (for more details, see [7],
[5]). In a predefined module LTL, one finds the
definition of operators for the construction of a
formula (property) in linear temporal logic. By
hiding certain details of implementation, one finds
part of LTL operators in the syntax of Maude. LTL
operators are represented in Maude by using a

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

72

syntactic form similar to their original form. For
example, the operation [] is defined in Maude to
implement the operator (always). An operator is
applied to a formula to give a new formula.
fmod LTL is
…
----- Defined LTL operators
 op <>_ : Formula -> Formula . ----- eventualy
 op []_ : Formula -> Formula . ----- always
 op _=>_ : Formula Formula -> Formula .
 ----- strong implication
 op _<=>_ : Formula Formula -> Formula .
 ----- strong equivalence
…
endfm

In addition to that, there is a need to an operator
indicating when a given formula is true or false in a
certain state. Such operator (|=) is found in the
predefined module SATISFACTION.
fmod SATISFACTION is
 protecting LTL . sort State .
 op _|=_ : State Formula ~> Bool .
endfm

The state State is generic. After specifying the
behavior of a system in a Maude system module,
the user can specify several predicates expressing
certain properties related to the system. These
predicates are described in a new module which
imports two others: the module SATISFACTION
and the one describing the dynamic aspect of the
system. Assume for example, M-PREDS the name
of the module describing the predicates on the
states of the system. M is the name of the module
describing the behavior of the system. The user
must specify that the selected state (configuration in
this example and the rest of the paper) for its own
system is sub-type of the sort State. At the end, we
find the module MODEL-CHECKER which offers
the Model-Check function. The user can call this
function by specifying a given initial state and a
formula. Maude Model Checker checks if this
formula is valid (according to the nature of the
formula and the procedure of Model Checker
adopted by the Maude system) in this state or the
set of all accessible states from the initial state. If
the formula is not valid, a counterexample is
displayed. The counterexample concerns a state in
which the formula is not valid.
mod M-PREDS is
protecting M . including SATISFACTION .
subsort Configuration < State .
…
endm
fmod MODEL-CHECKER is
 including SATISFACTION .

 …
op counterexample : TransitionList TransitionList
 -> ModelCheckResult [ctor] .
op modelCheck : State Formula
~> ModelCheckResult .
…
endfm

6. AUML-MAUDE TRANSLATION

In this section, we explain some ideas about our
proposed translation from AUML to Maude that we
use to create the tool AUML-Maude. The
translation can not be completely automatic
because of the some informal aspects of Maude. So
we open the code to the user to add some rewriting
rules concerning in particular intra-agent behaviour.
The proposed translation touches some aspects of
class diagram, sequence diagram and statechart
diagram.

6.1. Class Diagram Translation

We used the concept of object to implement the
AUML agent. Then, a class agent in AUML will be
represented by an object class of Maude. Object
concepts such attribute and method in AUML will
be represented naturally by attribute and message
concepts of Maude. In the sequel, we will explain
in detail how we describe every concept of AUML
by using Maude concepts.

Class Agent. We used class object in Maude to
describe it.

Attribute. We used also attribute concept.

Method. It will be implemented by using message
concept of Maude.

Action. Basically, an action will be represented by
a message also Maude, but we created two kinds of
messages: Pro-Active and Rea-Active, as follows:
sort Pro-Active . sort Rea-Active . subsort Pro-
Active < Msg . subsort Rea-Active < Msg .

Communication-Acts. It is a message too, and
here also we created a special kind of message that
we called Comunication-Acts: sort Comunication-
Acts . subsort Comunication-Acts < Msg .

Identification Mechanism. The
CONFIGURATION module in Maude, offers the
sort Oid as a generic mechanism of identification.
We create for each class C translated, a space for
the identification of its objects, that we called COid

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

73

(class name+Oid). To be a valid identification
space, COid should be a sub-sort of Oid:
subsort COid < Oid .

For simplicity, we have chosen the string as
mechanism identification, so we add:
subsort String < COid .

Role. Fisrt, we create a generic sort called Role and
a generic attributed called CurrentRole of sort Role.
This attribute will contain the current role of the
agent.
op CurrentRole :_ : Role -> Attribute .

Of course, for more than one role, we count the

maximal roles defined for an agent class, for
instance n, and during the translation, we create
new attributes CurrentRole1, .., CurrentRole(n-1)
(in addition to CurrentRole which already exists).
op role-1 : -> Role . op role-2 : -> Role . … op
role-(n-1) : -> Role .

For the use of these attributes inside an object:
< A : C | CurrentRole : role-1, CurrentRole1: role-
2, …, CurrentRole(n-1) : role-n , serveurState :
InitialState , Atts >....

Cardinalies. To implement cardinalities, first we
propose the module ACQ-LIST to create a special
data type list that we called Acq-List. This data
type will hep us specifying acquaintances of an
agent.
fmod ACQ-LIST is sorts Acq-Elt Acq-List . subsort
Acq-Elt < Acq-List .
op empty : -> Acq-List [ctor] .
op _;_ : Acq-Elt Acq-List -> Acq-List [ctor] .
op error-Acq-Elt : -> Acq-Elt [ctor] . op error-Acq-
List : -> Acq-List [ctor] .
var E : Acq-Elt . var L : Acq-List .
eq E ; empty = E .
--
op head-Acq : Acq-List -> Acq-Elt .
eq head-Acq(empty) = error-Acq-Elt .
eq head-Acq(E ; L) = E . eq head-Acq(E) = E .
--
op tail-Acq : Acq-List -> Acq-List .
eq tail-Acq(empty) = error-Acq-List .
eq tail-Acq(E ; L) = L . eq tail-Acq(E) = empty .
…
endfm

Depending on the number of links that an agent
of a class, gets with others agents of other classes,
we create a number of attributes equal to the
number of links. We discuss cardinalities of the
form n..m:

So, the agents of class Cl, have n..m cardinality
with agents of class C,

The agents of class Cl, have n1..m1 cardinality
with agents of class C1,
…

The agents of class Cl, have nk..mk cardinality
with agents of class Ck,

After that, we create attributes Acquaintance,
Acquaintance-1, …, Acquaintance-n-1:
op Acquaintance :_ : Acq-List -> Attribute .
op Acquaintance-1 :_ : Acq-List -> Attribute .
…
op Acquaintance-n-1 :_ : Acq-List -> Attribute .

Such that Acquaintance is a list containing
between n and m elements, every element is an
agent identifier of class C, every attribute
Acquaintance-i is a list containing between n1 and
m1 agent identifier of class C1, ..,
and every attribute Acquaintance-i is a list
containing between ni and mi agent identifier of
class Ci,
In fact, we preferred offering Acquaintance as
generic attribute and the others are created in the
moment of the translation according of maximal the
number of links that can have a class agent with
others.

But in the sequel and for simplicity reasons, we
consider only cardinalities of the form 0..1.

6.2. Third Level (Statechart Diagram)
Translation

This diagram has already a representation in
Maude language. To describe agent state in Maude,
we use an attribute. First, we create a general sort
we called GeneralState and two specific values of
this sort: InitialState and FinalState to describe
initial and final state of any agent. In the moment
of the translation, for any class agent C, we create:

- A sort CStateKind (class
name+”StateKind”): the type of all agent
states, we have to put: subsort CStateKind
< GeneralState.

- A state in Maude: op S : -> CStateKind .
For every state S occurring in the agent
state-transition diagram.

- An attribute CState (class name+”State”):
op CState :_ : GeneralState -> Attribute .
So, the value of this attribute are
InitialState, FinalState and all states S of
the agent state-transition diagram.

Let’s take the statechart diagram of the figure 3,
we focus only on the consumption the actions, and
not how the action is created. That depends on the
nature of the actions if it is reactive or proactive;

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

74

which will be discussed later. Then, when the agent
is in its initial state and the occurrence of Action-1
allows it to change this state to S0:
rl [rule-name] : Action-1 < A : Class1 |
Class1State : InitialState, atts1 > =>
< A : Class1 | Class1State : S0, atts1 > .

Also, if the agent is the state S0 and the arrival

of Action-2 allows it to change its state to S1, etc.
rl [rule-name] : Action-2 < A : Class1 |
Class1State : S0, atts1 > => < A : Class1 |
Class1State : S1, atts1 > .
…

6.3. Second Level (Sequence Diagram)
Translation

To allow two or many agents communicating
via a protocol, we created some operations:
op _,_ : Configuration Configuration ->
Configuration [assoc comm id: none] .
op [_] : Configuration -> Configuration .
op AgentProtocol : Configuration -> Msg .

The operation [_] allows us to encapsulate an
agent with its floating messages (actions, …), for
instance :
[Action1 … Actionn < A : Class1 | Class1State :
S0, atts1 >]
The operation AgentProtocol encapsulates all
agents that are communicating via a protocol. If we
get only two agents A and B communicating, we
have the form:
AgentProtocol([… < A : Class1 | atts1 >], [… <
B : Class2 | atts2 >])

But if we get three agents A, B and
communicating, so can get the form:
AgentProtocol([… < A : Class1 | atts1 >], [… <
B : Class2 | atts2 >], [… < C : Class3 | atts3 >])

That’s why, we proposed the operation _,_
which allows to the operation AgentProtocol to
have an extensible number of configuration as
parameters.

Note. Let’s note that when an agent is encapsulated
inside a protocol, it does not mean that it can not
work individually by consuming its own actions
and changing its state.

Before translation, we need some information
from the user. He should precise in what state of the
agent sender a communication act will be sent and
what action of the receiver agent this
communication act will invoke. In general way, to
send a communication act CA to agent B, the agent
A prepares it locally by executing the following
rewriting rule:

rl [rule-name] : < A : Class1 | Class1State : S0,
Acquaintance-i : B, atts1 > =>
CA (Operation-A < A : Class1 | Class1State : S0,
Acquaintance-i : B, atts1 >) . [1]

According to AUML model, when the agent
creates a communication act, it activates also an
operation Operation-A which could be a method or
an action.

If the occurred operation is a method
(Operation-A=Method-A) the consumption of
Method-A needs some other rules that could change
internal state of the agent.

But, we do not have such method behaviour in
formal way that we could translate it automatically
to Maude. All what we can do is creating
automatically a rule which allows the consumption
of the method obviously and creating the next
action Action-A according to the statechat of the
agent A:
rl [rule-name] : Method -A < A : Class1 |
Class1State : S0, atts1 > =>
Action-A < A : Class1 | Class1State : S0, atts1 > .
Note. Here Action-A is pro-active action, so the
agent creates it by itself. But if the action is
reactive, the agent waits the action coming from
another agent which could be the user. In this case,
the reactive action is put from the beginning (initial
configuration) in the space accorded to the agent
between [].

In this rule, Method -A does not infect the state
of the agent; it is just a bridge to invoke the
corresponding action in the statechart. But we do
not stop here; we propose opening a window to the
user to complete the behaviour of the method. Even
he does not add any other rule, he has at least an
executable Maude code that validate some aspects
expressed by class, sequence and statechart
diagrams.

In both cases, the operation is a method or
action; at the end we get an action. This action is
consumed by using the rewriting rules
implementing statechart diagram. Such
consumption makes the agent changing its state
from S0 to S1 and makes it ready to send the CA to
the corresponding agent B. The following rule
allows passing CA from the space of A to the space
of B:
rl [rule-name] : AgentProtocol([CA < A : Class1 |
Class1State : S1, Acquaintance-i : B, atts1 >],
[< B : Class2 | Class2State : S2, Acquaintance-j :
B, atts2 >], CF)
=> AgentProtocol([< A : Class | Class-State : S1,
Acquaintance-i : A, atts1 >],
[CA < B : Class2 | Class2State : S2, Acquaintance-
j : B, atts2 >], CF) . [2]

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

75

CF is a variable of sort Configuration indicating
the remaining of agents involved in the protocol, or
CF is none (empty).

When B receives the message composed of CA,
it continues its work by creating the appropriate
action which is précised by the user Operation-B:
rl [rule-name]: CA < B : Class2 | Class2State : S2,
Acquaintance-j : B, atts2 >
=> Operation-B < B : Class2 | Class2State : S2,
Acquaintance-j : B, atts2 > [3]
…

When the three connectors ‘AND’, ‘OR’, and
‘XOR’ appear in the messages, we keep the form of
these rules ([1], [2] and [3]) with only some little
changes. Let’s explain how we adapt these rules
[1], [2] and [3] to translate messages containing one
of the three connectors ‘AND’, ‘OR’, and ‘XOR’.

‘AND’ Connector Translation. To send CA-1
CA-2 … CA-n concurrently, we translate this in the
same way as the rule [1], but instead of creating
only one communication act CA, the agent A
creates all the sequence as:
rl [rule-name] : < A : Class1 | At : Vi, Class1State :
S0, Acquaintance-i : B, atts1 > =>
CA-1 CA-2 … CA-n (ActionA < A : Class1 | At :
Vi, Class1State : S0, Acquaintance-i : B, atts1 >) .

After that, the agent A passes this sequence to
the agent B, we change the rule [2] to the following
rule:
rl [rule-name] : AgentProtocol([CA-1 CA-2 …
CA-n < A : Class1 | Class1State : S1,
Acquaintance-i : B, atts1 >], [< B : Class2 |
Class2State : S2, Acquaintance-j : B, atts2 >], CF)
=> AgentProtocol([< A : Class | Class-State : S1,
Acquaintance-i : A, atts1 >],
[CA-1 CA-2 … CA-n < B : Class2 | Class2State :
S2, Acquaintance-j : B, atts2 >], CF) .
…
‘XOR’ Connector Translation. Here, we give the
hand to the user, to choose an attribute and
according to a value of this attribute, one of the
CA-i will be sent. Let the At is the attribute chosen
by the user, and after that, he has to indicate for
every value which CA-i must be sent. Suppose that
for the value Vi, it’s CA-i that will be sent, we get
the following rules:
rl [rule-name] : AgentProtocol([CF1 CA-1 < A :
Class1 | At : V1, Class1State : S1, Acquaintance-i :
B, atts1 >] , [< B : Class2 | Class2State : S2,
Acquaintance-j : B, atts2 >], CF)
 => AgentProtocol([< A : Class1 | At : V1,
Class1State : S1, Acquaintance-i : B, atts1 >],
[CA-1 < B : Class2 | Class2State : S2,
Acquaintance-j : B, atts2 >], CF)

…
rl [rule-name] : AgentProtocol([CA-n < A : Class1 |
At : Vn, Class1State : S1, Acquaintance-i : B, atts1
>] , [< B : Class2 | Class2State : S2, Acquaintance-
j : B, atts2 >], CF)
 => AgentProtocol([< A : Class1 | At : Vn,
Class1State : S1, Acquaintance-i : B, atts1 >],
[CA-1 < B : Class2 | Class2State : S2,
Acquaintance-j : B, atts2 >], CF)

‘OR’ Connector Translation. The user must
indicate the value Vi of an attribute to send some
CA-i:
rl [rule-name] : AgentProtocol([CA-i1 CA-i2 …
CA-ik < A : Class1 | At : Vi, | Class1State : S1,
Acquaintance-i : B, atts1 >] ,
[< B : Class2 | Class2State : S2, Acquaintance-j :
B, atts2 >], CF)
 => AgentProtocol([< A : Class1 | At : Vi, |
Class1State : S1, Acquaintance-i : B, atts1 >],
[CA-i1 CA-i2 … CA-ik < B : Class2 | Class2State :
S2, Acquaintance-j : B, atts2 >], CF)
Such that ij = 1, .., n
…

6.4. First Level (Template) Translation

We do not need the translation of the template,
because all details appear in the sequence diagram
of level 2 that we will translated in the next section.

6.5. Generic Module

We regrouped all generic elements (sorts,
attributes, actions and operations) that we proposed
in one module (called GENERIC-PROTOCOL) to
be included in any generated Maude code:
mod GENERIC-PROTOCOL is
pr ACQ-LIST . including CONFIGURATION .
sort GeneralState . sort Comunication-Acts .
sort Role . sort Pro-Active . sort Rea-Active .
subsort Pro-Active < Msg .
subsort Rea-Active < Msg .
subsort Comunication-Acts < Msg .
subsort Oid < Acq-Elt .
op CurrentRole :_ : Role -> Attribute .
op Acquaintance :_ : Acq-List -> Attribute .
op InitialState : -> GeneralState . op FinalState : ->
GeneralState .
op _,_ : Configuration Configuration ->
Configuration [assoc comm id: none] .
op [_] : Configuration -> Configuration .
op AgentProtocol : Configuration -> Msg .
endm

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

76

7. DESCRIPTION OF THE AUML-MAUDE
TOOL

In this section and through the previous
example, we will explain some aim functionalities
of the AUML-Maude application.

7.1. General Description and Architecture of the
Tool

As described in figure 4, the most principal
working steps of the AUML-Maude Edition and
Generation tool. The figure 5 summarizes the
principal steps of the AUML-Maude LTL Properties
Checker. The architecture of this last is similar to
‘AUML-Maude Simulator’ and ‘AUML-Maude
Invariants Properties Checker’.

Now, trough the previous example, we explain
in following sections the main options of the
application.

7.2. Main Functionalities of AUML-Maude Tool

7.2.1. Functional Module Editor

Types should be created in Maude. So, we
provide a simple text editor to the user create his
specific data types. But, a little library containing
the classical basic data types is available; this
library containing some data types supported by
Maude or we developed; it includes: Float, Int,
String, List, Queue, Stack … etc. After creating a
new data type, the user can add it to the library.
7.2.2. AUML Graphical Edition (Modelling)

We give to the user a battery of tools to create
and manipulate different AUML diagrams. Of
course, there are some classical accessories buttons
for zoom in, zoom out, background colour change,
…

Class Diagram Tools. As showed in the figure 6,
necessary tools to create and update class diagram
and its elements are available including tools to
create and update agent class: agent role, state
(attribute), actions, communication actions; general
protocol, cardinalities, ..

Figure 6. Class Diagram menu and SSII-Example

Creation

First Level Tools. The figure 7 depicts the
interface of the set of tools we provided to the user
to create agents templates. In this figure, we created
the two templates of the example, the template
describing the general protocol between sender,
distributor and the other one between distributor,
wrapper.

Figure 4. Methodical view on AUML-Maude
Edition and Generation Tools

Functional
Modules

AUML-Maude
Code

AUML
Diagrams

AUML
Diagrams
Modeller

Maude-Code
Generation Tool

User GENERIC-
PROTOCOL

Module

Functional
Modules Editor

Figure 5. Methodical view on AUML-Maude
LTL Properties Checker

LTL Properties
Result

LTL Properties
Maude Code

LTL Properties
(Graphical Notation)

LTL Properties Editor

AUML-Maude
LTL Properties
Generation Tool

Maude LTLMC Tool

AUML-Maude
Code

Graphical
Notation
Translator

User

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

77

Figure 7. First Level menu and SSII-Example Template

Creation

Second Level Tools. In the figure 8, one finds
second level interface with necessary tools to create
sequence diagram. The figure contains also the
sequence diagram of the SSII example.

Figure 8. Second Level menu and SSII-Example Sequence

Diagram Creation

Third Level Tools. In the figure 9, one finds third
level interface with necessary tools to create
statecharts of agents’ classes. The figure contains
also the statcharts of the three agents’ classes of the
SSII example.

Figure 9. Third Level menu and SSII-Example Statechart

Diagram Creation

7.2.3. Maude Code Generation

According to the translation strategy that we
proposed in the section 6, when the user asks for
‘Code generation’ in ‘Maude Code’ menu, he gets
first a space to add some rewriting rules completing

the agent’s behaviour and after that he gets his the
equivalent Maude code. The figure 10 shows a part
of Maude code equivalent to the SSII example.

Figure 10. Maude Code Generation of the SSII system

7.2.4. Analysis Tools

In this section, we explain how every analysis
tool works and the Maude code generated for every
part.

Initial Configuration Creation. Indeed, an initial
state is constituted of instances of different classes
and some floating messages. Then, we give to the
user a graphical way to create its initial
configuration. In the window of figure 11, we
show how the user can create his instances of class,
we give display to him:

- List of actions that must appear form the
beginning (those invoked by the user);

- List of existent classes, the user chooses a
class to create instances of this class, to
instantiate a class, the user should fill:
‘instance name’ (of type String),
‘attributes values’ and ‘initial state’.

After instantiating a class, the information
available like: Instance name: CName; each
Attribute Ati is Vi; ClassState : S; allow us to
create the initial configuration. If the user gives all
the values of the attribute, so we create in Maude,
the instance: < CName : Class | At1 : V1, …, Atn :
Vn, ClassState : S >

But if the user does not fill all the attributes
values, we add in the instance:
< CName : Class | …, Atj : Vj, ClassState : S, atts
>.

Finally, the initial configuration of all system is

composed of all these instances and some floating
actions encapsulated as parameter of the function
AgentProtocol and every instance is encapsulated
between [] with ists appropriate actions:
AgentProtocol([Action1 … Actionm < CName :
Class | …, Atj : Vj, ClassState : S, atts >], …).

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

78

Consequently, the initial configuration of the
SSII example is as follows:
op Initial-Configuration : -> Configuration .
eq Initial-Configuration =
 AgentProtocol([initiation-server receive-demand <
"ser" : server | adressIP : 10 , CurrentRole : receiver
, serverState : InitialState , Acquaintance : "dis" >]
, [< "dis" : distributor | quantum-duration : 1 ,
CurrentRole : sender , distributorState : InitialState
, Acquaintance : "wrap" , Acquaintance-1 : "ser" >]
, [< "wrap" : wrapper | data-base : "data" ,
CurrentRole : catcher , wrapperState : InitialState ,
Acquaintance : "dis" >]) .

Figure 11. An Example of class instance creation

Simulation. The simulation consists of
transforming the initial state to another by doing
one or many rewriting actions. To do simulation,
the simulator needs from the user the initial state of
the AUML model. The user may give to the
simulator the number of rewriting steps if he wants
to check intermediary states. If this number is not
given, the simulator continues the rewriting
operation until reaching final state. In figure 12,
one asked the application to perform the simulation
on the previous initial configuration without
indicating the number of rewriting steps (0). After
validation, the code Maude generator creates: rew
Initial-Configuration .

 Figure 12. Simulation window

We notice that infinite case is possible. Let’s get
back to the example, after displaying the Maude
code equivalent to AUML model; we can now
execute the code by clicking ‘Simulation’ option of
‘Analysis’ menu. In our case, the unlimited
rewriting of the example under Maude system gives
the result in the figure 13 Let’s note that we
exposed the result configuration in textual way in
Maude language and in graphical manner when we
shows every class instance is showed in a window.

Figure 13. Simulation of the SSII example under Maude

system

Model Checking of Invariants. We give the
interface to the user, to seize the necessary
parameters as described in the figure 14 we make
the work of the user as easy as possible.
Source State: The user can put any configuration
but we give him the obvious choice which is Initial-
Configuration.
States Number: natural number N which could be
optional.
Rewriting Proof Steps: It could be *, +, ! or
natural number.
Target State: We give to the user the obvious
choice which is C:Configuration.
Condition: It’s optional.

After validating, the tool creates the code and

calls Maude system for execution. For the
translation, for instance, if State Number and
Condition are empty, we get the code:
search SourceState =>SP TargetState .
Such that SP is Rewriting proof steps, and N is
State Number. Otherwise, we get:
search [N] SourceState =>SP TargetState such
that Condition .

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

79

Figure 14. Model Checking of invariants Window

LTL Model Checking. In the option ‘Analysis’ of
the main menu, we choose ‘LTL Model Checking’
option which contains three options that are:
‘Predicate’, ‘Property’ and ‘Model Check’ to
create respectively predicates, properties and to
model check some created properties.

Predicates. When the user chooses to create a
predicate, a window opens and the user should
seize ‘Predicate Name’ and to add ‘Variables’,
‘Signature’ and ‘Equations’ by clicking
respectively on ‘Add Variables’, ‘Add Signature’
and ‘Add Equations’.

Figure 15. Predicate main window

When the user clicks on ‘Add Variables’,

another window will be opened entitled
‘Variables’ as described in the figure 16, to fill all
needed variables (if there are variables) concerning
this predicate. The user can add as many variables
as he needs. For sorts, the user chooses only a sort
from a list of valid already defined sorts.

Figure 16. Variables creation window

In this case, the code that will be generated is:

var ser : serverOid . var wrap : wrapperOid …
If the user clicks on ‘Add Signature’, another
window will appear to complete the ‘Signature’
(figure 17) of the predicate. For signature, the user
needs only entering the list of the ‘Sorts’ that are
the domains of the predicate, because the co-
domain of any predicate is predefined and it is
‘Prop’. Of course, the user has a limited list of valid
already defined sorts to choose among them. For
instance, the signature example of the figure … will
be translated to: op Actions-Not-Consumed :
serverOid wrapperOid distributorOid -> Prop .

Figure 17. Signature predicate creation window

Finally, the window of the ‘Equations’ will be
opened when clicking on ‘Add Equations’. For an
equation, we need the parameters in the figure 18.

Figure 18. Predicate equation creation window

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

80

In general way, only Condition is optional, if
Condition is not empty, so we get the generated
code equivalent to the equation: ceq State |=
Formula = TruthValue if Condition .

Otherwise, we get: eq State |= Formula =
TruthValue .
So, the equation example (figure 18) will be
translated in Maude:
eq Message < ser : server | serverState : FinalState
> < wrap : wrapper | wrapperState : FinalState >
< dis : distributor | distributorState : FinalState > |=
Actions-Not-Consumed(ser, wrap, dis) = true .

Properties. To create a property, the user needs
‘Property Name’ and ‘Property Contents’. We
give buttons containing all LTL operators to make
filling ‘Property Contents’ easy. The figure 19
shows a property creation example.

Figure 19. Property creation window

The property example of figure 19 will be
translated in Maude as:
op Actions-Consumed : -> Prop .
eq Actions-Consumed = []~ Actions-Not-
Consumed("ser", "wrap", "dis") .

Model Check. A list of all created properties is
given to the user in a window (figure 20); he can
choose one or many of them to model check. After
he makes his choice, the tool creates the appropriate
code of all the parts (predicates, properties and
Model Check) and calls the Maude LTL Model
Checker to verify the properties. The code will be
in a file, and it is composed of two modules. The
module MODULE-PREDICATS which contains
the definition of predicates, such MODULE is the
name of module containing the Maude code
generated for the user AUML models. The second
module is called MODULE-PREDICATS-CHECK
which contains the definition of Initial-
Configuration and the LTL properties. The previous
created LTL properties example will invoke the
creation of a file containing the following Maude
code:
in model-checker.maude --- To add automatically
in ssii.maude ----- File containing the Maude code
of SSII example

mod SSII-PREDICATS is pr SSII . pr MODEL-
CHECKER . subsort Configuration < State .
-------- Variables
var ser : serverOid . var wrap : wrapperOid . var dis
: distributorOid .
…
-------- Predicates
op Actions-Not-Consumed : serverOid wrapperOid
distributorOid -> Prop .
eq Message < ser : server | serverState : FinalState
> < wrap : wrapper | wrapperState : FinalState >
< dis : distributor | distributorState : FinalState > |=
Actions-Not-Consumed(ser, wrap, dis) = true .
…
endm
mod SSII-PREDICATS-CHECK is
including SSII-PREDICATS . including MODEL-
CHECKER . including LTL-SIMPLIFIER .
op Initial-Configuration : -> Configuration .
…
------- Properties
op Actions-Consumed : -> Prop .
eq Actions-Consumed = []~ Actions-Not-
Consumed("ser", "wrap", "dis") .
…
endm
------- LTL Model Checking of properties
red in SSII-PREDICATS-CHECK :
modelCheck(Initial-Configuration , Actions-
Consumed) .

Figure 20. Model Check window

The execution of this generated code for LTL
properties under Maude system gives the result
described in the figure 21.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

81

Figure 21. Properties verification under Maude system

7.3. Technical Aspect of the AUML-Maude Tool

This tool is implemented under MS-Windows
XP with the following tools:

- The programming language Eclipse 3.4 is
used for implementing the graphical
editor, and the translation of graphical
representation of a AUML model to its
equivalent Maude description;

- The version 2.0.1 of Maude system is used
for the simulation and Model Checking of
invariants of the generated description of
the AUML model;

- The Maude LTL Model Checking.
For graphic modelling reason, we held the

Eclipse language with regard to the other languages
for its graphics power, its capacity to manipulate
objects and its compatibility with the other
languages.

8. CONCLUSION & FUTURE WORK
 In this paper, we have proposed some ideas
about translation of AUML concepts to Maude
language; also we have shown the outline of a
graphical application for AUML model. This tool
allows using AUML model in simple manner by
introducing a graphical interface. This is not new,
but in our knowledge; our proposed application is
among few tools that allow the translation of this
graphic representation to a Maude code. We take
advantage of Maude system to run, simulate and
verify the obtained AUML-Maude code.

We consider this work as an important
investigation way, because the creation of a formal
version of AUML multi-agents model and its
verification by using the same language (Maude),
allows us to give sound and complete semantics to
AUML model in individual way. On other hand, it
allows its integration with other multi-agents
models (that we described in Maude before ([3],
[4]) in one language and so their interoperability.
Consequently, several models developed initially
on different plate-forms can now communicate
easily thanks to their formal versions Maude-based.
Also these different multi-agents models can be

described and checked by using only a logic which
allows a rigorous and founded formal verification.
The work presented in this paper constitutes the
first step in the construction of a rich environment
for edition and analysis AUML model. The analysis
techniques including simulation, Model Checking
of invariants and LTL Model Checking allow the
verification of the ‘correctness of a specification’.
On another hand, Maude offers other techniques to
check the ‘correctness of the semantic of
specification’. We plan integrating to the proposed
environment these techniques supported by Maude.
In our sense, Maude offers an environment
presenting enough possibilities for specification,
programming, validation and verification of MAS.
Consequently, we do not need the hybrid
integration of many methods which often causes
complexity of description, confusion, semantic loss
and not rigorous checking.

REFRENCES:

[1] AgentBuilder R.M, An Integrated Toolkit for

Constructing Intelligent Software Agents,
AgentBuilder, Reference Manual, Avril 2000.

[2] I. Bakam, F. Kordon, C. Le Page, F. Bousquet,
Formalization of a Spatialized Multiagent
Model Using Coloured Petri Nets for the Study
of a Hunting Management System, FAABS2000,
Greenbelt, 2000.

[3] N. Boudiaf, F. Mokhati, M. Badri, and L. Badri.
“Specifying DIMA Multi-Agent Models Using
Maude”. M. W. Barley and N. Kasabov (Eds.) :
PRIMA 2004, Lecture Notes in Artificial
Intelligence (LNAI) 3371, pp. 29–42, 2005,
Springer–Verlag Berlin Heidelberg 2005.

[4] N. Boudiaf, F. Mokhati and M. Badri.
“Supporting Formal Verification of DIMA
Multi-Agents Models: Towards a Framework
based on Maude Model Checking”.
International Journal of Software Engineering
and Knowledge Engineering, ISSN: 0218-1940,
Vol. 18, No. 7, November 2008.

[5] M. Clavel, et aL., Maude Manual (Version 2.3) ,
Internal report, SRI International, 2007.

[6] S. A. DeLoach, M. Wood, Developing
Multiagent Systems with agentTool,
(ATAL'2000), Berlin, 2001.

[7] S. Eker, José Meseguer, and Ambarish
Sridharanarayanan., The Maude LTL model
checker, Volume 71 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2002.

[8] J. Ferber, O. Gutknecht, MadKit User's Guide,
Version 3.1 - last modification: 09/07/2002.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

82

[9] J.-L. Koning, Algorithms for Translating
Interaction Protocols into a Formal Description,
IEEE International Conference on Systems,
Man, and Cybernetics Conference, Tokyo,
Japan, 1999.

[10] J. Meseguer, Rewriting Logic as a unified
model of concurrency: a Progress Report,
Springer-Verlag, LNCS 119, pp. 331-372, 1996.

[11] J. Meseguer, Rewriting Logic and Maude: a
Wide-Spectrum Semantic Framework for
Object-Based Distributed Systems,
FMOODS2000, 2000.

[12] F. Mokhati, N. Boudiaf, M. Badri, and L.
Badri. “Translating AUML Diagrams into
Maude Specifications: A Formal Verification of
Agents Interaction Protocols”. Journal of
Object Technology (JOT), ISSN 1660-1769,
USA, 2007.

[13] P. Torroni, Computational Logic in Multi–
Agent Systems : Recent Advances and Future
Directions, Computational Logic in Multi-Agent
Systems, Special Issue of Annals of Mathematics
and Artificial Intelligence, Vol. 42 Nos. 1-3, pp.
293-305, 2004.

