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ABSTRACT 
 

This paper deals with the implementation of a computer program, which employs Genetic Algorithms (GAs) in 
the quest for an optimal class timetable generator. The program is written in Java and incorporates a repair strategy for 
faster evolution. This paper also explains an example usage of Genetic Algorithms (GAs) for finding optimal solutions 
to the problem of Class Timetable. It is seen that the GA could be improved by the further incorporation of repair 
strategies, and is readily scalable to the complete timetabling problem. The system at present does not take care of other 
constraints like unavailability of lecturers, small size of rooms and time required by the lecturer to move from one class 
to other class, which is to be considered in the future up gradations. The automated class timetable is used at the dept. 
of Computer Science & Engineering, Guru Nanak Institute of Technology (GNIT), Hyderabad, India and in future it 
will be used by other faculty administrators and proposes solutions to be considered by the parties involved: 
administration, departments and students.  
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1. INTRODUCTION  
 

The class timetabling is a major administrative    
activity for a wide variety of institutions. A 
timetabling problem can be defined to be the 
problem of assigning a number of events into a 
limited number of time periods. A. Wren defines 
timetabling as follows: “Timetabling is the 
allocation, subject to constraints, of given to objects 
being placed in space time, in such a way as to 
satisfy as nearly as possible a set of desirable 
objectives [1]”.  

In this paper, we concentrate on the class-
timetabling problem. The problem is subject to 
many constraints that are usually divided into two 
categories: “hard” and “soft” [4]. This work was 
partially supported by the Research Committee of 
the Guru Nanak Institute of Technology (GNIT), 
under the research program, in order to produce 
high quality timetables with optimal constraint 
satisfaction and optimization of the timetable’s 
objectives at the same time.  
 
1.1 Hard Constraints 

Hard constraints are rigidly enforced. 
Examples of such constraints are: 

 
� No lecturer should have different classes at 

the same time slot. 
 
 

� There cannot be more than 2 classes for a 
subject on one day 

� For each time period there should be 
sufficient resources (e.g. rooms and 
lecturers) available for all the events that 
have been scheduled for that time period. 

 
1.2 Soft Constraints  

Soft constraints are those that are desirable but 
not absolutely essential. In real-world situations it 
is, of course, usually impossible to satisfy all soft 
constraints. Examples of soft constraints (in both 
exam and course timetabling) are: 

 
� Every staff should get at least one first 

hour 
� Lecturer having two theory subjects has no 

lab assignments 
� Lecturer having one theory may get two 

lab classes. 
� A particular class may need to be 

scheduled in a particular time period. 
� Lab Classes may not be in consecutive 

hours. 
� Lecturers may prefer to have all their 

lectures in a number of days and to have a 
number of lecture-free days.  

 
 

1.3 The Class Timetable Problem 
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Time Table problems are mainly classified as 
constraint satisfaction problems, where the main 
goal is to satisfy all problem constraints, rather than 
optimizing a number of objectives. At present, 
science has no analytical solution method for all 
problem cases of this category, other than 
exhaustive search, which however cannot be 
applied but only to toy problems. Due to the 
immense search spaces, Automated timetable 
scheduling, on the other hand, is a task of great 
importance as it can save a lot of man-hours work, 
to institutions and companies, and provides optimal 
solutions with constraint satisfaction [3]. 
Scheduling is the arrangement of entities (people, 
tasks, vehicles, lectures, exams, meetings, etc.) into 
a pattern in space-time in such a way that 
constraints are satisfied and certain goals are 
achieved [1]. Constructing a schedule is the 
problem in which time, space and other (often 
limited) resources have to be considered in the 
arrangement.  

Holland’s original schema was a method of 
classifying objects, then selectively “breeding” 
those objects with each other to produce new 
objects to be classified [5]. Created for the direct 
purpose of modeling Darwinian natural selection, 
the programs followed a simple pattern of the birth, 
mating and death of life forms. A top-level 
description of this process is given in figure 1[5], 
[6], [7].  
 Create a population of creatures. 

Evaluate the fitness of each creature. 
While the population is not fit enough: 
{ 
Kill all relatively unfit creatures. 
While population size< max; 
{ 
Select two population members. 
Combine their genetic material to create a new creature. 
Cause a few random mutations on the new creature. 
Evaluate the new creature and place it in the population. 
} 
} 

 
Figure 1: Top Level description of a GA. 

 
Genetic algorithms (GAs) are evolutionary 
algorithms that use the principle of natural selection 
to evolve a set of solutions toward an optimum 
solution. GAs are not only very powerful, but are 
also very easy to use as most of the work can be 
encapsulated into a single component, requiring 
users only to define a fitness function that is used to 
determine how “good” a particular solution is 
relative to other solutions. 

The creatures upon which the genetic 
algorithm acts are composed of a series of units of 
information- referred to as genes. The genes, which 
make up each creature, are known as the 

chromosome. Each creature has its own 
chromosome. 

A GA, as shown in figure 1 requires a process 
of initializing, breeding, mutating, choosing and 
killing. The order and method of performing each 
of these gives rise to many variations on Holland’s 
original schema. 
 
1.4 Chromosome Encoding, Fitness, Crossover 
and Mutation 

Holland encoded chromosomes as a string of 
binary digits. A number of properties of binary 
encoding work to provide simple, effective and 
elegant GAs. There are, however, many other ways 
to represent a creature’s genes, which can have 
their own implicit advantages. In order to get a 
problem into gene form, the substance of its 
solution must be represented as a collection of units 
of information [8]. This is true of many problems. 
For example, when designing a weekly budget, the 
amount spent on each item could be stored as a 
number in a column. This can be thought of as not 
just a list of values but a string of genes. The value 
in the first row might represent the amount of 
money to spend on rice, and the second row might 
be the amount of money to spend on caviar and so 
on. Each of these values might be converted from 
base 10 to base 2 to create a fixed width binary 
number. Hence the problem of minimizing your 
budget while maintaining your survival is translated 
into a genetic representation. A collection of 
possible budgets could be thus encoded, producing 
a population of Budget creatures. Random 
populations are almost always extremely unfit [8]. 
In order to determine which are fitter than others, 
each creature must be evaluated. In order to 
evaluate a creature, some knowledge must be 
known about the environment in which it survives. 
Depending on the way we structure the method of 
evaluating a chromosome we can either aim to 
generate the least costly population or the most fit; 
it is a question of minimizing cost or maximizing 
fitness. In the budgeting example, the heuristic 
concerning caviar can be represented with a cost. In 
optimization problems cost is not a measure of 
money, but a unit of efficiency [7], [8].  When 
discussing optimization techniques, the range of 
possible solutions is often referred to as the solution 
space and the cost/fitness of each point in the 
solution space is referred to as the altitude in the 
landscape of the problem. To looking for the global 
minimum of the cost is also to look for the lowest 
point in the lowest valley of the cost landscape. 
Similarly, to look for the global maximum fitness is 
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to look for the highest point of the highest mountain 
in the fitness landscape. 

In various GAs, the method of selecting 
creatures for breeding is handled in different ways. 
Holland’s original model uses a method where the 
healthiest are most likely to breed. Other methods 
select any two creatures at random for breeding. 
Selective breeding can be used in conjunction with 
or in the absence of an Elitist Natural Selection 
Operator- in either case the GA can perform 
evolution [7]. Once parents have been chosen, 
breeding itself can then take place. A new creature 
is produced by selecting, for each gene in the 
chromosome, an allele from either the mother or the 
father. The process of combining the genes can be 
performed in a number of ways. The simplest 
method of combination is called single point cross-
over [5], [7], [8]. This can be best demonstrated 
using genes encoded in binary, though the process 
is translatable to almost any gene representation. A 
child chromosome can be produced using single 
point crossover, as shown in figure 2. A crossover 
point is randomly chosen to occur somewhere in 
the string of genes. All genetic material from before the 
crossover point is taken from one parent, and all material 
after the crossover point is taken from the other [8]. 

Figure 2: An Example of Crossover with Fully 
encoded Genes 
 
After crossover is performed and before the child is 
released into the wild, there is a chance that it will 
undergo mutation. The chance of this occurring is 
referred to as the mutation rate. This is usually kept 
quite small [8]. The purpose of mutation is to inject 
noise, and, in particular, new alleles, into the 

population. This is useful in escaping local minima 
as it helps explore new regions of the multi 
dimensional solution space [7]. Once a gene has 
been selected for mutation, the mutation itself can 
take on a number of forms. This, again, depends on 
the implementation of the GA. In the case of a 
binary string representation, simple mutation of a 
single gene causes that genes value to be 
complemented- a 1 becomes a 0 and vice versa.  

In Holland’s founding work on GAs he made 
mention of another operator, besides selection, 
breeding, crossover and mutation which takes place 
in biological reproduction. This is known as the 
inversion operator [8]. An inversion is where a 
portion of chromosomes detaches from the rest of 
the chromosome, then changes direction and 
recombines with the chromosome. 
We present an approach to solve this large, highly 
constrained timetabling problem, based on 
evolutionary algorithms. In chapter two we describe 
the proposed system taking as an example the 
department of Computer Science and Engineering, 
GNIT. Third chapter gives the implementation 
details about the algorithm. While the fourth 
chapter shows the results of the program (written in 
java) and chapter five shows the conclusion and 
future works. 
 
2. PROPOSED SYSTEM 
 

The proposed system has ‘L’ no of lecturers, 
‘S’ no of subjects and ‘C’ no of classes per subject 
per week. Each day has ‘H’ no of hours and we 
have five working days per week. The total no of 
time slots then become equal to 5*H. The problem 
then becomes assigning ‘S*C’ number of classes in 
the ‘5*H’ time slots. For example in the department 
of Computer Science and Engineering, VITS, there 
are twelve lecturers and 24 subjects with 4 classes 
per subject per week giving a total number of 96 
classes per week. Each day has six hours and five 
days per week giving 120 time slots. See Table 1 
and Table 2. 

Table 1: Subjects allotted to Lecturers 
LECTURER  SUBJECTS 
RAM C Language, PPL 
Sandy BDP, Disc. Struct 
Patil DS, OS 
Paritosh DC, CN 
Tiwari NM, SE 
Pandey ALC, DBMS 
Deepthi CC, SAD 
Mohan OOPS, WP 
Harish EG, ET Lab, C Lab 
Shyam RTS, DC Lab, SAD Lab 
Radhe AI, OOPS Lab, OS Lab 
Ritu CG, WP Lab, AI Lab 

Two parents have already been selected: 

PARENT1: 

101101010101001001001001110011100110101011101101 

PARENT2: 

010100111011010101110101001001101011001010010110 

Choose a crossover point: 

PARENT1: 

 1011010101010010 

01001001110011100110101011101101 

PARENT2:  

0101001110110101 01110101001001101011001010010110 

Perform crossover to produce a child: 

CHILD:  

1011010101010010 01110101001001101011001010010110 

Which then becomes, a whole new chromosome: 

CHILD: 

101101010101001001110101001001101011001010010110 
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Table 2: Subjects per year 
YEAR SUBJECTS 
First C Lang., DS, Disc.Struct, NM, EG
Second   DC, BDP, SAD, ALC, PPL
Third OOPS, OS, CG, DBMS, CN
Final       RTS, CC, WP, AI, SE 
 
3. GA IMPLEMENTATION 
 
A program in java was developed which employed 
GA methods to perform Automated Timetabling. 
Consequently, the program was entitled 
“gaatt.java”. The GA operates upon a population of 
timetables, which are maintained in memory. Each 
timetable is evaluated by testing the number of 
times it breaches each constraint. Thus timetables 
are evolved with a minimum number of constraint 
violations. A top-level description of “gaatt.java” is 
provided as figure 3. It can be seen that this 
structure is similar to the pseudo code given in 
figure 1 with the major difference being the 
incorporation of a repair strategy. Explanation of 
each of the components of the program is given in 
the remainder of this section. 
Load all constraint data from a constraint file.  
 

Figure 3: Top Level Description of proposed system 

3.1 Constraint Data 
In order to test for each of the types of hard 
constraint it is necessary to store sufficient detail 
about the department. This means that information 
concerning all lecturers; classrooms and classes 
must be maintained. The way in which each of 
these data types are implemented will now be given 
in detail. A class is a structured type with three 
fields. Each class has a certain size (predicted size), 
a lecturer number and a number indicating the code 

number of the group of related classes to which it 
belongs. The set of all lecturers is stored as an 
array. Similarly, there are arrays of classes and of 
classrooms. Each of these elements is identified 
uniquely by its position in the relevant array. The 
set of all information concerning lecturers, classes 
and classrooms is termed the constraint data.  

The timetable for a single room is a two-
dimensional array as shown in Table 3. Each Field 
describes (decode) some aspect of genetic 
information particularly the cost or number of 
breaches. Times at which there is no class booked 
hold a NULL booking, which has a value of zero. 
 
Table 3:  Timetable for Room 301 at an intermediate 
stage depicting costs at various time slots. 

 
 A class timetable stores information about 

what classes are booked in each room, at any hour 
of the day, on any day of the week. Each of these 
bookings (or NULL bookings) is one gene.  A 
population is a collection of timetables. A 
population is itself a structured type with a number 
of fields. It contains a pointer to the least costly 
timetable in the population, (which has, in turn, a 
pointer to the next least costly). There is also a 
pointer to the most costly timetable in the 
population, as well as a field storing the average 
cost, and the average number of violations of each 
type of hard constraint. 

3.2 Repair Strategy 
A repair strategy is used which ensures that all 
classes appear exactly once. For robustness this is 
done in two stages. Firstly, any classes, which 
appear more than once, as shown in, figure 4. 
Secondly, any classes, which did not appear at all, 

are booked to a spare space (regardless of room 
size, etc) as shown in figure 5. If this repair strategy 
is applied to an empty timetable the result is a 
timetable with each class booked to a random time 
and place. As such, the repair strategy is also used 
for initializing a random population. The use of the 
repair strategy ensures that each class is booked 
exactly once. Hence, the number of hard 
constraints, which must be considered when 
timetables are being evaluated, is further reduced. 
 

While the population size is less than the maximum: 
{ 
Create a new timetable with no classes booked to it. 
Repair the new timetable by using the constraint data. 
Evaluate the cost of the new timetable by using the constraint 
data. 
Enter the new timetable into the population. 
} 
While the cost of the best timetable is greater than zero: 
{ 
Discard a portion of costly timetables. 
Repeat until the population size is maximum: 
{ 
Breed a new timetable. 
Mutate the new timetable. 
Repair the new timetable by using the constraint data. 
Evaluate the cost of the new timetable by using the constraint 
data. 
Enter the new timetable into the population. 
} 
}. 
 

Room 
301 
Day/Time 

8:45 
9:35 

9:35 
10:25 

10:25 
11:15 

12:05 
12:55 

12:55 
1:45 

1:45 
2:35 

Day1: 23 14 1 21 0 20 
Day2: 3 13 19 22 2 0 
Day3: 9 0 0 18 6 12 
Day4: 15 5 8 16 0 11 
Day5: 24 10 17 4 7 0 
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Figure 4: Pseudo Code for the First Stage of the repair 
strategy 
 
 
 
 
 
 
 
 
 
Figure 5: Pseudo Code for the Second Stage of the repair 
strategy 

3.3 Breeding Timetables 
Timetables are randomly selected from the 
population and used for breeding. No favoritism is 
given to fitter timetables. A child timetable is bred 
by performing unity order based crossover on the 
parents. This means that each parent has an equal 
chance of providing each gene. 
 
3.4 Mutating Timetables 
The method of mutation is given in figure 6. This 
means that the chance of any one gene undergoing 
mutation is approximately twice the mutation rate 
divided by one thousand. A mutation rate equal to 
ten, for example, implies that approximately twenty 
in every thousand genes will be mutated. This 
method should be scalable to the complete problem. 
The incorporation of further constraints, and the up 
scaling of the problem size should not require any 
changes to the overall architecture. 
 
 
 
 
 
 
 
 
 

 
Figure 6:  Pseudo Code for Method of Mutation 

4. SIMULATION RESULTS 
 

First we conducted a simulation experiment 
using the standard GA setup for the system 
described in the previous section. The experiment 
consisted of 10 independent runs. After the 
completion of the runs the program presents the 
timetables room wise and staff wise. Each output 
gives the different results. The output timetable of a 
sample run is shown below in figure 7 and figure 8.  
 

 
Figure 7: Output Timetable (room wise) 

 

 
Figure 8: Output Timetable (staff wise) 

 
5. CONCLUSIONS AND FUTURE WORK 
 

The work was done and implemented as per 
the requirements of the department.  It has been 
seen that “gaatt.java” produced timetables void of 
hard constraint violations and the results were very 
promising.  Ultimately, it is quite possible that 
optimal performance of the GA would require 
continual fine-tuning of the mutation rate. It is 
assumed that “gaatt.java” was executed on a serial 
machine. As such, larger populations take more 
time in between each selection for extinction so 
lower performance chromosomes are given more of 
a chance to breed. On a parallel machine larger 
populations could be expected to perform better. It 
cannot be ruled out that even on the current 
hardware a different tuning of the GA parameters 

For each class: 
Set the Count to 0. 

For each time: 
     For each room: 
        If the current class is booked at this location: 
                     Add 1 to the count. 
                    Add the location of this class to a  
                   linked list. 
        If the class occurred more than once then: 
            Keep doing the following until there is   
           only one booking left: 
          Randomly choose one of the bookings. 
         Turn it into a NULL booking. 
Free the linked list. 

For each class: 
       For each time: 
           Look in each room until either the class is   
            seen or you get to the end. 
          If you got to the end without finding the  
               class then randomly find a 
NULL booking and book that class to it. 

There is a fixed mutation rate. 
For each gene 
{ Randomly choose a number between 1 and     
    1000. 
   If the number is less than the mutation rate then 
  { Randomly choose a gene from the current  
   timetable and swap it with the current gene. 
   } 
} 
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could allow larger populations to perform better 
than minimally small ones.  

The system at present does not take care of 
other constraints like unavailability of lecturers, 
small size of rooms and time required by the 
lecturer to move from one class to other class, 
which is to be considered in future work. 
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