
Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

59

A TIMETABLE PREDICTION FOR TECHNICAL
EDUCATIONAL SYSTEM USING GENETIC ALGORITHM

1SANDEEP SINGH RAWAT, 2LAKSHMI RAJAMANI

1Associate Prof., Department of Computer Science and Engineering, GNIT, Ibrahimpatnam, India
2Prof., Department of Computer Science and Engineering, Osmania University, Hyderabad, India

E-mail: sandeep4578@gmail.com, rlakshmi@yahoo.com

ABSTRACT

This paper deals with the implementation of a computer program, which employs Genetic Algorithms (GAs) in
the quest for an optimal class timetable generator. The program is written in Java and incorporates a repair strategy for
faster evolution. This paper also explains an example usage of Genetic Algorithms (GAs) for finding optimal solutions
to the problem of Class Timetable. It is seen that the GA could be improved by the further incorporation of repair
strategies, and is readily scalable to the complete timetabling problem. The system at present does not take care of other
constraints like unavailability of lecturers, small size of rooms and time required by the lecturer to move from one class
to other class, which is to be considered in the future up gradations. The automated class timetable is used at the dept.
of Computer Science & Engineering, Guru Nanak Institute of Technology (GNIT), Hyderabad, India and in future it
will be used by other faculty administrators and proposes solutions to be considered by the parties involved:
administration, departments and students.

Keywords: Genetic Algorithms, Timetable, Scheduling, and Automated

1. INTRODUCTION

The class timetabling is a major administrative
activity for a wide variety of institutions. A
timetabling problem can be defined to be the
problem of assigning a number of events into a
limited number of time periods. A. Wren defines
timetabling as follows: “Timetabling is the
allocation, subject to constraints, of given to objects
being placed in space time, in such a way as to
satisfy as nearly as possible a set of desirable
objectives [1]”.

In this paper, we concentrate on the class-
timetabling problem. The problem is subject to
many constraints that are usually divided into two
categories: “hard” and “soft” [4]. This work was
partially supported by the Research Committee of
the Guru Nanak Institute of Technology (GNIT),
under the research program, in order to produce
high quality timetables with optimal constraint
satisfaction and optimization of the timetable’s
objectives at the same time.

1.1 Hard Constraints

Hard constraints are rigidly enforced.
Examples of such constraints are:

� No lecturer should have different classes at

the same time slot.

� There cannot be more than 2 classes for a
subject on one day

� For each time period there should be
sufficient resources (e.g. rooms and
lecturers) available for all the events that
have been scheduled for that time period.

1.2 Soft Constraints

Soft constraints are those that are desirable but
not absolutely essential. In real-world situations it
is, of course, usually impossible to satisfy all soft
constraints. Examples of soft constraints (in both
exam and course timetabling) are:

� Every staff should get at least one first

hour
� Lecturer having two theory subjects has no

lab assignments
� Lecturer having one theory may get two

lab classes.
� A particular class may need to be

scheduled in a particular time period.
� Lab Classes may not be in consecutive

hours.
� Lecturers may prefer to have all their

lectures in a number of days and to have a
number of lecture-free days.

1.3 The Class Timetable Problem

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

60

Time Table problems are mainly classified as
constraint satisfaction problems, where the main
goal is to satisfy all problem constraints, rather than
optimizing a number of objectives. At present,
science has no analytical solution method for all
problem cases of this category, other than
exhaustive search, which however cannot be
applied but only to toy problems. Due to the
immense search spaces, Automated timetable
scheduling, on the other hand, is a task of great
importance as it can save a lot of man-hours work,
to institutions and companies, and provides optimal
solutions with constraint satisfaction [3].
Scheduling is the arrangement of entities (people,
tasks, vehicles, lectures, exams, meetings, etc.) into
a pattern in space-time in such a way that
constraints are satisfied and certain goals are
achieved [1]. Constructing a schedule is the
problem in which time, space and other (often
limited) resources have to be considered in the
arrangement.

Holland’s original schema was a method of
classifying objects, then selectively “breeding”
those objects with each other to produce new
objects to be classified [5]. Created for the direct
purpose of modeling Darwinian natural selection,
the programs followed a simple pattern of the birth,
mating and death of life forms. A top-level
description of this process is given in figure 1[5],
[6], [7].
 Create a population of creatures.

Evaluate the fitness of each creature.
While the population is not fit enough:
{
Kill all relatively unfit creatures.
While population size< max;
{
Select two population members.
Combine their genetic material to create a new creature.
Cause a few random mutations on the new creature.
Evaluate the new creature and place it in the population.
}
}

Figure 1: Top Level description of a GA.

Genetic algorithms (GAs) are evolutionary
algorithms that use the principle of natural selection
to evolve a set of solutions toward an optimum
solution. GAs are not only very powerful, but are
also very easy to use as most of the work can be
encapsulated into a single component, requiring
users only to define a fitness function that is used to
determine how “good” a particular solution is
relative to other solutions.

The creatures upon which the genetic
algorithm acts are composed of a series of units of
information- referred to as genes. The genes, which
make up each creature, are known as the

chromosome. Each creature has its own
chromosome.

A GA, as shown in figure 1 requires a process
of initializing, breeding, mutating, choosing and
killing. The order and method of performing each
of these gives rise to many variations on Holland’s
original schema.

1.4 Chromosome Encoding, Fitness, Crossover
and Mutation

Holland encoded chromosomes as a string of
binary digits. A number of properties of binary
encoding work to provide simple, effective and
elegant GAs. There are, however, many other ways
to represent a creature’s genes, which can have
their own implicit advantages. In order to get a
problem into gene form, the substance of its
solution must be represented as a collection of units
of information [8]. This is true of many problems.
For example, when designing a weekly budget, the
amount spent on each item could be stored as a
number in a column. This can be thought of as not
just a list of values but a string of genes. The value
in the first row might represent the amount of
money to spend on rice, and the second row might
be the amount of money to spend on caviar and so
on. Each of these values might be converted from
base 10 to base 2 to create a fixed width binary
number. Hence the problem of minimizing your
budget while maintaining your survival is translated
into a genetic representation. A collection of
possible budgets could be thus encoded, producing
a population of Budget creatures. Random
populations are almost always extremely unfit [8].
In order to determine which are fitter than others,
each creature must be evaluated. In order to
evaluate a creature, some knowledge must be
known about the environment in which it survives.
Depending on the way we structure the method of
evaluating a chromosome we can either aim to
generate the least costly population or the most fit;
it is a question of minimizing cost or maximizing
fitness. In the budgeting example, the heuristic
concerning caviar can be represented with a cost. In
optimization problems cost is not a measure of
money, but a unit of efficiency [7], [8]. When
discussing optimization techniques, the range of
possible solutions is often referred to as the solution
space and the cost/fitness of each point in the
solution space is referred to as the altitude in the
landscape of the problem. To looking for the global
minimum of the cost is also to look for the lowest
point in the lowest valley of the cost landscape.
Similarly, to look for the global maximum fitness is

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

61

to look for the highest point of the highest mountain
in the fitness landscape.

In various GAs, the method of selecting
creatures for breeding is handled in different ways.
Holland’s original model uses a method where the
healthiest are most likely to breed. Other methods
select any two creatures at random for breeding.
Selective breeding can be used in conjunction with
or in the absence of an Elitist Natural Selection
Operator- in either case the GA can perform
evolution [7]. Once parents have been chosen,
breeding itself can then take place. A new creature
is produced by selecting, for each gene in the
chromosome, an allele from either the mother or the
father. The process of combining the genes can be
performed in a number of ways. The simplest
method of combination is called single point cross-
over [5], [7], [8]. This can be best demonstrated
using genes encoded in binary, though the process
is translatable to almost any gene representation. A
child chromosome can be produced using single
point crossover, as shown in figure 2. A crossover
point is randomly chosen to occur somewhere in
the string of genes. All genetic material from before the
crossover point is taken from one parent, and all material
after the crossover point is taken from the other [8].

Figure 2: An Example of Crossover with Fully
encoded Genes

After crossover is performed and before the child is
released into the wild, there is a chance that it will
undergo mutation. The chance of this occurring is
referred to as the mutation rate. This is usually kept
quite small [8]. The purpose of mutation is to inject
noise, and, in particular, new alleles, into the

population. This is useful in escaping local minima
as it helps explore new regions of the multi
dimensional solution space [7]. Once a gene has
been selected for mutation, the mutation itself can
take on a number of forms. This, again, depends on
the implementation of the GA. In the case of a
binary string representation, simple mutation of a
single gene causes that genes value to be
complemented- a 1 becomes a 0 and vice versa.

In Holland’s founding work on GAs he made
mention of another operator, besides selection,
breeding, crossover and mutation which takes place
in biological reproduction. This is known as the
inversion operator [8]. An inversion is where a
portion of chromosomes detaches from the rest of
the chromosome, then changes direction and
recombines with the chromosome.
We present an approach to solve this large, highly
constrained timetabling problem, based on
evolutionary algorithms. In chapter two we describe
the proposed system taking as an example the
department of Computer Science and Engineering,
GNIT. Third chapter gives the implementation
details about the algorithm. While the fourth
chapter shows the results of the program (written in
java) and chapter five shows the conclusion and
future works.

2. PROPOSED SYSTEM

The proposed system has ‘L’ no of lecturers,
‘S’ no of subjects and ‘C’ no of classes per subject
per week. Each day has ‘H’ no of hours and we
have five working days per week. The total no of
time slots then become equal to 5*H. The problem
then becomes assigning ‘S*C’ number of classes in
the ‘5*H’ time slots. For example in the department
of Computer Science and Engineering, VITS, there
are twelve lecturers and 24 subjects with 4 classes
per subject per week giving a total number of 96
classes per week. Each day has six hours and five
days per week giving 120 time slots. See Table 1
and Table 2.

Table 1: Subjects allotted to Lecturers
LECTURER SUBJECTS
RAM C Language, PPL
Sandy BDP, Disc. Struct
Patil DS, OS
Paritosh DC, CN
Tiwari NM, SE
Pandey ALC, DBMS
Deepthi CC, SAD
Mohan OOPS, WP
Harish EG, ET Lab, C Lab
Shyam RTS, DC Lab, SAD Lab
Radhe AI, OOPS Lab, OS Lab
Ritu CG, WP Lab, AI Lab

Two parents have already been selected:

PARENT1:

101101010101001001001001110011100110101011101101

PARENT2:

010100111011010101110101001001101011001010010110

Choose a crossover point:

PARENT1:

 1011010101010010

01001001110011100110101011101101

PARENT2:

0101001110110101 01110101001001101011001010010110

Perform crossover to produce a child:

CHILD:

1011010101010010 01110101001001101011001010010110

Which then becomes, a whole new chromosome:

CHILD:

101101010101001001110101001001101011001010010110

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

62

Table 2: Subjects per year
YEAR SUBJECTS
First C Lang., DS, Disc.Struct, NM, EG
Second DC, BDP, SAD, ALC, PPL
Third OOPS, OS, CG, DBMS, CN
Final RTS, CC, WP, AI, SE

3. GA IMPLEMENTATION

A program in java was developed which employed
GA methods to perform Automated Timetabling.
Consequently, the program was entitled
“gaatt.java”. The GA operates upon a population of
timetables, which are maintained in memory. Each
timetable is evaluated by testing the number of
times it breaches each constraint. Thus timetables
are evolved with a minimum number of constraint
violations. A top-level description of “gaatt.java” is
provided as figure 3. It can be seen that this
structure is similar to the pseudo code given in
figure 1 with the major difference being the
incorporation of a repair strategy. Explanation of
each of the components of the program is given in
the remainder of this section.
Load all constraint data from a constraint file.

Figure 3: Top Level Description of proposed system

3.1 Constraint Data
In order to test for each of the types of hard
constraint it is necessary to store sufficient detail
about the department. This means that information
concerning all lecturers; classrooms and classes
must be maintained. The way in which each of
these data types are implemented will now be given
in detail. A class is a structured type with three
fields. Each class has a certain size (predicted size),
a lecturer number and a number indicating the code

number of the group of related classes to which it
belongs. The set of all lecturers is stored as an
array. Similarly, there are arrays of classes and of
classrooms. Each of these elements is identified
uniquely by its position in the relevant array. The
set of all information concerning lecturers, classes
and classrooms is termed the constraint data.

The timetable for a single room is a two-
dimensional array as shown in Table 3. Each Field
describes (decode) some aspect of genetic
information particularly the cost or number of
breaches. Times at which there is no class booked
hold a NULL booking, which has a value of zero.

Table 3: Timetable for Room 301 at an intermediate
stage depicting costs at various time slots.

 A class timetable stores information about

what classes are booked in each room, at any hour
of the day, on any day of the week. Each of these
bookings (or NULL bookings) is one gene. A
population is a collection of timetables. A
population is itself a structured type with a number
of fields. It contains a pointer to the least costly
timetable in the population, (which has, in turn, a
pointer to the next least costly). There is also a
pointer to the most costly timetable in the
population, as well as a field storing the average
cost, and the average number of violations of each
type of hard constraint.

3.2 Repair Strategy
A repair strategy is used which ensures that all
classes appear exactly once. For robustness this is
done in two stages. Firstly, any classes, which
appear more than once, as shown in, figure 4.
Secondly, any classes, which did not appear at all,

are booked to a spare space (regardless of room
size, etc) as shown in figure 5. If this repair strategy
is applied to an empty timetable the result is a
timetable with each class booked to a random time
and place. As such, the repair strategy is also used
for initializing a random population. The use of the
repair strategy ensures that each class is booked
exactly once. Hence, the number of hard
constraints, which must be considered when
timetables are being evaluated, is further reduced.

While the population size is less than the maximum:
{
Create a new timetable with no classes booked to it.
Repair the new timetable by using the constraint data.
Evaluate the cost of the new timetable by using the constraint
data.
Enter the new timetable into the population.
}
While the cost of the best timetable is greater than zero:
{
Discard a portion of costly timetables.
Repeat until the population size is maximum:
{
Breed a new timetable.
Mutate the new timetable.
Repair the new timetable by using the constraint data.
Evaluate the cost of the new timetable by using the constraint
data.
Enter the new timetable into the population.
}
}.

Room
301
Day/Time

8:45
9:35

9:35
10:25

10:25
11:15

12:05
12:55

12:55
1:45

1:45
2:35

Day1: 23 14 1 21 0 20
Day2: 3 13 19 22 2 0
Day3: 9 0 0 18 6 12
Day4: 15 5 8 16 0 11
Day5: 24 10 17 4 7 0

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

63

Figure 4: Pseudo Code for the First Stage of the repair
strategy

Figure 5: Pseudo Code for the Second Stage of the repair
strategy

3.3 Breeding Timetables
Timetables are randomly selected from the
population and used for breeding. No favoritism is
given to fitter timetables. A child timetable is bred
by performing unity order based crossover on the
parents. This means that each parent has an equal
chance of providing each gene.

3.4 Mutating Timetables
The method of mutation is given in figure 6. This
means that the chance of any one gene undergoing
mutation is approximately twice the mutation rate
divided by one thousand. A mutation rate equal to
ten, for example, implies that approximately twenty
in every thousand genes will be mutated. This
method should be scalable to the complete problem.
The incorporation of further constraints, and the up
scaling of the problem size should not require any
changes to the overall architecture.

Figure 6: Pseudo Code for Method of Mutation

4. SIMULATION RESULTS

First we conducted a simulation experiment
using the standard GA setup for the system
described in the previous section. The experiment
consisted of 10 independent runs. After the
completion of the runs the program presents the
timetables room wise and staff wise. Each output
gives the different results. The output timetable of a
sample run is shown below in figure 7 and figure 8.

Figure 7: Output Timetable (room wise)

Figure 8: Output Timetable (staff wise)

5. CONCLUSIONS AND FUTURE WORK

The work was done and implemented as per
the requirements of the department. It has been
seen that “gaatt.java” produced timetables void of
hard constraint violations and the results were very
promising. Ultimately, it is quite possible that
optimal performance of the GA would require
continual fine-tuning of the mutation rate. It is
assumed that “gaatt.java” was executed on a serial
machine. As such, larger populations take more
time in between each selection for extinction so
lower performance chromosomes are given more of
a chance to breed. On a parallel machine larger
populations could be expected to perform better. It
cannot be ruled out that even on the current
hardware a different tuning of the GA parameters

For each class:
Set the Count to 0.

For each time:
 For each room:
 If the current class is booked at this location:
 Add 1 to the count.
 Add the location of this class to a
 linked list.
 If the class occurred more than once then:
 Keep doing the following until there is
 only one booking left:
 Randomly choose one of the bookings.
 Turn it into a NULL booking.
Free the linked list.

For each class:
 For each time:
 Look in each room until either the class is
 seen or you get to the end.
 If you got to the end without finding the
 class then randomly find a
NULL booking and book that class to it.

There is a fixed mutation rate.
For each gene
{ Randomly choose a number between 1 and
 1000.
 If the number is less than the mutation rate then
 { Randomly choose a gene from the current
 timetable and swap it with the current gene.
 }
}

Journal of Theoretical and Applied Information Technology

© 2005 - 2010JATIT. All rights reserved.

www.jatit.org

64

could allow larger populations to perform better
than minimally small ones.

The system at present does not take care of
other constraints like unavailability of lecturers,
small size of rooms and time required by the
lecturer to move from one class to other class,
which is to be considered in future work.

REFERENCES

[1] A. Wren (1996), “Scheduling, Timetabling and

Rostering – A Special Relationship?,”, in The
Practice and Theory of Automated
Timetabling: Springer Lecture Notes in
Computer Science Series, Vol. 1153, pp. 46-
75.

[2] Bagchi T.P., Multiobjective (1999) Scheduling
By Genetic Algorithms, Kluwer Academic
Publishers.

[3] Ehrgott M., Gandibleux X.(2000), A Survey
and Annotated Bibliography of Multiobjective
Combinatorial Optimization, OR Spectrum,
Vol. 22, No. 4, Springer, pp. 425-460.

[4] Burke E.K., Newall J.P., Weare R.F(1998)., A
Simple Heuristically Guided Search for the
Timetable Problem, Proceedings of the
International ICSC Symposium on Engineering
of Intelligent Systems. ICSC Academic
Press,Nottingham,.

[5] Buckles BP and Petry FE (1992): Genetic Al
algorithms. Los Alamitos: The IEEE Computer
Society Press.

[6] Melanie Mitchell, “An introduction to Genetic
Algorithms”, Prentice Hall India.

[7] Gen M and Cheng R (1997): Genetic
Algorithms and Engineering Design. John
Wiley,NY.

[8] Davis L (Ed) (1991): Handbook of Genetic
Algorithms. New York: Van Nostrand
Reinhold.

[9] De Werra D (1995): Some Combinatorial
Models for Course Scheduling. In Burke E and
Ross P (Eds): First International Conference,
dinburgh, U.K., August/September.

[10] Burke E and Ross P (Eds) (1996): Lecture
Notes in Computer Science 1153 Practice
Corne D and Ross P.

[11] Burke EK, Newall JP and Weare RF(1995) A
Memetic Algorithm for University Exam
Timetabling. In Burke E and Ross P (Eds).

ACKNOWLEDGEMENT

This work is partially supported by the Research
Committee of the Guru Nanak Institutions (GNI),

Hyderabad, India. The authors would like to
thankfully acknowledge the support and
cooperation of the teaching and non-teaching staff
of Guru Nanak Institute of Technology, Hyderabad
and College of Engineering, Osmania University,
Hyderabad during this work.

BIOGRAPHY

Mr. Sandeep Singh Rawat received his Bachelor
of Engineering in Computer
Science from National Institute of
Technology - Surat (formerly REC
- Surat), India and his Masters in
Information Technology from
Indian Institute of Technology,
Roorkee, India. He is pursuing his
Ph.D. at Osmania University,

Hyderabad., India.
He has presented three technical papers at

international conferences and published paper in
journals including IEEE Delhi Section and IEEE
Computer Society Chapter, India.

Mr. Rawat is a member of ISTE and CSI. His
research interest includes Data Mining, High
Performance Computing and Machine Learning.

Dr. Lakshmi Rajamani received the Ph.D. degree

in Computer Science & Engineering
from the Jadavpur University.
Currently, she is a professor and
head of the department at University
College of Engineering, Osmania
University, Hyderabad, Andhra
Pradesh, India.
She has presented many technical

papers both at national and international
conferences and published paper in journals.

Dr. Lakshmi is a member of ISTE and CSI.
Her research interests include Artificial
Intelligence, High Speed Computing and Database
Technology.

