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ABSTRACT 
 
We propose a novel approach for solving the perceptual grouping problem in vision. Rather than focusing 
on local features and their consistencies in the image data, our approach aims at extracting the global 
impression of an image. We treat image segmentation as a graph partitioning problem and propose a novel 
global criterion, the normalized cut, for segmenting the graph. The normalized cut criterion measures both 
the total dissimilarity between the different groups as well as the total similarity within the groups .We 
show that an efficient computational technique based on a generalized eigen value problem can be used to 
optimize this criterion. At the heart of unsupervised clustering and semi-supervised clustering is the 
calculation of matrix Eigen values (eigenvectors) or matrix inversion. In generally, its complexity is O(N3). 
By using Fast Lanczos Method in Normalized cut Method, we improve the performance to O(N log N).  
We have applied this approach to segmenting static images, as well as motion sequences, and found the 
results to be very  encouraging. 
  
Keywords : Grouping, image segmentation, graph partitioning., unsupervised clustering 
 
1.  INTRODUCTION 
 
     Nearly  75 years ago, Wertheimer [1] pointed 
out the importance of perceptual grouping and 
organization  in vision and listed several key 
factors, such as similarity, proximity, and good 
continuation, which lead to visual grouping. 
However, even to this day, many of the 
computational issues of perceptual grouping 
have remained unresolved. In this paper, we 
present a general framework for this problem, 
focusing specifically on the  case of image 
segmentation. 
 
     Prior literature on the related problems of 
clustering, grouping and image segmentation is 
huge. The clustering community [3] has offered  
 

 
 
us agglomerative and divisive algorithms; in 
image segmentation, we have region-based 
merge and split algorithms. The hierarchical 
divisive approach that we advocate produces a 
tree, the dendrogram. While most of these ideas 
go back to the 1970s (and earlier), the 1980s 
brought in the use of Markov Random Fields [2] 
and variational formulations [6], [4], [5]. 
 

Data Clustering and graph segmentation 
are important operations for machine learning 
and computer vision. It includes both 
unsupervised and semi-supervised clustering. 
For unsupervised clustering, spectral 
method[8][9][10][7] has been the focus of 
considerable research. However, all these 
methods suffer from the slow 

computation of large matrix. Solving 
systems of linear equations Ax = b and 
computing eigenvalues and eigenvectors of large 
matrices Ax=λx are two fundamental 
computation for clustering problem. They also 
have great practical uses in other machine 
learning problems. For example, for semi-
supervised clustering, to label unlabeled points 

can be transformed into a problem of solving 
linear systems. And for the spectral clustering 
problem, it turns out to be a problem of 
computing the largest k eigenvectors of the 
weighted matrix W. Hence how to solve these 
two problems correctly and fast becomes very 
important. 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2010JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
2 

 

The rest of the paper is organized as 
follows. Section 2 describes various methods. 
Detailed steps discussed in Section 3. In Section 
4,we explained experiment  conducted with 
results . Lastly ,we have given conclusion .   
 
2. GROUPIMG AS GRAPH 

PARTITIONING 
 
Wu and Leahy [11] proposed a clustering 
method based on this minimum cut criterion. In 
particular, they seek to partition a graph into k-
subgraphs such that the maximum cut across the 
subgroups is minimized. This problem can be 
efficiently solved by recursively finding the 
minimum cuts that bisect the existing segments. 
As shown in Wu and Leahy's work, this globally 
optimal criterion can be used to produce good 
segmentation on some of the images. 
 
2.1 Iterative methods  

Iterative methods are dominant in 
computing large matrices because direct methods 
are either impossible or too slow hence infeasible 
in practice. First, there is no direct method for 
eigenvalue problems when dimension of the 
matrix is greater than 5. Any eigenvalue solvers 
must be iterative. On the other hand, direct 
methods for solving linear systems like Gaussian 
elimination require O(N3) operations, which is 
too time-consuming. Iterative methods are 
approximated methods, which only require 
O(N2) operations. They can compute solutions 
much faster with errors which can be tolerant. In 
practice, this is often good enough. The 
eigenvectors can be used to construct good 
partitions of the image and the process can be 
continued recursively. 

 
Our approach is most related to the 

graph theoretic formulation of grouping. The set 
of points in an arbitrary feature space are 
represented as a weighted undirected graph G = 
(V, E), where the nodes of the graph are the 
points in the feature space, and an edge is formed 
between every pair of nodes. The weight on each 
edge, w(i, j), is a function of the similarity 
between nodes i and j. 

In grouping, we seek to partition the set 
of vertices into disjoint sets V1, V2 . . . Vm, where 
by some measure the similarity among the 

vertices in a set Vi is high and, across different 
sets Vi, Vj is low. 

 
Given a matrix A and a vector b, the 

associated Lanczos sequence is the set of 
vectors: b, Ab, A2b, A3b . . . The corresponding 
Lanczos subspaces are the spaces spanned by 
successively larger groups of these vectors in the 
Lanczos sequence. 

 
2.2 Fast Gauss method 

The fast Gauss transform introduced by 
Greengard and Strain is an important variant of 
more general fast multipole methods. It’s for the 
Sum-Product problem within O(NlogN) 
operations, while the direct method requires 
O(N2) operations. The multiplication of some 
particular form matrix (Standard Gaussian 
Kernel Matrix) and a positive vector can be 
translated to the Sum-Product problem. For the 
standard Gaussian kernel matrix A, 
         Aĳ=exp(-║xi-yj║²/ σ² )            
                                                                                             
Therefore, the ith element of A * w is the sum-
product of the ith row of A and the weight vector 
w. 

The average running time for the fast 
method is O(NlogN) , in the worst case it’s 
O(N2) and O(N) for the best case. During the 
computation, the matrix A never need to be 
constructed explicitly, hence space required can 
be reduced from O(N2) to O(N). 
 
2.3 Fast  Krylov methods 
         Krylov subspace methods provide an 
iterative algorithm running at O(N2) due to 
direct multiplication of a matrix and a vector. 
Fast Gauss method allows this multiplication to 
reduced to O(NlogN) for standard Gaussian 
kernel matrices. Hence it is naturally to combine 
these two methods to solving linear systems and 
computing eigen problems for this particular 
type of matrices. As a result, we could reduce 
running time from O(N3) to O(NlogN). Because 
this type of matrices occur a lot in machine 
learning problems, it will be useful if we can 
combine these two algorithms and still solve 
original problems correctly. We already have a 
proof on their running time. 
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 Fig 1   Eigenvalue of Lanczos  Fg2        First Eigenvector of Lanczos 
 

From Figure1 and Figure2, we see for the fast 
lanczos and lanczos algorithm, they are almost 
the same at the first 20 iterations and differences 
between partial solutions to true solution drop 
below 10−10. After that, Fast Lanczos stays for a 
while and goes up and naive Lanczos’s 
eigenvalue stays but eigenvector becomes 
oscillating. This shows Lanczos should be 

stopped around 20 iterations since we already 
obtain fairly good solutions. More iteration will 
cause solutions unstable 
 

  Since nave Lanczos is not stable, we can say this 
is mainly due to Lanczos, not due  to   error of fast 
Gauss method. 

 
 

       
           Fig3 Eigen value of  Arnoldi             Fig 4  First  Eigen vector of Arnoldi 

 
For Arnoldi algorithms (See Figure 3 and 
Figure4), both methods are almost same in the 
first 20 iterations and differences between partial 
solutions and true solution drop below 10−10. 
After that, Fast Arnoldi stays around 10−11 and 
nave Arnoldi stays around 10−14. This shows 
Arnoldi is        very stable. Fast Arnoldi cannot 
drop further because the specified error eps of 
fast Gauss method is 10−10. We believe if we 
allow eps to be smaller, then Fast Arnoldi should 
be able to get a better solution. In practice, error 
rate of 10−11 is already good enough.  
 
 
 

3.  EFFICIENT NCUT SEGMENTATION 
ALGORITHM 

    
  The summary of proposed new Ncut 
Algorithm is given  below 
 
1. Set up problem as G = (V, E) and define 
affinity matrix W and degree matrix D 
 
2. Solve (D – W)y = λDy for the eigenvectors 
with the  smallest eigenvalues 
 
3. Find the 2nd smallest Eigen Vector and eigen 
value with O(n log n) time complexity using Fast 
combined  approach 
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4. Let x2 = eigenvector with the 2nd smallest 
eigenvalue �2  
5. Threshold x2 to obtain the binary-valued 
vector x´2 such that ncut(x´2) �ncut(xt2) for all 
possible thresholds t 
6. For each of the two new regions, if ncut < 
threshold T, then recursive on the region.  
 
The detailed steps are:  
1. Construct a weighted graph G = (V, E) by 
taking each pixel as a node and connecting each 
pair of pixels by an edge. The weight on that 
edge should reflect the likelihood that the two 
pixels belong to one object. Using just the 
brightness value of the pixels and their spatial 
location, we can define the graph edge weight 
connecting the two nodes i and j as: 
 
   Wĳ = еxp(-║F(i)-F(j)║²2  / σ ²I)  *                                                                      
       { еxp(-║X(i)-X(j)║²2  / σ ²X)    if  ║X(i)-
X(j)║2  < r                 …..  (A) 
        0                   otherwise 
 
2. Solve for the eigenvectors with the smallest 
eigenvalues of the system 

    ….  
     (D – W)y   =  λ Dy       ….      (B)                                
 
As we saw above, the generalized eigensystem in 
(b) can be transformed into a standard eigenvalue 
problem of 

 
    D¯½   (D – W)  D¯½   x  = λ x   
                                       ---          (C )                 
                                               
Solving a standard eigenvalue problem for all 
eigenvectors takes O(n3) operations, where n is 
the number of nodes in the graph. This becomes 
impractical for image segmentation applications 
where n is the number of pixels in an image.  
 
Fortunately, our graph partitioning has the 
following properties: 1) The graphs are often 
only locally connected and the resulting 
eigensystems are very sparse, 2) only the top few 
eigenvectors are needed for graph partitioning, 
and 3) the precision requirement for the 
eigenvectors is low, often only the right sign bit 
is required. These special properties of our 
problem can be fully exploited by an eigensolver 
called the Lanczos method. The running time of 
a Lanczos algorithm is O(mn) + O(mM(n)), 
where m is the maximum number of matrix-
vector computations required and M(n) is the 
cost of a matrix-vector. 

  ,  
3. For each iteration, the most time- consuming 
step is to calculate y = Lx. However, L = D¯½W 
D¯½  is not a standard Gaussian kernel matrix, 
we can’t use fast method directly.  If we use the  
fast combined approach, We can modify the 
above mentioned equation as follows 
 
• Rewrite y = Lx as y¹ = Wx¹ where y = D¯½ y¹ 
and x¹= D¯½ x. First, we calculate x¹ using O(N) 
time because D is a diagonal matrix; then we use 
fast method for y¹ using O(Nlog(N)) time, at last 
we get y. 
 
• However, here W  is not a standard gaussian 
kernel matrix. The diagonal value is 0 rather than 
1. We define W = W¹−E, then W is standard 
Gaussian kernel matrix. We get y = Wx¹ = 
(W¹−E)x¹= W¹x¹−x¹, where fast method can be 
used for W¹x. 
 
4 Once the eigen vectors are computed,we can 
partition the graph into two pieces using the 
second smallest eigenvector. In the ideal case, 
the eigenvector should only take on two discrete 
values and the signs of the values can tell us 
exactly how to partition the graph. 
 
5 After the graph is broken into two pieces, we 
can recursively run our algorithm on the two 
partitioned parts. Or, equivalently, we could take 
advantage of the special properties of the other 
top eigenvectors as explained in the previous 
section to subdivide the graph based on those 
eigenvectors. The recursion stops once the Ncut 
value exceeds certain limit. 
 
6. The number of groups segmented by this 
method is controlled directly by the maximum 
allowed Ncut. 
 
3.1 Simultaneous K-Way Cut with Multiple 
Eigenvectors 

 
One drawback of the recursive 2-way 

cut is its treatment of the oscillatory 
eigenvectors. The stability criteria keeps us from 
cutting oscillatory eigenvectors, but it also 
prevents us cutting the subsequent eigenvectors 
which might be perfect partitioning vectors. 
Also, the approach is computationally wasteful; 
only the second eigenvector is used, whereas the 
next few small eigenvectors also contain useful 
partitioning information. 
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Instead of finding the partition using 
recursive 2-way cut as described above, one can 
use all of the top eigenvectors to simultaneously 
obtain a K-way partition. In this method, the n 
top eigenvectors are used as n dimensional 
indicator vectors for each pixel. In the first step, 
a simple clustering algorithm, such as the k-
means algorithm, is used to obtain an 
oversegmentation of the image into k0 groups. 
No attempt is made to identify and exclude 
oscillatory eigenvectors-they exacerbate the over 
segmentation, but that will be dealt with 
subsequently. 
In the second step, one can proceed in the 
following two ways: 
 
1. Greedy pruning: Iteratively merge two 
segments at a time until only k segments are left. 
At each merge step, those two segments are 
merged that minimize the k-way Ncut criterion 
defined  as: 
 
   Ncut k   = cut(W1,V-W1) / assoc(W1,V) + 
cut(W2,V-W2) / assoc(W2,V) +   ..... + 
cut(Wn,V-Wn) / assoc(Wn,V) 
 
where Wi is the ith subset of whole set V. 
 
This computation can be efficiently carried out 
by iteratively updating the compacted weight 
matrix Wc, with Wc(i, j) = assoc(Wi,Wj) 
 
2. Global recursive cut. From the initial k′ 
segments, we can build a condensed graph Gc = 
(Vc, Ec) where each segment Wi corresponds to a 
node Vc

i of the graph. The weight on each graph 
edge Wc(i, j) is defined to be assoc(Wi, Wj) the 
total edge weights from elements in Wi to 
elements in Wj From this condensed graph, we 
then recursively bipartition the graph according 
the Ncut criterion. This can be carried out either 

with the generalized eigenvalue system or with 
exhaustive search in the discrete domain. 
Exhaustive search is possible in this case since k′ 
is small, typically k′ ≤ 100. 
 
4. EXPERIMENTS 
 
    We have applied our grouping algorithm to 
image  segmentation based on brightness, color, 
texture, or motion information. In the monocular 
case, we construct the graph G=(V;E.)by taking 
each pixel as a node and define the edge weight 
wij between node i and j as the product of a 
feature similarity term and spatial proximity 
term: 
 
   Wĳ = еxp(-║F(i)-F(j)║²2  / σ ²I)  *                                                         
        { еxp(-║X(i)-X(j)║²2  / σ ²X)    if  ║X(i)-
X(j)║2  < r                  
      0                   otherwise 
 
 
 
where X.i. is the spatial location of node i, and 
F.i. is a feature vector based on intensity, color, 
or texture information at that node defined as: 
*. F(i)=1, in the case of segmenting point sets, 
 
* F(i)=I(i)., the intensity value, for segmenting 
brightness images, 
 
 *F(i) = [ v, v.s.sin(h), v.s..cos(h)] (i),  where h; 
s; v are the HSV values, 
        for color segmentation, 

,  
  * F(i) = [| I * f1|, …,| I * fn|], where the fi are 
     DOOG filters at various scales and 
orientations as used in [12], in the case of texture 
segmentation. 
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By applying new Ncut algorithm, the following Ncut values are obtained 

 
                 Path From Root Ncut Values 
ROOT-A   
ROOT-B-A-A 
ROOT-B-A-B-A.  
ROOT-B-A-B-B-A-A-A-A-A-A.  
ROOT-B-A-B-B-A-A-A-A-A-B-A.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-A-A.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-A-B.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-A.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-A-
A-A.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-A-
A-B 
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-A-B. 
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-B-A. 
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-B-B-
A-A-A-A 
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-B-B-
A-A-A-B 
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-B-B-
A-A-B-A 
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-B-B-
A-A-B-B.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-B-B-
A-B.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-B-B-
B-A.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-A-B-B-B-B-
B-B 
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-B-A.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-A-B-B.  
ROOT-B-A-B-B-A-A-A-A-A-B-B-B 
ROOT-B-A-B-B-A-A-A-A-B 
ROOT-B-A-B-B-A-A-A-B.  
ROOT-B-A-B-B-A-A-B.  
ROOT-B-A-B-B-A-B.  
ROOT-B-A-B-B-B 
ROOT-B-B 
 

0.000000 
0.000000 
0.000000 
0.000000 
0.030964 
0.078106 
0.033421 
0.011684 
0.073347 
0.121786 
0.062340 
-0.000000 
0.013397 
0.000000 
0.000000 
0.027056 
0.000000 
-0.000000 
0.097920 
0.072152 
0.014628 
0.071980 
-0.000000 
0.021055 
0.050144 
0.000000 
0.033410 
0.084656 

 
 
 
 

Fig  5. Ncut values for the image bear by applying new efficient ncut algorithm 
with  SI =5; SX =6; r = 1.5; sNcut = 0.14; sArea = 220 
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G                                                                                      h                                                        i 

 
Fig 6: a) original image, b-i: segmented images by applying new method 

 
 
Fig 5 shows ncut values and Fig 6 shows 
corresponding segmented images by applying 
new ncut method 
 
 
 

 
4.1 Computation Time 
 
 With reference to [13] , old ncut method using  
general  eigen value computation takes O(n³). 
The following figures shows  new method  
reduce the time than old method 
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Fig 7: a) old and new method perform well for  producing limited eigen values and  b) new method perform 
well for producing large eigen values with less computation time 
 
In Fig 7, Legend + indicates the performance of  
new method with running time 0.156 seconds 
and  square indicates the worst behavior of the 
old method with running time 0.266 seconds 
 
5. CONCLUSION 
 
We Conclude that average time complexity of 
the above algorithm is O(n log n). This is more 
reduced time complexity than using of standard 
eigen value problem method. In  Future work, 
we may introduce new eigen value method  to 
reduce  the time as O(n). 
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