
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

94

ABSTRACT

This work takes a study on the Web Services—a technology that has come to change the future of
Computing and e-commerce. Web Services is a distributed computing technology that offers interaction
and collaboration among vendors and customers, with the vision of providing ubiquitous computing.

When you plug an appliance into the electricity socket, you don't worry about how the electricity
generation and distribution takes place. All that is expected is uninterrupted power and the utility bill that
you get at the end of the month! Similarly, Web Services will make computing resources, both hardware
and software, accessible through the Internet just like electricity is made available. Web Services will do
for computing what the Internet did for data. They would encourage a pay-per-usage model and make
dynamic collaborations possible. One of the key definitions of Web Services is: "Web Services are loosely
coupled software components delivered over Internet-standard technologies.”

This paper considers the importance of web service as well as the success and the advantages of web
service over the early technologies like: EDI, CORBA, and COM. Distinction is made between Web
Service and Service. The components technologies of Web Service such as the WSDL, XML, UDDI, and,
SOAP and how they apply to e-health applications, were examined. The creation of Web Service using the
ASP.NET, Apache axis and Java2 Platform among other issues were also considered. We present a model
for web services enabled infrastructure which is a framework for our e-health project at our research centre.
In effect this paper will create a good knowledge for those new to web services as well as make more
enlightenment to those already acquainted with the technology especially those developing applications for
e-health services.

Keywords: E-health, eXtensible Markup Language (XML), Simple Object Access Protocol (SOAP),

Universal Description, Discovery, and Integration (UDDI), Web services, Web Service
Definition Language (WSDL).

I INTRODUCTION

Consider a scenario in which one needs to
locate a particular pharmaceutical store in an
area. It will be out of place to go out on the road
and ask every person you met the way to the
store. You might, instead, refer the Web site of
the pharmacy on the Internet. If you knew the
pharmacy's Web site, you would look it up
directly and find the location through the store
locator link. If not, you would go to a search
engine and type out the name of the pharmacy in
the language that the search engine was meant to

recognize. After getting the location, you would
find the directions to the store, and then go to the
store[15].

The structure of Web Services is also very
similar .Web Services provide for each of these
previously described activities. Web service
makes software application resources available
over the networks in a standardized fashion.
Other technologies have done the same thing,
such as Internet browsers, which make web
pages available using standard Internet
technologies such as HTTP and HTML.
However, these technologies are generally used

ON THE USE OF WEB SERVICES TECHNOLOGY IN E-HEALTH
APPLICATIONS

#JOHN B. OLADOSU, FUNMILOLA A. AJALA, AND OLUKUNLE O. POPOOLA

Computer Science and Engineering Department, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

#Correspondence Author (johnoladosu@gmail.com)

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

95

as a way for human users to view data on a web
server and, on their own, are not well suited to
enabling application-to-application
communication and integration[1].

II HISTORY OF WEB SERVICE

In today's world of extreme competition on

the business front, information exchange and
efficient communication is the need of the day.
Information Technology has grown by leaps and
bounds, and sustained, not because it seems
savvy, but because businesses can function more
efficiently. This need for information exchange
brings in another need to make this information
selectively visible, and its possibility to be
changed on the fly.

For example, with the introduction of the
telephone came the need to have a directory
service. This gave rise to the ever-popular
"Yellow Pages," which brought the consumer
and the provider closer to each other. The
revolution of computerizing services of
companies gave rise to isolated computer
systems. Each company had software developed
and customized to its specific needs. However,
mergers, acquisitions, and business growths saw
the need to share information stored in these
isolated computer systems. The Internet did
solve this problem to some extent. However, the
Internet also opened many loopholes in security,
making the owners of this information uneasy
about the scope of their information's
availability.

Hence, it became imperative that, for better
B2B (Business-to-Business) communication,
these systems must have the ability to link up to
each other, grant permissions through a system
other than the Internet, and which would make
all the systems network with each other like an
Intranet[1].

Today, companies rely on thousands of
different software applications each with their
own role to play in running a business. To name
just a few, database applications store
information about customers and inventories,
web applications allow customers to browse and
purchase products online and sales tracking
applications help business identify trends and
make decisions for the future. These different
software applications run on a wide range of
different platforms and operating systems, and
they are implemented in different programming
languages. As a result, it is very difficult for
different applications to communicate with one

another and share their resources in a
coordinated way. Take, for example, a company
that has its customer data stored in one
application, its inventory data stored in another
application, and its purchasing orders from
customers in a third. Until now, if this company
wanted to integrate these different systems, it
had to employ developers to create custom
bridging software to allow the different
applications to communicate with one another.
However, these sorts of solutions are often
piecemeal and time consuming. As soon as a
change is made to one application, corresponding
changes have to be made to the other
applications linked to it and to the bridges that
link the applications together. [2].

To solve the problem of application-to-
application communication, businesses need a
standardized way for applications to
communicate with one another over networks, no
matter how those applications were originally
implemented, web Services provide exactly this
solution by providing a standardized method of
communication between software applications.
With a standardized method of communication
in place, different applications can be integrated
together in ways not possible before. Different
applications can be made to call on each other's
resources easily and reliably, and the different
resources that applications already provide can
be linked together to provide new sorts of
resources and functionalities. Moreover,
applications integration becomes much more
flexible because Web services provide a form of
communication that is not tied to any particular
platform or programming language. The interior
implementation of one application can change
without changing the communication channels
between it and the other applications with which
it is coordinated. In short, Web services provide
a standard way to expose an application's
resources to the outside world so that any user
can draw on the resources of the application.[12].

A. Why Web Service?
Web Services is probably not the first

solution to such a problem. RMI, COM,
CORBA, EDI, and ebXML also address the
same problem space. So, what would make Web
Services so special and different from the rest?

Web Services is based on the already existing
and well-known HTTP protocol, and uses XML
as the base language. This makes it a very
developer-friendly service system. However,
most of the above-mentioned technologies such

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

96

as RMI, COM, and CORBA involve a whole
learning curve. New technologies and languages
have to be learnt to implement these services.
Also, Web Services is based on a set of
standardized rules and specifications, making it
more portable. This was not the case with the
technologies mentioned earlier[3]. Since Web
Services are the basis for Grid Services,
understanding the Web Services architecture is
fundamental to using GT3 and programming
Grid Services.

Lately, there has been a lot of buzz about
"Web Services", and many companies have
begun to rely on them for their enterprise
applications. So, what exactly are Web Services?
To put it quite simply, they are yet another
distributed computing technology (like CORBA,
RMI, EJB, etc.) They allow us to create
client/server applications. For example, suppose
there is need to develop an application for a
chain of stores. These stores are all around the
country, but the master catalog of products is
only available in a database at one central office,
yet the software at the stores must be able to
access that catalog. One could publish the
catalog through a Web Service.

Information on a website is intended for
humans. Information which is available through
a Web Service will always be accessed by
software, never directly by a human (despite the
fact that there might be a human using that
software). Even though Web Services rely
heavily on existing Web technologies, they have
no relation to web browsers and HTML[10].

B. Success of Web Service
Looking back over the years, it is hard to

imagine networked computing without the Web.
The reason why the Web succeeded where
earlier hypertext schemes failed can be traced to
a couple of basic factors: simplicity and ubiquity.
From a service provider's (e.g. an e-shop) point
of view, if they can set up a web site they can
join the global community. From a client's point
of view, if you can type, you can access services.
From a service API point of view, the majority
of the web's work is done by 3 methods (GET,
POST, and PUT) and a simple markup language.
The web services movement is about the fact that
the advantages of the Web as a platform apply
not only to information but to services[4].

Web service would have been too inefficient
to be interesting a few years ago. But the trends
like cheaper bandwidth and storage, more
dynamic content, the pervasiveness and diversity

of computing devices with different access
platforms make the need for glue more
important, while at the same time making the
costs (bandwidth and storage) less
objectionable[6].

III SERVICE AND WEB SERVICE

The Internet and the World Wide Web
(WWW) are tremendous success stories and
have changed the way we publish and
communicate information in our modern society.
Web services now start to add a new level of
functionality on top of the existing Web and
transform them from a place where we share and
find data to a place where we find and share
dedicated services and functionalities too.
Finding suitable Web services that help to
achieve a certain goal is widely considered as a
key task in a shared global marketplace of
services. Semantic description of what is
provided by a Web service allows the automation
of the process (or parts of it) and therefore
dynamically adapting software systems using a
service-oriented architecture. An efficient
solution of the discovery problem allows for a
cost-effective construction of software systems
from pre-existing components whereby single
elements in the system's architecture can be
dynamically exchanged[7].

These often regard the terms service and Web
service as synonymous. There is belief that these
two terms are not equivalent and, furthermore, it
is relevant to distinguish them and to explore
their relation. This fundamental distinction is
necessary in order to achieve scalable and
realistic Semantic Web service Discovery.

Web services are technological means for
accessing or specifying services offered by some
specific provider. In a sense a Web service is an
access point to services of a particular provider.
Users are not specifically interested in Web
services but rather in the services that can be
delivered by a specific provider. Clients think in
terms of services whereas providers advertise
sets of services they are able to offer to their
clients (using a technical entity Web service).
Hence, the description of a Web service is the
smallest unit of advertisement for providers. The
notion of service is used in different
communities and even within the same
communities in various ways[7]. Many people
have a different understanding of the term
service which causes a lot of confusion and
makes it hard to compare different work directly.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

97

For example, in the business community a
service is seen as a business activity that often
results in intangible outcomes or benefits, while
in Computer science the terms service and Web
service are often regarded as interchangeable to
name a software entity accessible over the
Internet[9].

A. Service
Service is a provision of value to a client in

some domain. A service represents the kind of
entity, a user is interested in and that he wants to
have discovered. As an example, let us consider
a user who wants to book a train ticket from
Lagos to Kaduna on a given date. The service he
is looking for is the provision of a train ticket
with the specified constraints. Such provision is
independent on how the supplier and the
provider interact, i.e., it does not matter whether
the requester goes to a train tickets office or uses
the train Web site to book his trip[7,8]. Take
Health service for example. It deals with
provision of healthcare by health caregivers such
as medical practitioner to a patient.

B. Web Service
“Web service is a computational entity

accessible over the Internet (using Web service
standards and protocols)”[7]. For example, a
railway company might provide a software
component accessible via Web service standards,
i.e., a Web service to request the booking of a
trip. Thus, the Web service is an electronic
means by which a client is able to request a
specific service from a provider, but not the
service itself. Therefore, we understand the term
Web service as a means to request a service over
the Internet, described using agreed standards
such as using the Web service to request for e-
health service over the Internet[8].

IV WEB SERVICES TECHNOLOGY

As the Internet grew from a forum for
sharing information to a marketplace for doing
business, a technology matured that allowed
Computers to easily transact with each other. Out
of these Internet roots, web service technology
was born. The general goal of web services is to
construct elements of business logic, services,
which can be very easily used by other
applications. The services themselves hide the
complexity of their business logic from the
consumers through simple interfaces that allow

the services to be reused in many different
applications. The service and the consumer are
described as being loosely coupled, an approach
that allows complex composite solutions to be
developed through leveraging multiple web
services[1].

Component Technology of Web Service
• eXtensible Markup Language (XML)
• Simple Object Access Protocol (SOAP)
• Web Service Definition Language

(WSDL)
• Universal Description, Discovery, and

Integration (UDDI)
1) XML (eXtensible Markup Language). This

is the core language of web service technology.
It is a universally agreed markup meta-language
primarily used for information exchange. It
provides a platform neutral way to describe the
data connected with any service transaction. A
good example of a markup language is the Hyper
Text Markup Language (HTML)[1]. The beauty
of XML lies in the fact that it is extensible.
Simply put, XML is a set of predefined rules
(syntactical framework) that is needed to follow
when structuring your data. For a long time,
programmers and application vendors have built
applications and systems deployed in an
enterprise that processes data that can be
interpreted by the enterprise systems—
essentially, data structured in a proprietary
fashion. But as information exchange between
applications and systems across enterprises
became prevalent, it became very difficult to
exchange data because the systems were never
designed to accept data from external, unknown
systems. XML provides a standard and common
data structure for sharing data between disparate
systems. Additionally, XML has built-in data
validation, which guarantees that the structure of
the data that is received is valid[17]. The
importance of these features of XML can not be
overemphasized in e-health applications.

2) SOAP (Simple Object Access Protocol).
This is the preferred means by which an
application invokes a web service. The protocol
itself is written in XML. It is the method by
which you can send messages across different
modules. This is similar to how you
communicate with the search engine that
contains an index with the Web sites registered
in the index associated with the keywords[1].
XML messages provide the common language

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

98

by which different applications can talk to one
another over a network. To operate a Web
service, a user sends an XML message
containing a request for the Web service to
perform some operation; in response the Web
service sends back another XML message
containing the results of the operation. Typically
these XML messages are formatted according to
SOAP syntax. SOAP specifies a standard format
for applications to call each other's methods and
pass data to one another. Note that other non-
SOAP forms of XML messages are possible,
depending on the specific requirements of the
Web service. But, in any case, the sort of XML
message and the specific syntax required can be
found in the WSDL file, making the Web service
generally available to any client application
capable of sending and receiving the appropriate
XML messages[3].

It can also be defined as a protocol
specification that defines a uniform way of
passing XML-encoded data. It defines a way to
perform remote procedure calls (RPCs) using
HTTP as the underlying communication
protocol. SOAP arises from the realization that
no matter how nifty the current middleware
offerings are, they need a WAN wrapper.
Architecturally, sending messages as plain XML
has advantages in terms of ensuring
interoperability [4].

This is of particular significance when web
services applications are designed for e-health
delivery services. Health records and information

may be exchanged across heterogeneous
platform, hence making interoperability a major
concern.

3) WSDL (Web Service Definition
Language). This is the specification of the
interface that a web service exposes to
consumers. It describes the set of operations that
the service makes available. The WSDL is also
written in XML. WSDL file provides a
description (written in Web Service Description
Language) of how the Web service is operated
and how other software applications can
interface with the Web service. WSDL file as the
instruction manual for a Web service explaining
how a user can draw on the resources provided
by the Web service. WSDLs are generally
publicly accessible and provide enough detail so
that potential clients can figure out how to
operate the service solely from reading the
WSDL file. If a Web service translates English
sentences into Yoruba, as in our related
work[19], the WSDL file will explain how the
English sentences should be sent to the Web
service, and how the French translation will be
returned to the requesting client. It is the method
through which different services are described in
the UDDI. See the diagram in Figure. 1, it maps
to the actual search [1]. The diagram depicts a
typical e-health application. See our related
work[18].

Figure 1: Web Services Components (Source [1])

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

99

4) UDDI (Universal Description, Discovery,
and Integration). This is the global look up base
for locating the services. In the example
mentioned earlier, this is analogous to the index
service for the search engine, in which all the
Web sites register themselves associated with
their keywords. It maintains a record of all the
pharmacy store locations throughout the
country[1]. It is one of the youngest and most
rapidly developing standards in the web service
family. It is an initiative designed to make it
easier for you to locate web services on any
server. With discovery files, the client still needs
to know the specific URL location of the
discovery file. Discovery files may make life
easier by consolidating multiple web services
into one document, but they don’t provide any
obvious way to examine the web services offered
by a company without navigating to its website
and looking for a .disco hyperlink[11].

The goal of UDDI, on the other hand, is to
provide repositories where businesses can
advertise all the web services they have. For
example, a company might list the services it has
for business document exchange, which describe
how purchase orders can be submitted and
tracking information can be retrieved. To submit
this information, a business must be registered
with the service.

V WEB SERVICES ARCHITECTURE

Figure. 2 is a diagram describing the Web
Services Architecture:

Figure 2: Web Service Architecture

1) Service Discovery: This part of the

architecture allows us to find Web Services
which meet certain requirements. This part is

usually handled by UDDI (Universal
Description, Discovery, and Integration). GT3
currently doesn't include support for UDDI. Our
work in [18] on semantic healthgrid gives
enough explanation about this.

2) Service Description: One of the most
interesting features of Web Services is that they
are self-describing. This means that, once a Web
Service is located, one can ask it to 'describe
itself' and tell what operations it supports and
how to invoke it. This is handled by the Web
Services Description Language (WSDL). A
pharmaceutical ontology can give a detailed
description of itself once discovered[18].

3) Service Invocation: Invoking a Web
Service (and, in general, any kind of distributed
service such as a CORBA object or an Enterprise
Java Bean) involves passing messages between
the client and the server. SOAP (Simple Object
Access Protocol) specifies how we should format
requests to the server, and how the server should
format its responses. In theory, we could use
other service invocation languages (such as
XML-RPC, or even some ad hoc XML
language). However, SOAP is by far the most
popular choice for Web Services. This explains
how the clients and server ends of our work on
Doctor-Patient interaction in [19] communicate.

4) Transport: Finally, all these messages
must be transmitted somehow between the server
and the client. The protocol of choice for this
part of the architecture is HTTP (HyperText
Transfer Protocol), the same protocol used to
access conventional web pages on the Internet.
Again, in theory we could be able to use other
protocols, but HTTP is currently the most used
one[10].

VI WEB SERVICE AND ITS

APPLICATIONS

Now that we have an idea of what Web

Services are, programming Web Services will
certainly be the next in mind to do. But before
doing that, one needs to know that despite
having a lot of protocols and languages floating
around; Web Services programmers usually
never write a single line of SOAP or WSDL.
Once we've reached a point where our client
application needs to invoke a Web Service, we
delegate that task on a piece of software called a
client stub. The good news is that there are

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

100

plenty of tools available that will generate client
stubs automatically for us, usually based on the
WSDL description of the Web Service.
A Web Services client doesn't usually do all
those steps in a single invocation. A more correct
sequence of events would be the following:

1. We locate a Web Service that meets our
requirements through UDDI.

2. We obtain that Web Service's WSDL
description.

3. We generate the stubs once, and include
them in our application.

4. The application uses the stubs each time
it needs to invoke the Web Service.

Programming the server side is just as easy.
We don't have to write a complex server program
which dynamically interprets SOAP requests and
generates SOAP responses. We can simply
implement all the functionality of our Web
Service, and then generate a server stub (the term
skeleton is also common) which will be in charge
of interpreting requests and forwarding them to
the service implementation. When the service
implementation obtains a result, it will give it to
the server stub, which will generate the
appropriate SOAP response. The server stub can
also be generated from a WSDL description, or
from other interface definition languages (such
as IDL). Furthermore, both the service
implementation and the server stubs are managed
by a piece of software called the Web Service
container, which will make sure that incoming
HTTP requests intended for a Web Service are
directed to the server stub.

The steps involved in invoking a Web
Service are described in Figure. 3.

Figure 3: Steps involved in invoking a Web Service

Supposing a Web Service has been located,
and the client stubs generated from the WSDL
description. Furthermore, the server-side
programmer will have generated the server stubs.

1. Whenever the client application needs
to invoke the Web Service, it will actually call
the client stub. The client stub will turn this 'local
invocation' into a proper SOAP request. This is
often called the marshaling or serializing
process.

2. The SOAP request is sent over a
network using the HTTP protocol. The Web
Services container receives the SOAP requests
and hands it to the server stub. The server stub
will convert the SOAP request into something
the service implementation can understand (this
is usually called unmarshaling or deserializing)

3. The service implementation receives the
request from the service stub, and carries out the
work it has been asked to do. For example, if we
are invoking the int add (int a, int b) method, the
service implementation will perform an addition.

4. The result of the requested operation is
handed to the server stub, which will turn it into
a SOAP response.

5. The SOAP response is sent over a
network using the HTTP protocol. The client
stub receives the SOAP response and turns it into
something the client application can understand.

6. Finally the application receives the
result of the Web Service invocation and uses
it[10].
Our e-health work in [19] follows the procedures
outlines above.

VII CREATING WEB SERVICE

Web services have the potential to

dramatically simplify the way distributed
applications are built. They might even lead to a
new generation of applications that seamlessly
integrate multiple remote services into a single
web page or desktop interface. However, the
greatest programming concept in the world is
doomed to fail if it isn’t supported by powerful,
flexible tools that make its use not only possible
but also convenient. Fortunately, ASP.NET
doesn’t disappoint. It provides classes that allow
creating a web[11]. And Microsoft .NET
marketing has created a huge hype about its Web
Services[13]. Also, The IBM has given a lot of
codes to the Apache group called the Apache
AXIS which features better performance and
makes it to play important role in the creating of

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

101

Web Service and the Java 2 Platform code
among others.

A. Limitations of Web Service Solutions
Web Services solutions provide functional
interoperability using standards like SOAP and
WSDL. Web Services are described using
WSDL, but WSDL does not support operational
semantic. Web Services do not support message
semantic [20]. In order to support operational
and message semantics, semantic web services is
required

B. Semantic Web Service Solution
Semantic Web Service Solution use Semantic
mediation/reconciliation to convert healthcare
messages defined in one standard format into
another as realized with the scope of the Artemis
project [20]. Archetype based semantic
interoperability of EHR standards as realized
within the scope of Artemis is a viable solution
approach. HL7 categorization of healthcare
events are used to annotate web services
functionality because it exposes the business
logic as proposed in Artemis. Web Services
messages can be semantically enriched using
Archetypes as proposed in Artemis [20].

VIII OUR PROPOSED MODEL OF WEB

SERVICES FOR E-HEALTH
SERVICES PROVISIONING

Figure 4 shows the overall system architecture

of the proposed infrastructure. The diagram
shows how the components are logically and
functionally related. The design is such that
applications in each module could invoke the
services linked to it without human intervention.
Modules indicated as Web Services would be
hosted by our local server while External Web
Services may exist as Internet services to be
invoked at runtime. The overall functional
structure of the framework is summarised as
follows: E-health services are automatically
detected by user’s mobile devices. A patient
requests E-health services and selects from the
list of services offered. The capability of the
patient to pay for service through the National or
Regional health insurance scheme is ascertained
either by authenticating the user’s credentials in
the health insurance database or by registering
him/her as a new insurance holder. If the patient
is not registered and cannot be newly registered

on the health insurance scheme, the request for e-
health services is rejected. If insurance
authentication is valid, the e-health service is
granted. The e-health services could be as simple
as a patient-doctor consultation interaction and
drug recommendation and delivery from the
pharmacy to the patient’s doorstep (the parcel
delivery services handles this). Services could
involve some other healthcare practitioners such
as medical laboratory diagnosis. In this case the
patient would have to visit a medical lab or the
service is brought to him. The results of any such
secondary care would be loaded to patient’s
online medical record to enable next level of
medical care. It is assumed that patient’s medical
history is available for anywhere/anytime access
to facilitate the healthcare services.
(Figure 4: Model of the Proposed Web Services
Oriented E-health Framework at page 100)

IX CONCLUSION

Currently, first-generation web services are
being used to bridge the gap between modern
applications and older technologies. For
example, an organization might use a web
service to provide access to a legacy database.
Internal applications can then contact the web
service instead of needing to interact directly
with the database, which could be much more
difficult. Similar techniques are being used to
allow different applications to interact. For
example, web services can act as a kind of
“glue” that allows a payroll system to interact
with another type of financial application in the
same company. Second-generation web services
are those that allow partnering companies to
work together. For example, an e-commerce
company might need to submit orders or track
parcels through the web service provided by a
shipping company. Second-generation web
services require two companies to work closely
together to devise a strategy for exposing the
functionality they each need. Second-generation
web services are in their infancy but are gaining
ground quickly.

The third generation of web services will
allow developers to create much more modular
applications by aggregating many different
services into one application. For example, you
might add a virtual hard drive to your web
applications using a third-party web service. You
would pay a subscription fee to the web service
provider, but the end user wouldn’t be aware of
what application functionality is provided by you

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

102

and what functionality relies on third-party web
services. This third generation of web services
will require new standards and enhancements
that will allow web services to better deal with
issues such as reliability, discovery, and
performance. These standards are constantly
evolving, and it’s anyone’s guess how long it
will be before third-generation web services
begin to flourish, but it’s probably just a matter
of time. Already, one can use third-party web
services from companies such as eBay, Amazon,
and Google.

These web services act as part of a value-
added proposition and may eventually evolve
into separate cost based services. E-health care
delivery system will thrive well on third
generation web services. Currently, we are
developing a number of web services
applications to facilitate e-health care delivery
especially for the African continent.
Interoperability, state management and
Security/privacy among others issues are of
serious concern in this research direction.

REFERENCES

[1] Lakshmi Ananthamurthy (2008): “Introduction
to Web Service.” Available at
http://www.developer.com/services/article.php/1
485821

[2] Tony Baer, Ron Schmelzer: “The Elements of
Web Services” (Application Development
Trends, 2 December 2002), available at
http://adtmag.com/articles/2002/11/30/the-
elements-of-web-services.aspx

[3] http:www.dev2dev.bea.com. Official website for
the Developer.

[4] V. Vasuderan (2001): A Web Services Primer,
available online at
http://webservices.xml.com/pub/a/ws/2001/04/04
/webservices/

[5] Wikipaedia (2008)
[6] M. Paolucci et al. (2002): “Semantic Matching of

Web Services Capabilities,” Proc. Int’l Semantic
Web Conf. (ISWC), LNCS 2342, Springer
Verlag, 2002, pp. 333-347.

[7] Dieter Fensel, Uwe Keller, Holger Lausen, Axel
Polleres and Ioan Toma (2005): “WWW OR
WHAT IS WRONG WITH WEB SERVICE
DISCOVERY,” Position Paper for the Workshop
on Frameworks for Semantics in Web Services,
Innsbruck, Austria, June 2005, available at
http://www.w3.org/2005/04/FSWS/Submissions/
50/WWW_or_What_is_Wrong_with_Web_servi
ce_Discovery.pdf.

[8] C. Preist (2004): “A Conceptual Architecture for
Semantic Web Services,” in Proceedings of the
International Semantic Web Conference 2004
(ISWC 2004), November 2004 available at
http://www.hpl.hp.com/techreports/2004/HPL-
2004-215.pdf.

[9] Z. Baida, et ‘al (2004): “A Shared Service
Terminology for Online Service Provisioning,”
Proceedings of the Sixth International
Conference on Electronic Commerce (ICEC04),
Delft, The Netherlands.

[10] http://ww.gdp.globus.org
[11] M. MacDonald(2005): Beginning ASP.Net 2.0

in C#
[12] Mc Grawhill Company Inc.(2005): “What the

heck are Web Services?” Business Week
[13] C. Peiris (2005): “Creating a .net Web Service,”

Caulfield, Australia.
[14] D. Almaer (2002): “Creating Web Services

with Apachel Axis,” O’ Reilly Inc.
[15] Miyoo Tsanang Yves Stephan (November

2006): “Entwurf eines Web Services basiertes
Workflow Management System (WfMS)”,
available at

 http://iaks-www.ira.uka.de/calmet/stdip/DA-
Miyoo-final.pdf

[16] S. Geric, et’ al (2006): “Prerequisites for
successful Imlementation of Service-Oriented
Architecture,” Varazdin, Croatia.

[17] D, Hunter, et’ al (2007): Beginging XML, 4th
Edition, Wiley, Indiana, Canada.

[18] Emuoyibofarhe O.J., Lasisi O.A. and Oladosu
J.B., “Towards the Semantic HealthGrid: A
Pharmaceutical Ontology Development,” in
proceedings of Second International Conference
on Application of Information and
Communication Technologies to Teaching,
Research and Administration; 2007; pp. 14 – 22.

[19] John B. Oladosu, John T. Bamigbala, Samuel
O. Adetutu and Justice O. Emuoyibofarhe,
(2008): “A Yoruba-English Language Translator
for E-Health Care Delivery System via Doctor
Patient Mobile Chat Application on Mobile
Devices (Pdas),” in under review.

[20] Olugbara, O.O., (2007): “Requirements
Engineering Framework for Information Utility
Infrastructure for Rural e-Healthcare Service
Provisioning”, Ph.D. Research Proposal Centre
for Mobile e-Services for Development,
Department of Computer Science, University of
Zululand, RSA.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

103

Figure 4: Model of the Proposed Web Services Oriented E-health Framework

