
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

77

DEVELOPING A COMPLEXITY METRIC FOR INNER
CLASSES

1SIM HUI TEE, 2RODZIAH ATAN, 3ABDUL AZIM ABD GHANI

1Faculty of Creative Multimedia, Multimedia University, Cyberjaya, Malaysia
2,3Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Malaysia

E-mail: shtee@mmu.edu.my

ABSTRACT

In some of the object-oriented programming languages such as Java, a regular class could contain one or
more nested classes. These nested classes are called inner classes which are supposed to carry out more
specific tasks for their outer class. However, extensive use of inner classes would result in increasing
program complexity and costly maintenance. We propose a complexity metric to measure the complexity
extent of inner classes. Our metric is able to measure the complexity of inner classes in term of breadth and
depth.

Keywords: Inner class, outer class, object-oriented programming, program complexity

1. INTRODUCTION

Inner classes are special type of classes which
are defined within the body of a regular class [1].
They are used as assistant classes in certain
programming languages such as Java. The role of
inner classes is to assist the containing outer class
in performing a specific task. An inner class is an
element of its outer class. Defining inner classes in
an outer class may reduce the total number of outer
classes in a software application. Large amount of
predefined inner classes in Java Swing [2] is an
indication of its significance in modern
programming.

An inner class shares all the features of a regular

class. It can contain attributes, methods,
constructors, and data type. In addition, an inner
class is able to inherit or to be inherited. Interface
implementation is also allowed at the level of inner
classes. Furthermore, an inner class can be defined
as abstract or final, as a regular class does.

However, extensive use of inner classes in an

outer class may lead to program complexity. It
increases the difficulty in program comprehension
and maintenance. Furthermore, extensive use of
inner classes tends to result in low class cohesion.

To date, the significance of the complexity of

inner classes has not been recognized by software
practitioners. In this research, we investigate the
complexity of inner classes from the perspective of
breadth and depth. We propose a new complexity

metric to evaluate the extent of complexity of inner
classes.
2. COMPLEXITY OF REGULAR CLASSES

A regular class consists of attributes, methods

and constructors. The complexity of a regular class
tends to increase when its elements increase. One
of the common ways in evaluating the class
complexity is by probing into the size of class.
Line of code (LOC) is a common measure for the
class size that is used in software estimation and
maintenance. Code complexity correlates with
program size measured by lines of code [3][4][12].
The higher level of complexity requires more
efforts in maintaining the software [5][8][9][10].

There is no consensus on the idea that class size

is necessarily resulting in class complexity.
Grimstad and Jørgensen hold that size and
complexity are two distinct parameters of a
program element [6]. Furthermore, size-based
models (especially LOC-based) has received strong
criticism on their requirement of the class size
estimation for future system. The critics hold that
the lines of code of the future system are
unpredictable [7]. They urge software practitioners
to estimate effort than size [7].

The efforts in maintaining a software application

can be reflected in the degree of complexity of
classes [11]. The complexity of classes is not
wholly relying on the class size, but also
determined by the structural and functional
relationship among class elements.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

78

Figure 1 provides a complexity comparison
between three classes in term of internal class

structure.

Figure 1: Structural complexity of three classes in UML

 Figure 1 (a) is a regular class named ClassA

which consists of an attribute. It is less complex as
compared to ClassB in Figure 1 (b), as the latter
class has two additional methods which are not
possessed by ClassA. However, ClassC in Figure 1
(c) is more complex than Figure 1 (a) and 1 (b)
because it inherits from a superclass named
MyBase and contains three elements. The UML
representation of three classes in Figure 1 depicts
the class complexity from the perspective of class
structure, which does not take LOC into
consideration.

Apart from the structural complexity of classes,

the complexity of a class may be evaluated from
the perspective of internal function. Functional
complexity of a class is evaluated based on the
functional relatedness among class elements. It
exhibits the ways of functional relatedness among
attributes, methods, and constructors.

In Figure 2, two distinct classes are given for the

analysis of their functional complexity.

Figure 2: Functional complexity of two classes in Java

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

79

Figure 2(a) is a class named Zoo which consists
of one attribute, constructor and method,
respectively. Class elements are functionally
related in the sense that attribute animal_no is
initialized in constructor and returned in method
getAnimalNumber(). Hence, the functional
complexity in class Zoo involves only the two
interactions, which are attribute-constructor and
attribute-method. Figure 2(b) depicts a class
named Scores which consists of three attributes,
one constructor and three methods. Each attribute
is referenced twice, by constructor and one of the
methods. The functional complexity in class
Scores involves six interactions, which are three
attribute-constructor interactions and another three
attribute-method interactions. Comparing the
functional complexity between class Zoo and class
Scores, it is apparent that the latter class is more
complex because it has more functional
interactions. It should be noted that the degree of
functional complexity is higher in the event that
more class element interaction is found in a class.

3. COMPLEXITY OF INNER CLASSES

An inner class is defined in an outer class, as

shown in Figure 3.

Figure 3(a) depicts a simplest form of inner class

named Log which is defined within its outer class
Task. Inner class Log is an element of its outer
class. In Figure 3(b), class Vehicle contains three
inner classes, which are BrakeSystem, Engine, and
SafetyMechanism at the same breadth. These inner
classes are defined at the same level of depth,
which can be represented by Figure 4 (a). Figure

3(c) depicts an outer class Duty which contains an
immediate inner class named Cleaning. Cleaning
contains an immediate inner class named
HouseCleaning. Lastly, HouseCleaning contains
an immediate inner class named RoomCleaning. It
is to be noted that the inner classes in Figure 3(c)
are defined at different level of depth, as
represented in Figure 4(b).

Figure 3: Examples of inner class
.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

80

Figure 4: Depth level of inner classes.

Figure 4 is a diagram of depth level of the inner

classes. Figure 4(a) illustrates two levels of class
depth for the program in Figure 3(b). The outer
class Vehicle is defined at the first level whereas
inner classes BrakeSystem, Engine and
SafetyMechanism are defined at level 2. It can also
be said that all of the inner classes are defined at
the same breadth under class Vehicle.

Figure 4(b) illustrates four levels of class depth

for the program in Figure 3(c). All inner classes
are defined at different breadth and depth. The
inner-most level of inner class in Figure 4(b) is
RoomCleaning, which is immediately defined
within HouseCleaning. The multi-depth structure
of inner classes in Figure 4(b) implies that the
farthest level (level 4) is distantly related to the
root level (level 1, which is the outer class).

It is a normal practice to define inner classes at

different breadth and depth, which is the hybrid of
Figure 4(a) and 4(b). Our research considers the
complexity of inner classes in term of breadth and
depth. Figure 5 illustrates an example of inner
classes which are defined at different breadth and
depth.

In Figure 5, Expenditure is an outer class which
contains three immediate inner classes at level 2,
which include LoanPayment, LuxuryExpenses, and
LivingExpenses. These three inner classes are
defined at the same breadth and do not overlap.
Inner class LoanPayment does not contain further
inner class. Inner class LuxuryExpenses contains
an immediate inner class named TourExpenses at
depth level 3.

Figure 5: Inner classes defined at multiple

breadth and depth

 It should be noted that TourExpenses is

indirectly contains within the outer class
Expenditure (level 1), but it does not contain within
LoanPayment and LivingExpenses (level 2). Inner
class LivingExpenses contains two immediate inner
classes at level 3, which are FoodExpenses and
UtilitiesExpenses. FoodExpenses has no further
inner class but UtilitiesExpenses contains one inner
class, namely WaterBill, at level 4.

In our research, we propose a complexity metric

by taking the breadth and depth of inner classes
into consideration. We define our complexity

metric (C) for inner classes as

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

81

Where b denotes the breadth of a particular depth
level, d denotes the depth level. The complexity
value for inner classes is derived from the sum of
breadth to depth ratio of the classes. In the event
that there is no inner class defined in a regular class,
the complexity metric(C) for that class is minimal,
which is 1, as illustrated in Figure 6.

Figure 6: Minimal inner class complexity value.

Class X in Figure 6 has no inner class. Thus, its

complexity value (for inner class) is the lowest,
which is 1. Class X is defined at depth level 1,
where there is only one class at this depth. Our
complexity metric only measures the complexity
caused by inner classes. We do not consider class
complexity in term of LOC, method-attribute
interaction or other factors.

Figure 7 to 12 provide examples of inner classes

which are different in term of breath and depth.
Their complexity value is provided based on our
proposed metric. As the complexity value
increases, the program becomes more complex in
term of the inner class.

Figure 7: Inner class complexity value =1.5

Figure 7 demonstrates an outer class A which

contains an inner class B. There is only one class
(b1) at the depth level 1 (d1). The inner class B is

defined at depth level 2 (d2), where the breadth (b2)
is 1. The obtained inner class complexity value,
1.5, is derived from the sum of breadth to depth
ratio of the classes. Program in Figure 7 has higher
complexity value as compared to program in
Figure 6, implying that the former has more
complex inner class.

Figure 8: Inner class complexity value=2

Program in Figure 8 consists of two levels of

depth. Inner class Goo and Hoo are defined at the
same breadth at d2. The complexity value for inner
classes in Figure 8 is higher than the program in
Figure 6 and 7. It is because class Foo has more
inner classes than class X and A.

Figure 9: Inner class complexity value=2.5

In Figure 9, class CW consists of three inner

classes at the same breadth at d2. Its complexity
value is higher than that of class Foo (in Figure 8)
because it has more inner classes.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

82

Figure 10: Inner class complexity value=2.33

Class P in Figure 10 has equal number of inner

classes as class CW (Figure 9) does. However,
class P has three level of depth, as class CW has
two. The complexity value for class P is lower
than class CW because wider breadth (b2) of class
CW at d2 implies higher degree of functional
irrelevance among inner classes CX, CY, CZ.

It is interesting to compare class J in Figure 11

with class P in Figure 10. Both outer classes have
similar structural arrangement of inner classes.
There is one inner class at d2 contains an inner
class at d3, in Figure 10 and 11. Structural
similarity between outer class P and J implies the
same complexity value, which is 2.33.

Figure 11: Inner class complexity value=2.33

Lastly, class CA in Figure 12 has two inner

classes (CB and CC) at d2. Each of them contains
one inner class at d3. It is the most complex
program as highest complexity value (2.67) is
yielded.

Figure 12: Inner class complexity value=2.67

Based on the programs given from Figure 6 to 12,

our metric suggests that the lowest inner class
complexity value is 1 when there is no inner class
defined within an outer class (Figure 6). Our
metric also suggests that the breadth of inner class
has more impact on greater complexity value than
the depth does (Figure 9 and 10). It is because
more inner classes defined at the same breadth
would increase the number of functionally
unrelated inner classes. Lastly, our metric does not
assume a ceiling complexity value for inner classes.
However, software developers are advised to keep
the complexity value for their inner classes as low
as possible.

4. CONCLUSION

Increasing complexity and maintenance effort
are the inevitable consequences incurred by the
extensive use of inner classes in a software
application. We have developed a complexity
metric for the inner classes. Our metric measures
the complexity from the perspective of breadth and
depth of inner classes. Software developers may
use our complexity metric as a guideline to reduce
inner class complexity in their daily job.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

83

REFERENCES

[1] C. Horstmann and G. Cornell. Core Java 2.

USA: Prentice Hall. 2004.

[2] M. Robinson and P. Vorobiev. Swing. USA:

Manning Publications Co. 2003.

[3] N. Nagappan, L. Williams, M. Vouk, and J.

Osborne, “ Early Estimation of Software
Quality Using In-Process Testing Metrics: A
Controlled Case Study”, WoSQ’05, May 17
2005, pp. 1-7.

[4] J. Asundi, “The Need for Effort Estimation

Models for Open Source Software Projects”,
Firth Workshop on Open Source Software
Engineering (5-WOSSE), 2005, pp 1- 3.

[5] M. Korte and D. Port, “Confidence in Software

Cost Estimation Results Based on MMRE and
PRED”, PROMISE’08, May 12-13, 2008, pp
63-70.

[6] S. Grimstad and M. Jørgensen, “A Framework

for the Analysis of Software Cost Estimation
Accuracy”, ISESE’06, September 21-22, 2006,
pp 58-65.

[7] J. Aranda and S. Easterbrook, “Anchoring and

Adjustment in Software Estimation”, ESEC-
FSE’05, September 5-9, 2005, pp 346-355.

[8] R.D. Banker and S.A. Slaughter, “The

Moderating Effects of Structure on Volatility
and Complexity in Software Enhancement”,
Information Systems Research, Vol 11, 2000,
pp 219-240.

[9] J. Rech and W. Schäfer, “Visual Support of

Software Engineers during Development and
Maintenance”, ACM SIGSOFT Software
Engineering Notes, Vol 32 No. 2, March
2007, pp1-3.

[10] Y. Kataoka, T. Imai, H. Andou, and T.

Fukaya, “A Quantitative Evaluation of
Maintainability Enhancement by
Refactoring”, Proceedings of the
International Conference on Software
Maintenance (ICSM’02), 2002, pp1-10.

[11] K.K. Aggarwal, Y. Singh, and J.K. Chhabra,

“An Integrated Measure of Software

Maintainability”, Annual Proceedings of
Reliability and Maintainability Symposium,
2002, pp235-241.

[12] I. Heitlager, T. Kuipers, and J. Visser, “A

Practical Model for Measuring
Maintainability”, Sixth International
Conference on the Quality of Information
and Communications Technology (QUATIC),
2007, pp30-39.

