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ABSTRACT 
 
In some of the object-oriented programming languages such as Java, a regular class could contain one or 
more nested classes.  These nested classes are called inner classes which are supposed to carry out more 
specific tasks for their outer class.  However, extensive use of inner classes would result in increasing 
program complexity and costly maintenance.  We propose a complexity metric to measure the complexity 
extent of inner classes.  Our metric is able to measure the complexity of inner classes in term of breadth and 
depth.   
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1.  INTRODUCTION 
  

Inner classes are special type of classes which 
are defined within the body of a regular class [1].  
They are used as assistant classes in certain 
programming languages such as Java.  The role of 
inner classes is to assist the containing outer class 
in performing a specific task.  An inner class is an 
element of its outer class.  Defining inner classes in 
an outer class may reduce the total number of outer 
classes in a software application.  Large amount of 
predefined inner classes in Java Swing [2] is an 
indication of its significance in modern 
programming. 

 
An inner class shares all the features of a regular 

class.  It can contain attributes, methods, 
constructors, and data type.  In addition, an inner 
class is able to inherit or to be inherited.  Interface 
implementation is also allowed at the level of inner 
classes.  Furthermore, an inner class can be defined 
as abstract or final, as a regular class does. 

 
However, extensive use of inner classes in an 

outer class may lead to program complexity.  It 
increases the difficulty in program comprehension 
and maintenance.  Furthermore, extensive use of 
inner classes tends to result in low class cohesion. 

 
To date, the significance of the complexity of 

inner classes has not been recognized by software 
practitioners.  In this research, we investigate the 
complexity of inner classes from the perspective of 
breadth and depth.  We propose a new complexity 

metric to evaluate the extent of complexity of inner 
classes. 
2.  COMPLEXITY OF REGULAR CLASSES 

 
A regular class consists of attributes, methods 

and constructors.  The complexity of a regular class 
tends to increase when its elements increase.  One 
of the common ways in evaluating the class 
complexity is by probing into the size of class.   
Line of code (LOC) is a common measure for the 
class size that is used in software estimation and 
maintenance.  Code complexity correlates with 
program size measured by lines of code [3][4][12].  
The higher level of complexity requires more 
efforts in maintaining the software [5][8][9][10]. 

 
There is no consensus on the idea that class size 

is necessarily resulting in class complexity.  
Grimstad and Jørgensen hold that size and 
complexity are two distinct parameters of a 
program element [6].  Furthermore, size-based 
models (especially LOC-based) has received strong 
criticism on their requirement of the class size 
estimation for future system.  The critics hold that 
the lines of code of the future system are 
unpredictable [7].  They urge software practitioners 
to estimate effort than size [7]. 

 
The efforts in maintaining a software application 

can be reflected in the degree of complexity of 
classes [11].  The complexity of classes is not 
wholly relying on the class size, but also 
determined by the structural and functional 
relationship among class elements.   
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Figure 1 provides a complexity comparison 
between three classes in term of internal class 

structure. 
 

 
Figure 1: Structural complexity of three classes in UML 

 
 Figure 1 (a) is a regular class named ClassA 

which consists of an attribute.  It is less complex as 
compared to ClassB in Figure 1 (b), as the latter 
class has two additional methods which are not 
possessed by ClassA.  However, ClassC in Figure 1 
(c) is more complex than Figure 1 (a) and 1 (b) 
because it inherits from a superclass named 
MyBase and contains three elements.  The UML 
representation of three classes in Figure 1 depicts 
the class complexity from the perspective of class 
structure, which does not take LOC into 
consideration. 

 
Apart from the structural complexity of classes, 

the complexity of a class may be evaluated from 
the perspective of internal function.  Functional 
complexity of a class is evaluated based on the 
functional relatedness among class elements.  It 
exhibits the ways of functional relatedness among 
attributes, methods, and constructors. 

 
In Figure 2, two distinct classes are given for the 

analysis of their functional complexity. 
 

Figure 2: Functional complexity of two classes in Java 
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Figure 2(a) is a class named Zoo which consists 
of one attribute, constructor and method, 
respectively.  Class elements are functionally 
related in the sense that attribute animal_no is 
initialized in constructor and returned in method 
getAnimalNumber( ).  Hence, the functional 
complexity in class Zoo involves only the two 
interactions, which are attribute-constructor and 
attribute-method.  Figure 2(b) depicts a class 
named Scores which consists of three attributes, 
one constructor and three methods.  Each attribute 
is referenced twice, by constructor and one of the 
methods.  The functional complexity in class 
Scores involves six interactions, which are three 
attribute-constructor interactions and another three 
attribute-method interactions.  Comparing the 
functional complexity between class Zoo and class 
Scores, it is apparent that the latter class is more 
complex because it has more functional 
interactions.  It should be noted that the degree of 
functional complexity is higher in the event that 
more class element interaction is found in a class. 
 
 

3.  COMPLEXITY OF INNER CLASSES 
 
An inner class is defined in an outer class, as 

shown in Figure 3. 
 
Figure 3(a) depicts a simplest form of inner class 

named Log which is defined within its outer class 
Task.  Inner class Log is an element of its outer 
class.  In Figure 3(b), class Vehicle contains three 
inner classes, which are BrakeSystem, Engine, and 
SafetyMechanism at the same breadth.  These inner 
classes are defined at the same level of depth, 
which can be represented by Figure 4 (a).  Figure  

 
3(c) depicts an outer class Duty which contains an 
immediate inner class named Cleaning.  Cleaning 
contains an immediate inner class named 
HouseCleaning.  Lastly, HouseCleaning contains 
an immediate inner class named RoomCleaning.  It 
is to be noted that the inner classes in Figure 3(c) 
are defined at different level of depth, as 
represented in Figure 4(b). 

 
 

 
 

Figure 3: Examples of inner class
. 
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Figure 4: Depth level of inner classes. 

 
Figure 4 is a diagram of depth level of the inner 

classes.  Figure 4(a) illustrates two levels of class 
depth for the program in Figure 3(b).  The outer 
class Vehicle is defined at the first level whereas   
inner classes BrakeSystem, Engine and 
SafetyMechanism are defined at level 2.  It can also 
be said that all of the inner classes are defined at 
the same breadth under class Vehicle.     

 
Figure 4(b) illustrates four levels of class depth 

for the program in Figure 3(c).  All inner classes 
are defined at different breadth and depth.  The 
inner-most level of inner class in Figure 4(b) is 
RoomCleaning, which is immediately defined 
within HouseCleaning.  The multi-depth structure 
of inner classes in Figure 4(b) implies that the 
farthest level (level 4) is distantly related to the 
root level (level 1, which is the outer class). 

 
It is a normal practice to define inner classes at 

different breadth and depth, which is the hybrid of 
Figure 4(a) and 4(b).  Our research considers the 
complexity of inner classes in term of breadth and 
depth.  Figure 5 illustrates an example of inner 
classes which are defined at different breadth and 
depth. 

In Figure 5, Expenditure is an outer class which 
contains three immediate inner classes at level 2, 
which include LoanPayment, LuxuryExpenses, and 
LivingExpenses.  These three inner classes are 
defined at the same breadth and do not overlap.  
Inner class LoanPayment does not contain further 
inner class.  Inner class LuxuryExpenses contains 
an immediate inner class named TourExpenses at 
depth level 3. 

 
Figure 5: Inner classes defined at multiple  

breadth and depth 
 
  It should be noted that TourExpenses is 

indirectly contains within the outer class 
Expenditure (level 1), but it does not contain within 
LoanPayment and LivingExpenses (level 2).  Inner 
class LivingExpenses contains two immediate inner 
classes at level 3, which are FoodExpenses and 
UtilitiesExpenses.  FoodExpenses has no further 
inner class but UtilitiesExpenses contains one inner 
class, namely WaterBill, at level 4. 

 
In our research, we propose a complexity metric 

by taking the breadth and depth of inner classes 
into consideration.  We define our complexity 

metric (C) for inner classes as      
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Where b denotes the breadth of a particular depth 
level, d denotes the depth level.  The complexity 
value for inner classes is derived from the sum of 
breadth to depth ratio of the classes.  In the event 
that there is no inner class defined in a regular class, 
the complexity metric(C) for that class is minimal, 
which is 1, as illustrated in Figure 6. 

 

 
Figure 6: Minimal inner class complexity value. 
 
Class X in Figure 6 has no inner class.  Thus, its 

complexity value (for inner class) is the lowest, 
which is 1.  Class X is defined at depth level 1, 
where there is only one class at this depth.  Our 
complexity metric only measures the complexity 
caused by inner classes.  We do not consider class 
complexity in term of LOC, method-attribute 
interaction or other factors. 

 
Figure 7 to 12 provide examples of inner classes 

which are different in term of breath and depth.  
Their complexity value is provided based on our 
proposed metric.  As the complexity value 
increases, the program becomes more complex in 
term of the inner class. 

 

 
Figure 7: Inner class complexity value =1.5 
 
Figure 7 demonstrates an outer class A which 

contains an inner class B.  There is only one class 
(b1) at the depth level 1 (d1).  The inner class B is 

defined at depth level 2 (d2), where the breadth (b2) 
is 1.  The obtained inner class complexity value, 
1.5, is derived from the sum of breadth to depth 
ratio of the classes.  Program in Figure 7 has higher 
complexity value as compared to program in 
Figure 6, implying that the former has more 
complex inner class.  

 
 

 
Figure 8: Inner class complexity value=2 
 
Program in Figure 8 consists of two levels of 

depth.  Inner class Goo and Hoo are defined at the 
same breadth at d2.  The complexity value for inner 
classes in Figure 8 is higher than the program in 
Figure 6 and 7.  It is because class Foo has more 
inner classes than class X and A. 

 

 
Figure 9: Inner class complexity value=2.5 
 
In Figure 9, class CW consists of three inner 

classes at the same breadth at d2.  Its complexity 
value is higher than that of class Foo (in Figure 8) 
because it has more inner classes.  

 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 

 
82 

 

 
Figure 10: Inner class complexity value=2.33  
 
Class P in Figure 10 has equal number of inner 

classes as class CW (Figure 9) does.  However, 
class P has three level of depth, as class CW has 
two.  The complexity value for class P is lower 
than class CW because wider breadth (b2) of class 
CW at d2 implies higher degree of functional 
irrelevance among inner classes CX, CY, CZ.  

 
It is interesting to compare class J in Figure 11 

with class P in Figure 10.  Both outer classes have 
similar structural arrangement of inner classes.  
There is one inner class at d2 contains an inner 
class at d3, in Figure 10 and 11.  Structural 
similarity between outer class P and J implies the 
same complexity value, which is 2.33. 

 

 
Figure 11: Inner class complexity value=2.33 

 
Lastly, class CA in Figure 12 has two inner 

classes (CB and CC) at d2.  Each of them contains 
one inner class at d3.  It is the most complex 
program as highest complexity value (2.67) is 
yielded. 

 
 

 
Figure 12: Inner class complexity value=2.67 
 
Based on the programs given from Figure 6 to 12, 

our metric suggests that the lowest inner class 
complexity value is 1 when there is no inner class 
defined within an outer class (Figure 6).  Our 
metric also suggests that the breadth of inner class 
has more impact on greater complexity value than 
the depth does (Figure 9 and 10).  It is because 
more inner classes defined at the same breadth 
would increase the number of functionally 
unrelated inner classes.  Lastly, our metric does not 
assume a ceiling complexity value for inner classes.  
However, software developers are advised to keep 
the complexity value for their inner classes as low 
as possible. 
 
4.  CONCLUSION 
 

Increasing complexity and maintenance effort 
are the inevitable consequences incurred by the 
extensive use of inner classes in a software 
application.  We have developed a complexity 
metric for the inner classes.  Our metric measures 
the complexity from the perspective of breadth and 
depth of inner classes.  Software developers may 
use our complexity metric as a guideline to reduce 
inner class complexity in their daily job. 
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