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ABSTRACT 
 

Classification is one of the most important tasks for different application such as text categorization, tone 
recognition, image classification, micro-array gene expression, proteins structure predictions, data 
Classification etc. Most of the existing supervised classification methods are based on traditional statistics, 
which can provide ideal results when sample size is tending to infinity. However, only finite samples can 
be acquired in practice.  In this paper, a novel learning method, Support Vector Machine (SVM), is applied 
on different data (Diabetes data, Heart Data, Satellite Data and Shuttle data) which have two or multi class. 
SVM, a powerful machine method developed from statistical learning and has made significant 
achievement in some field. Introduced in the early 90’s, they led to an explosion of interest in machine 
learning. The foundations of SVM have been developed by Vapnik and are gaining popularity in field of 
machine learning due to many attractive features and promising empirical performance. SVM method does 
not suffer the limitations of data dimensionality and limited samples [1] & [2]. 
     In our experiment, the support vectors, which are critical for classification, are obtained by learning 
from the training samples. In this paper we have shown the comparative results using different kernel 
functions for all data samples. 
 
Keywords: Classification, SVM, Kernel functions, Grid search. 
 
1. INTRODUCTION  
 

The Support Vector Machine (SVM) was first 
proposed by Vapnik and has since attracted a high 
degree of interest in the machine learning research 
community [2]. Several recent studies have 
reported that the SVM (support vector machines) 
generally are capable of delivering higher 
performance in terms of classification accuracy 
than the other data classification algorithms. Sims 
have been employed in a wide range of real world 
problems such as text categorization, hand-written 
digit recognition, tone recognition, image 
classification and object detection, micro-array 
gene expression data analysis, data classification. It 
has been shown that Sims is consistently superior to 
other supervised learning methods. However, for 
some datasets, the performance of SVM is very 
sensitive to how the cost parameter and kernel 
parameters are set. As a result, the user normally 
needs to conduct extensive cross validation in order 
to figure out the optimal parameter setting. This  

 
 

 
process is commonly referred to as model selection. 
One practical issue with model selection is that this 
process is very time consuming. We have 
experimented with a number of parameters 
associated with the use of  the SVM algorithm that 
can impact the results. These parameters include 
choice of kernel functions, the standard deviation of 
the Gaussian kernel, relative weights associated 
with slack variables to account for the non-uniform 
distribution of labeled data, and the number of 
training examples. 

 For example, we have taken four different 
applications data set such as diabetes data, heart 
data and satellite data which all have different 
features, classes, number of training data and 
different number of testing data. These all data 
taken from RSES data set and 
http://www.ics.uci.edu/~mlearn/MLRepository.htm
l [5]. This paper is organized as follows. In next 
section, we introduce some related background 
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including some basic concepts of SVM, kernel 
function selection, and model selection (parameters 
selection) of SVM. In Section 3, we detail all 
experiments results. Finally, we have some 
conclusions and feature direction in Section 4. 
 
2. SUPPORT VECTOR MACHINE  
 

In this section we introduce some basic concepts 
of SVM, different kernel function, and model 
selection (parameters selection) of SVM. 
 
2.1 OVERVIEW OF SVM 
 
    SVMs are set of related supervised learning 
methods used for classification and regression [2]. 
They belong to a family of generalized linear 
classification. A special property of SVM is , SVM 
simultaneously minimize the empirical 
classification error and maximize the geometric 
margin. So SVM called Maximum Margin 
Classifiers. SVM is based on the Structural risk 
Minimization (SRM). SVM map input vector to a 
higher dimensional space where a maximal 
separating hyperplane is constructed. Two parallel 
hyperplanes are constructed on each side of the 
hyperplane that separate the data. The separating 
hyperplane is the hyperplane that maximize the 
distance between the two parallel hyperplanes. An 
assumption is made that the larger the margin or 
distance between these parallel hyperplanes the 
better the generalization error of the classifier will 
be [2]. 
We consider data points of the form   
 
{(x1,y1),(x2,y2),(x3,y3),(x4,y4)……….,(xn, yn)}. 
 
Where   yn=1 / -1 , a constant denoting the class to 
which that point xn belongs. n = number of 
sample. Each x n is p-dimensional real vector. The 
scaling is important to guard against variable 
(attributes) with larger varience. We can view this 
Training data , by means of the dividing (or 
seperating) hyperplane , which takes 
 

      w . x + b = o                    ----- (1) 
 
Where b is scalar and w is p-dimensional Vector. 
The vector w points perpendicular to the separating 
hyperplane . Adding the offset parameter b allows 
us to increase the margin. Absent of b, the 
hyperplane is forsed to pass through the origin , 
restricting the solution. As we are interesting in the 
maximum margin , we are interested SVM and the 

parallel hyperplanes. Parallel hyperplanes can be 
described by equation  
 
                       w.x + b = 1 
                       w.x + b = -1 
 
If the training data are linearly separable, we can 
select these hyperplanes so that there are no points 
between them and then try to maximize their 
distance. By geometry, We find the distance 
between the hyperplane is 2 / │w│. So we want to 
minimize │w│. To excite data points, we need to 
ensure that for all I either  
 
             w. xi – b ≥ 1   or   w. xi – b ≤ -1   
 
This can be written as                     
 
          yi ( w. xi – b) ≥1     ,  1 ≤ i ≤ n     ------(2) 
 
 

 
     Figure.1 Maximum margin hyperplanes for a 

SVM     trained with samples from two classes 
 

       Samples along the hyperplanes are called 
Support Vectors (SVs). A separating hyperplane 
with the largest margin defined by M = 2 / │w│ 
that is specifies support vectors means training 
data points closets to it.  Which satisfy?  
 
           y j [wT . x j + b] = 1   , i =1       -----(3) 
 
       Optimal Canonical Hyperplane (OCH) is a 
canonical Hyperplane having a maximum margin. 
For all the data, OCH should satisfy the following 
constraints 
  
      yi[wT . xi + b] ≥1    ;  i =1,2…l     ------(4) 
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Where l is Number of Training data point. In order 
to find the optimal separating hyperplane having a 
maximul margin, A learning macine should 
minimize ║w║2 subject to the inequality 
constraints 
                   
             yi [wT . xi + b] ≥ 1    ;  i =1,2…….l 
 
This optimization problem solved by the saddle 
points of the Lagrange’s Function             
                                            l 
 LP = L(w, b, α) = 1/2║w║2 -∑ αi  (yi (wT xi + b )-1) 
                                           i=1 
                                      
                                    l  

= 1/2 wT w -∑ αi  (yi(wT xi + b )-1) ---(5)  
                    i=1                                                                                                   

Where  αi is a Lagranges multiplier .The search for 
an optimal saddle points ( w0, b0, α0 ) is necessary 
because Lagranges must be minimized with respect 
to w and b and has to be maximized with respect to 
nonnegative αi (αi ≥ 0). This problem can be 
solved either in primal form (which is the form of 
w & b) or in a dual form (which is the form of  αi 
).Equation number (4) and (5) are convex and KKT 
conditions, which are necessary and sufficient 
conditions for a maximum of equation (4). 
Partially differentiate equation (5) with respect to 
saddle points ( w0, b0, α0 ). 
 

   ∂L / ∂w0 = 0        
                         l 
i .e           w0 = ∑ αi  yi   xi          -----------(6) 
                        i =1 
                                                                               
And           ∂L / ∂b0 = 0  

      l 
 i .e             ∑ αi  yi = 0               -----------(7) 
                  i =1 
Substituting equation (6) and (7) in equation (5). 
We change the primal form into dual form. 
 
                                 l 
 Ld (α) = ∑ αi  - 1/2 ∑ αi αj  yi yj  xi

T xj -------(8) 
                               i =1 
In order to find the optimal hyperplane, a dual 
lagrangian (Ld) has to be maximized with respect 
to nonnegative αi (i .e. αi must be in the 
nonnegative quadrant) and with respect to the 
equality constraints as follow 
                  
                 αi  ≥ 0      ,  i = 1,2…...l 
                                l 
                               ∑ αi  yi = 0 
                              i =1 

Note that the dual Lagrangian Ld(α) is expressed in 
terms of training data and depends only on the 
scalar products of input patterns (xi

T xj).More 
detailed information on SVM can be found in 
Reference no.[1]&[2]. 
 
2.2 KERNEL SELECTION OF SVM 
 

Training vectors xi are mapped into a higher 
(may be infinite) dimensional space by the 
function Ф. Then SVM finds a linear separating 
hyperplane with the maximal margin in this higher 
dimension space .C > 0 is the penality parameter of 
the error term. 

Furthermore, K(xi , xj) ≡ Ф(xi)T Ф(xj) is called 
the kernel function[2]. There are many kernel 
functions in SVM, so how to select a good kernel 
function is also a research issue.However, for 
general purposes, there are some popular kernel 
functions [2] & [3]:  
 

• Linear kernel: K (xi , xj) = xi
T xj. 

 
• Polynomial kernel: 

 K (xi , xj) = (γ xi
T xj + r)d      ,         γ > 0 

 
• RBF kernel : 

 K (xi , xj) = exp(-γ ║xi - xj║2)  ,    γ > 0 
 

• Sigmoid kernel:  
K (xi , xj) = tanh(γ xi

T xj + r) 
 

Here, γ, r and d are kernel parameters. In these 
popular kernel functions, RBF is the main kernel 
function because of following reasons [2]: 
 

1. The RBF kernel nonlinearly maps samples 
into a higher dimensional space unlike to 
linear kernel. 

2. The RBF kernel has less hyperparameters 
than the polynomial kernel. 

3. The RBF kernel has less numerical 
difficulties. 

 
2.3 MODEL SELECTION OF SVM 
 

Model selection is also an important issue in 
SVM. Recently, SVM have shown good 
performance in data classification. Its success 
depends on the tuning of several parameters which 
affect the generalization error. We often call this 
parameter tuning procedure as the model selection. 
If you use the linear SVM, you only need to tune 
the cost parameter C. Unfortunately, linear SVM 
are often applied to linearly separable problems. 
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Many problems are non-linearly separable. For 
example, Satellite data and Shuttle data are not 
linearly separable. Therefore, we often apply 
nonlinear kernel to solve classification problems, 
so we need to select the cost parameter (C) and 
kernel parameters (γ, d) [4] & [5]. 
          We usually use the grid-search method in 
cross validation to select the best parameter set. 
Then apply this parameter set to the training 
dataset and then get the classifier. After that, use 
the classifier to classify the testing dataset to get 
the generalization accuracy. 

 
3. INTRODUCTION OF ROUGH SET 
 

Rough set is a new mathematic tool to deal with 
un-integrality and uncertain knowledge. It can 
effectively .analyze and deal with all kinds of 
fuzzy, conflicting and incomplete information, and 
finds out the connotative knowledge from it, and 
reveals its underlying rules. It was first put forward 
by Z.Pawlak, a Polish mathematician, in 1982. In 
recent years, rough set theory is widely 
emphasized for the application in the fields of data 
mining and artificial intelligence. 

 
3.1 THE BASIC DEFINITIONS OF ROUGH 

SET 
 

Let S be an information system formed of 4 
elements 
 S = (U, Q, V, f) where  

  U - is a finite set of objects 
  Q - is a finite set of attributes 
   V- is a finite set of values of the attributes 
   f- is the information function so that: 
 

 f  : U ×  Q - V. 
 

     Let P be a subset of Q, P ⊆ Q, i.e. a subset of 
attributes. The indiscernibility relation noted by 
IND(P) is a relation defined as follows 
 
 IND(P) = {< x, y > ∈  U × U: f(x, a) = f(y, a), for 
all  a ∈  P} 
 
If < x, y > ∈   IND(P), then we can say that x and 
y are indiscernible for the subset of  P attributes. 
U/IND(P) indicate the object sets that are 
indiscernible for the subset of  P attributes. 
 
           U / IND(P)  = { U1,  U2, …….Um } 
      Where Ui  ∈   U, i = 1 to m is a set of 
indiscernible objects for the subset of P attributes 
and Ui  ∩  Uj = Ф,  i ,j = 1to m and  i≠   j. Ui  can 

be also called the equivalency class for the 
indiscernibility relation.    For X ⊆ U and P inferior 
approximation P1 and superior approximation P1 
are defined as follows 
 
         P1(X) = U{Y ∈  U/ IND(P): Y ⊆ Xl} 
 
         P1(X= U{Y ∈  U / INE(P): Y ∩ X  ≠  Ф } 
 
        Rough Set Theory is successfully used in 
feature selection and is based on finding a reduct 
from the original set of attributes. Data mining 
algorithms will not run on the original set of 
attributes, but on this reduct that will be equivalent 
with the original set. The set of attributes Q from 
the informational system S = (U, Q, V, f) can be 
divided into two subsets: C and D, so that C ⊂  Q, 
D ⊂  Q, C ∩ D = Ф. Subset C will contain the 
attributes of condition, while subset D those of 
decision. Equivalency classes U/IND(C) and 
U/IND(D) are called condition classes and decision 
classes 
    The degree of dependency of the set of attributes 
of decision D as compared to the set of attributes 
of condition C is marked with γc (D) and is defined 
by 
 

                               
 
        POSC (D) contains the objects from U which 
can be classified as belonging to one of the classes 
of equivalency U/IND(D), using only the attributes 
in C.  if   γc (D) = 1 then C determines D 
functionally. Data set U is called consistent if γc 
(D) = 1. POSC(D) is called the positive region of 
decision classes U/IND(D), bearing in mind the 
attributes of condition from C. 
         Subset R ⊂  C is a D-reduct of C if POSR (D) 
= POSC(D) and R has no R' subset, R' ⊂  R so that 
POSR’.(D) = POSR(D) . Namely, a reduct is a 
minimal set of attributes that maintains the positive 
region of decision classes U/IND(D) bearing in 
mind the attributes of condition from C. Each 
reduct has the property that no attribute can be 
extracted from it without modifying the relation of 
indiscernibility. For the set of attributes C there 
might exist several reducts. 
    The set of attributes that belongs to the 
intersection of all reducts of C set is called the core 
of C. 
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       An attribute a is indispensable for C if POSC 
(D) ≠  POSC[a] (D). The core of C is the union of   
all indispensable attributes in C. The core has two 
equivalent definitions. More detailed information 
on RSES can be found in .[1]&[2]. 

  

4 RESULTS OF EXPERIMENTS  

The classification experiments are conducted on  
different  data like Heart data, Diabetes data, 
Satellite data and Shuttle data. These data  taken 
from 
http://www.ics.uci.edu/~mlearn/MLRepository.htm
l   and RSES data sets . In these experiments, we 
done both method on different data set. Firstly,  Use 
LIBSVM with  different kernel linear , polinomial , 
sigmoid and RBF[5]. RBF kernel is employed. 
Accordingly, there are two parameters, the RBF 
kernel parameter γ and the cost parameter C, to be 
set. Table 1 lists the main characteristics of the 
three datasets used in the experiments. All three 
data sets, diabetes , heart, and satellite, are from the 
machine learning repository collection. In these 
experiments, 5-fold cross validation is conducted to 
determine the best value of different parameter C 
and  γ .The combinations of (C, γ) is the most 
appropriate for the given data classification 
problem with respect to prediction accuracy. The 
value of (C , γ) for all data set are shown in Table 1. 
Second, RSES Tool set is used for data 
classification with all data set using different 
classifier technique as Rule Based classifier, Rule 
Based classifier with Discretization, K-NN 
classifier and LTF (Local Transfer Function) 
Classifier. The hardware platform used in the 
experiments is a workstation with  Pentium-IV-
1GHz CPU, 256MB RAM, and the Windows 
XP(using MS-DOS Prompt). 
The following three tables represent the different 
experiments results. Table 1 shows the best value of 
different RBF parameter value (C , γ) and cross 
validation rate with 5-fold cross validation using 
grid search method[5]&[6]. . Table 2 shows the 
Total execution time for all data to predict the 
accuracy in seconds. 
 

      Table 1 
 
 

        Table 2: Execution Time in Seconds using SVM & RSES 

 
  
Fig. 2, 3 shows,  Accuracy comparison  of 
Diabetes data Set after taking different training set 
and all testing set for both technique (SVM & 
RSES)  using RBF kernel function for SVM and 
Rule Base Classifier for RSES. 
 

 
            Fig :2 Accuracy of Heart data with SVM & RSES 

Applic
at-ions 

 
Train
ing 
data 

Testi
ng 
data 

Best c and g with       
five fold 

Cross 
validati
on   
rate 

   C     γ 

Diabet
es data 

500 200  
211=20
48 

 
2- 7= 
.007812
5 

75.6 

Heart 
Data 

200 70  
25=32 

 
2-7 = 
.007812
5 

82.5 

Satellit
e Data 

4435 2000  
21=2 

 
21=2 

91.725 

Shuttle 
Data 

4350
0 

1443
5 

 
215= 
32768 

 
21=2 

 
99.92 

Applications    Total  Execution Time to   
                  Predict 
 
    SVM 

  
  RSES 

Heart data            
     71 

 
     14 

Diabetes data             
     22 

 
    7. 5 

Satellite data          
   74749 

 
     85 

Shuttle Data                  
  252132.1 

 
     220 
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              Fig: 3 Accuracy of Diabetes data with SVM & RSES 

 

 
Table 3: Compare with Rough Set Classifiers  
 

5 CONCLUSION  

                 In this paper, we have shown the comparative  
results using different kernel functions. Fig 2 and 
3 shows the comparative results of  different data 
samples  using different kernels linear, 
polynomial, sigmoid and RBF.  The experiment 
results are encouraging .It can be seen that the 
choice of kernel function and best value of 
parameters for particular kernel is critical for a 
given amount of data. Fig 3 shows that the best 
kernel is RBF for infinite data and multi class.  
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Applications 

 
Training 
data 

 
Testing 
data 

 
Feature 

 
No. Of 
Classes 

Using 
SVM 
(with 
RBF 
kernel) 

   Using RSES with Different classifier 
Rule 
Based 
Classifier 

Rule Based 
Classifier 
with 
Discretization 

K-NN 
Classifier 

LTF 
Classifier 

Heart data  200 70 13 2 82.8571 82.9 81.4 75.7 44.3 
Diabetes 
data 

500 200 8 2 80.5 67.8 67.5 70.0 78.0 

Satellite 
data 

4435 2000 36 7 91.8 87.5 89.43 90.4 89.7 

Shuttle Data 43500 14435 9 7 99.9241 94.5 97.43 94.3 99.8 
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