
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

149

A FRAMEWORK FOR PROCESSING KEYWORD-BASED
QUERIES IN RELATIONAL DATABASES

1EYAS EL-QAWASMEH, 1OSSAMA ABU-EID, 2ABDALLAH ALASHQUR

1 Jordan University of Science and Technology, Jordan
2 Applied Science University, Jordan

E-mail: eyas@just.edu.jo , alashqur@asu.edu.jo

ABSTRACT

The large sizes of existing databases are rapidly increasing with time. In this environment, there is a need
to help users, who are usually not familiar with SQL statements and the schema of a database, in getting
the information sorted according to their relevancy. In response to this need, many researchers have
introduced the capability of querying a database based on a list of keywords. A user does not have to state
a full SQL query, but just provide the list of keywords that seem to be of interest. The system would then
return the relevant records from different tables that appear to be close to what the user is looking for,
based on the list of keywords that he/she provides. However, there is a need to improve the efficiency and
effectiveness of existing systems. In this paper, we introduce a framework for processing keywords-based
queries that improves the efficiency and effectiveness. In addition, the performance results are presented.

Keywords: Relational Databases, Text Databases, Efficiency, Effectiveness, Relative_keyword_weight,
Keyword_weight, Record Weight, Cosine Measure, Ranking.

1. INTRODUCTION

Currently, databases are used in almost all
business applications that handle a huge amount
of data. Databases provide the ability to search
for relevant information that the user is
interested in.

A text database is "a collection of related
documents assembled into a single searchable
unit. The individual documents can be massive
or minuscule, and should relate to each other"
[16]. A text database is normally queried via a
set of keywords provided by the user. The
system searches for the documents relevant to
the keywords provided by the user, and then
returns those documents. The degree of
correlation between each of retrieved
documents and the list of keywords is computed
to identify which documents are considered
more relevant than others. After computing the
degree of correlation, retrieved documents are
ranked. A ranking technique is used whereas a
score is assigned to each retrieved document.

Documents that have higher score are
considered more relevant to the query (i.e., list
of keywords) and are placed at the top of the
resulting set of documents.

A relational database is "a database constituting
a set of relations (tables). A relation is a set of
records. Records are a set of attribute values,
and each attribute is identified by its name"
[11]. A relational database contains multiple
tables that are related to each other by
relationships. The relevant results in a relational
database can be found in multiple records.
Moreover, there is a relationship among tables
themselves via primary and foreign keys.

In many situations, the relevant information that
is to be retrieved from a relational database
requires writing sophisticated SQL statements
[10]. Since the size of data stored in relational
databases increases over time, the number and
complexity of SQL queries that need to be
written increases proportionally. To make it
easier to query such databases, a keyword-based

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

150

approach is used, which alleviates the need to
write complex query statements. This keyword-
based approach is very similar to that used in
text databases as described above. However,
instead of searching through documents, the
system searches records in relational tables.
This approach can be useful when the database
has large number of fields of type text (varchar).
Each value in such a field can be considered as
a small text document that can be used for
keyword-based search.

In this paper we present a framework for
keyword-based queries, where users do not need
to know the database schema or SQL
(Structured Query Language). Instead of that,
they submit a list of keywords. The system then
searches for the relevant records, and ranks
them based on their relevancy to the query.

There are two aspects, namely efficiency and
effectiveness, that must be taken into account
when retrieving the relevant records from a
relational database. Efficiency measures "how
fast a result is obtained from a database" [9].
Efficiency can be expressed in terms of
response time (i.e., time needed to search and
return the results from the database).
Effectiveness is a measure used to find relevant
records which are more relevant to the query
than others [9]. Effectiveness describes how the
system computes the degree of correlation
between relevant records and the keywords-
based query.

The framework which we will introduce takes
into account efficiency and effectiveness.
Efficiency is improved when the search
operation relates different records to each other.
On the other hand, effectiveness is improved
through two steps. The first step is by finding
the degree of correlation between relevant
records and the query. The degree of correlation
takes into account the appearance of keywords-
based query inside relevant records. The next
step is to improve effectiveness through ranking
of relevant records and sorting them in a
descending order according to matched
keywords.

This paper is organized as follows: Section 2
summarizes current related work. Section 3
presents our framework for processing
keyword-based queries. Section 4 presents an
example to further describe our framework.
Section 5 shows experimental results. Section 6
is the conclusion.

2. CURRENT RELATED WORK

Querying using keywords is the most common
method that is used today. Querying of a
database relies on query languages that are
inappropriate for end-users who have little
experience with databases. There are many
models of keyword-based querying in relational
databases. Among them are the uniform,
statistical and graph models where the last one
is the most common and will be the core of this
section.

In the graph model of relational databases, there
are many existing works such as BANKS [4],
DBXplorer [13], and DISCOVER [17]. The
graph model is used in keyword search as
follows: Each record in the "database is
modeled as a node in the directed graph and
each foreign key-primary key link as an edge
between the corresponding records" [2]. After
that it "searches the hidden connections between
those records that contain keywords specified in
a user-given keyword-based query. Almost the
previous works attempt to obtain the tree that
are contains all the keywords in a database
graph" [6].

BANKS [4] "works on graph representation of
relational database. An answer to a query is
considered to be a rooted directed tree
containing a directed path from the root to each
keyword node. The root node is called an
'information node' and the tree a connection
tree".

DBXplorer [13] "returns all rows (either from
single tables, or by joining tables connected by
foreign-key joins) such that each row contains
all keywords. Enabling such keyword search
requires (a) a preprocessing step called Publish
that enables databases for keyword search by

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

151

building the symbol table and associated
structures, and (b) a Search step that gets
matching rows from the published databases".

DISCOVER [17] "facilitates information
discovery on them by allowing its user to issue
keyword queries without any knowledge of the
database schema or of SQL. DISCOVER
returns qualified joining networks of records,
that is, sets of records that are associated
because they join on their primary and foreign
keys and collectively contain all the keywords
of the query".

Many researchers tried to improve the accuracy
of the retrieval records. In their work, they tried
to rank the retrieved records according to some
criteria. Many of these ranking schemes applied
to existing methods such as: 1) Fang Liu
focused on the effectiveness when searching for
keywords inside a database. The effectiveness
technique computes the degree of correlation
between relevant results and the query. After
that, the relevant records will be ranked on a
descending order according to their matching to
the query [3]. 2) Vagelis Hristidis "presented a
system for efficient IR-style keyword over
relational databases. A query is simply a list of
keywords, and does not need to specify any
relation or attributes name. The system handles
queries with both "AND" and "OR" semantics
between keywords-based query. “AND” query
operations mean, every keyword must appear in
every relevant result. “OR” query operations
mean, some keywords might be missing from
relevant results" [18].

3. FRAMEWORK OF KEYWORD-

BASED QUEIRIE
In this section, we will give an overall
description of our framework and demonstrate
how it works with an example. The framework
consists of four steps. The details of each step
can be seen as the following:

A. INVERTED INDEX FILE

An inverted index file is used to speedup the
retrieval of records in response to certain search
conditions [1]. Inverted index file provides a

very efficient technique which allows access to
records without affecting the physical
placement of records on the disk.

The proposed framework use the inverted index
file to find the records that includes the
keywords of the query. Inverted index file
consists of two fields: The first field is the
keywords field, and the second field contains
pointers to all records inside the database that
contain these keywords [9]. The contents of
keywords field in the inverted index file are
sorted in an ascending order.

The inverted index file is built only once and
will be re-used for all queries, whereas the
remaining three steps are performed for each
query.

B. RELEVANT ANSWER GENERATION

After we find the initial tables that include
keywords, we must find how the keywords are
related together inside a database. To do this,
we need to build a relevant answer set from the
database.

The process of relevant answer set aims to
expand results for the query, such that,
additional relevant related records could be
added in response to the query. This can be
achieved by relating separated records that
include keywords to each others. The process of
relevant answer set is achieved through a
schema graph.

Each node represents a table and the arrows
represent relationships among nodes. The
primary and foreign keys are used to relate
nodes among each other. We use threshold (T)
value to find the maximum distance among
nodes. In other words, if the sum of distance
among nodes is greater than specific value of
threshold then the generation process of nodes
from the schema graph is stopped. The
constructions of relevant related records are
obtained from the schema graph. The relevant
related records are used to improve the
relevancy of the query. There is a set of
assumptions that should be taken into account
when constructing the relevant related records.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

152

We explain the main idea of these assumptions
by an example that is listed in section 4.

C. CONSTRUCTION OF

WEIGHT_TABLES

After we find the relevant related records from
the process of relevant answer set, we construct
the weight_tables. The weight_tables are a set
of tables that are used to compute the degree of
correlation between relevant records and the
keywords-based query. Weight_tables
distinguish the correlation between relevant
records and the keywords-based query. We
assign a weight of each relevant record when
computing degree of correlation between
relevant records and the keywords-based query.
The weight describes how the keywords-based
query appears inside each relevant record. We
use the cosine measure when computing the
degree of correlation between relevant records
and the keywords-based query [7]. Cosine
measure assigns a score for each relevant record
based on the correlation with the keywords-
based query.

The weight_tables are used to compute the
relative_keyword_weight, keyword_weight and
the record weight for the set of relevant records
that are considered relevant to the query. More
details about these computations will be
explained through an example in section 4.

D. RANKING

Ranking is an approach used to order relevant
records [14, 15]. Relevant records that appear at
the top of this order are considered to be more
relevant. Ranking relevant records should be
performed in a descending order according to
the degree of correlation produced in the
weight_tables and the size of relevant records.
After that, the results will be displayed
according to their rank.

4. FRAMWORK BY AN EXAMPLE

In this section, we give an example that
illustrates how the proposed framework of
keyword-based queries works and how it allows
users to extract any information from a database
just by providing the set of keywords. Our
approach allows the user to search for any
relevant information inside a database that
satisfy the criteria for the query and rank the
results based on the correlation with the query.

Consider a database which is called Customer-
Notes database. This database consists of the
following tables: Customer, Supply, and
Customer-Notes as shown in Figure 1. The
type of the relation between Customer table and
Supply table is many to many relationship
(M:N).

Figure 1: Instant Customer-Notes database system

Supply
RNo ID Provider Model
S1 1 HP Compaq
S2 2 Vaio Sony
S3 3 Dell D2500

Customer
RNo ID Name Address
C1 1 John California
C2 2 Allis Texas
C3 3 Robeson Washington

Customer-Notes

RNo CID SID Date Notes
CN1 1 1 22-6-2007 Sony very power full
CN2 2 2 25-6-2007 Low efficient on Sony laptop
CN3 3 2 27-6-2007 Sony high performance with HP
CN4 3 3 29-8-2007 Dell low performance

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

153

Suppose that the user has typed the following
query 'HP SONY'. We use the "OR" operation
between keywords when retrieving the relevant
records. The main steps to retrieve the relevant
records for the mentioned query are as the
following:

A. Generate Inverted Index File

The list of the distinct keywords from the query
will be identified first. After that, we use
inverted index file. The entries for an inverted
index file in the left hand side include distinct
keyword and in the right hand side include
record number, column title, and the frequency
for each distinct keyword in the retrieved record
only.

Note that we use a symbol for each table to
distinguish it from others (i.e., S for Supply
table, C for Customer table, and CN for
Customer_Notes table).

The portion of the Inverted Index File relevant
to the query 'HP' or 'SONY' can be seen in
Figure 2.

HP —› (S1, Provider, 1) (CN3, Notes, 1)
SONY —› (S2, Model, 1) (CN1, Notes, 1) (CN2,
Notes, 1) (CN3, Notes, 1)

Figure 2: Inverted Index File for the query 'HP

SONY'

From Figure 2 the record (CN3) includes all
keywords ('HP SONY'). We can determine
records that include all keywords by taking the
intersection among all entries.

B. Relevant Answer Generation

The answer that is presented is called relevant
answer. The relevant answer process step is
used to expand relevant results for the query.
Relevant answer is constructed by using two

steps: a schema graph established and finding
relevant related records.

For the first step, we use a graph to model the
database schema. A schema graph consists of all
the tables inside a database and the relationship
among these tables, and the distance among
tables [4, 13, 17]. We consider the default
distance between two related tables to be one.
We use the threshold (T) value when we define
the maximum distance among tables. The
maximum value of the threshold in the previous
example is equal to two. A threshold value can
be provided from the user but in this case it can
not exceed the maximum distance among tables.

Figure 3 shows the schema graph of the
Customer-Notes database. The schema graph is
represented by using arrows and nodes. The
arrows represent a relation between database
tables. Each node represents the table name. We
use the abbreviation (K) for the tables that
include keywords. The tables that include
keywords-based query are identified from the
inverted index file (Figure 2). For clarification,
table S and table CN that includes keywords are
written with abbreviation SK and CNK. Also we
use the abbreviation (N) for the tables that do
not include any keyword. For example, table C
written as CN. The distance between CN and
CNK tables is one while between CN and SK
tables is two.

Figure 3: Schema graph for Customer-Notes

database

We use the schema graph to define the relevant
answer sub-tables. The relevant answer sub-
tables are a set of tables that include the relevant
related records for the query. The relevant
answer sub-tables can be generated by using
database depicted in Figure 3, and using the
following three rules:

• Remove repeated relevant answer sub-
tables.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

154

• Remove relevant answer sub-tables if
any leaf node does not include any
keywords. Leaf node is any node that
has one arrow. For example, CN→CNK
is removed because the customer table
(CN) does not include any keywords.

• Stop generation of relevant answer
sub-tables if the distances among
tables are greater than the value of the
threshold.

Table 1 shows the relevant answer sub-tables
for keywords 'HP SONY' according to the
previous three rules. The first three relevant
answer sub-tables (SK, CNK, and SK→ CNK) are
included while the last two sub-tables
(CN→CNK, and CN→CNK ←SK) are excluded
because the leaf node CN does not include any
keywords.

Table 1: Relevant Answer Sub-Tables for the

query 'HP SONY'

The second step is to construct relevant related
records by relating separate records from
different tables via primary key and foreign key
relationships. This expands the query results
and gives more meaning for the relevant
records. These relevant records are used to
compute relevancy to the user query.

From Table 1 there are two separated relevant
records with distance zero and two relevant
related records with distance one. We use the
inverted index file to retrieve the separated
relevant records with distance zero and SQL
statements to retrieve the relevant related
records with distance one. For example, the
relevant answer sub-tables SK→CNK is
transferred to the following SQL statement.

Select S.RNO, CN.RNO

From SUPPLY S, CUSTOMER_NOTES CN
Where (S.ID = CN.SID) and (upper(S.provider)
like upper('%HP%') or upper(S.provider) like
upper('%SONY%') or upper(S.model) like
upper('%HP%') or upper(S.model) like
upper('%SONY%')) and (upper(CN.notes) like
upper('%HP%') or upper(CN.notes) like
upper('%SONY%'))

Table 2 shows all relevant records for all
relevant answer sub-tables on both distances
zero and one according the previous three rules.
In the next step we show the appearance of
keywords inside relevant records affects on the
degree of correlation.

Table 2: Relevant records for the query 'HP

SONY'

Number
Relevant
records

Distance

1 CN3 0
2 S1, CN1 1
3 S2, CN2 1
4 S2, CN3 1

C. Weight_tables

After finding the relevant records, we determine
which relevant records that have more
correlation with the query than others. Such a
decision usually depends on the weight_tables
which attempt to establish the degree of
correlation between the relevant records and the
keywords-based query. We construct a set of
four tables when we compute the degree of
correlation between relevant records and the
keywords-based query. The four tables are (A)
keyword frequency table,

(B) relative_keyword_weight table,

(C) keyword_weight table, and

(D) record weight table.

The details of weight_tables can be seen in the
following steps:

Relevant Answer Status Distance
SK Yes 0

CNK Yes 0
SK→ CNK Yes 1
CN→CNK Removed 1

CN→CNK ←SK Removed 2

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

155

1. Keyword Frequency (KF) Table

The value of keyword frequency (KF)
represents the frequency for each keyword
inside each relevant record which it appears. For
this purpose, we construct a table which
includes relevant records, keywords-based
query, and the frequency for each keyword
inside each relevant record. After that, we will
count the frequency for each keyword inside
each relevant record.

Table 3.A shows the keyword frequency value
for the keywords 'HP' or 'SONY. We can find
the frequency for each keyword inside relevant
records from the inverted index file. We will
use the keyword frequency to compute
relative_keyword_weight (RKW) for each
keyword-based query.

2. Relative Keywords Weight (RKW) Table

The relative_keyword_weight value illustrates
the appearance of keywords inside each relevant
record respectively. We compute the
relative_keyword_weight (RKW) value for each
keyword-based query inside each relevant
record respectively. In [3, 18] the
relative_keyword_weight of each keyword
inside each relevant record is not taken into
account. Relative_keyword_weight each
keyword inside relevant record is computed
using the following formula:

RKW = KF / N

Where N represents the total number of
occurrences of keywords inside each relevant
record.

Table 3.B shows the relative_keyword_weight
for keywords 'HP' and 'SONY'. For example,
RKW for 'HP' inside relevant record CN3 is 1/2
= 0.5 (1 is the frequency of 'HP' inside record
CN3) and (2 is the total number of the
occurrences for keywords inside relevant record
CN3).

3. Keyword_weight (KW) Table

The keyword_weight (KW) value indicates the
appearance of keywords inside all relevant

records. The value of keyword_weight value
gives a weight for each keyword that depends
on the appearance inside all relevant records.
We use the keyword_weight to determine which
keywords appear more inside all relevant
records. The keyword_weight value depends on
the frequency for the keyword inside all
relevant records. In other words, the keywords
with more frequency inside relevant records will
take higher weight value. The keyword_weight
value takes range from zero to one [0, 1]. We
used this range to illustrate which keywords
appear more than others.

The keyword_weight value is computed using
the following formula:

KW = ∑
N

1
RKW / N

Where N represents the number of relevant
records of each keyword.

Table 3.C shows the values of keyword_weight
for the keywords 'HP SONY'. For example, the
keyword_weight for 'HP' inside all relevant
records = (0.5+0.5+0+0.33) / 4 = 0.3325 and for
'SONY' = (0.5+0.5+1+0.67) / 4 = 0.6675.

4. Record Weight Table

The record weight value measure the correlation
between the relative_keyword_weight and the
keywords weight in order to determine which
relevant records are more relevanant to the
query. The record weight value indicates the
correlation between the partial weight for each
keyword inside each relevant record, and the
keyword_weight inside all relevant records.
Record weight value takes range from zero to
one [0, 1]. A higher value of weight means the
record is more relevant.

The cosine measure to compute the record
weight between the keywords-based query and
each relevant record. That main reason for using
the cosine measure is to indicate the correlation
between the relative_keyword_weight and the
keyword_weight. Cosine_measure sim (Rj, Qi)
with range [0,1] measures the
correlation between relevant record (Rj) and
keyword-based query(Qi)in a database D [7].

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

156

We compute the record weight between each
relevant record (Rj) and the keywords-based
query (Qi) by using the cosine measure, as can
be seen in the following formula:

RW(Rj,Qi) =

Table 3.D shows the record weight (RW) for all
the records. For example, RW between CN3 and
'HP SONY' is:

 RW (CN3, 'HP SONY') =

Table 3: Weight_tables for the query 'HP

SONY'
(A) Keywords-Frequency Table

 (B) Partial-Keywords-Weight Table

(C) Keywords-Weight Table

(D) Records-Weight Table

From Table 3.D we note the following
observations: On distance zero, the different
relevant record (CN3) includes both keywords
'HP' and 'SONY'. On distance one the record
weight for (S2, CN3) is greater than (S1, CN1)
and (S2, CN2) because (S2, CN3) includes many
different keywords. The record weight for (S1,
CN1) is greater than (S2, CN2). The main reason
for that (RW (S1, CN1) > RW (S2, CN2)) is the
(S1, CN1) includes both keywords 'HP' and
'SONY' while (S2, CN2) includes single
keywords 'SONY' in both records. Of course,
the appearance of different keywords inside
relevant record affects the record weight.

In general, relevant records that include many
different keywords are considered more relevant
than those with only a single keyword, or
keywords with low weight values. The results
of weight_tables are used to indicate the
correlation between relevant records and the
keywords.

D. Ranking

Ranking relevant records is the final step of the
framework. To rank relevant records, we assign
a score for each relevant record as an estimation
of relevancy to the given query. The record
weight and the size of relevant record should be
taken into account when computing (A)
Keywords-Frequency Table
the score of relevant record.

The score of each relevant record is computed
by using the following formula:

Score =
S

RW

Where S represents the size of relevant record.
Table 4.A shows the score of each relevant
record. After computing the score, the relevant
records are sorted in a descending order as can
be seen in Table 4.B.

∑ ∑

∑
2)(2)(

(RKW)(KW)

KWRKW

0.926
)20.72(0.3*)20.52(0.5

0.7)*(0.50.3)*(0.5
=

++

+

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

157

Table 4: Ranking Relevant Records for the
query 'HP SONY'

(A) Score for Relevant Records

(B) Sorting Relevant Records in a descending

order

From Table 4.B we note the following
observations:

- On distance zero, there is one separated
relevant record retrieved (CN3). The relevant
record CN3 takes greatest rank than others
because all keywords appear in one record.

- On distance one, there are three relevant
related records ((S2, CN3), (S1, CN1), and
(S2, CN2)). The relevant related record (S2,
CN3) take rank greater than (S1, CN1), and
(S2, CN2) because (S2, CN3) includes many
keywords that are splitted over two records.
Relevant related record (S1, CN1) take rank
greater than (S2, CN2) because (S1, CN1)
includes a single keyword 'Sony' while (S1,
CN1) includes two different keywords 'HP'
and 'SONY' that are distributed on two
records. In other words, answers needed by

users are not limited to individual relevant
separated records, but results assembled
from joining separate records together. For
example, when related separated relevant
records (S2), and (CN3) on distance zero
together we get relevant related records on
distance one to becomes (S2, CN3).

5. EXPERIMENTAL RESULTS

We used a real data set of DBLP [5] database,
and applied a set of queries on this data to
evaluate the performance of the enhancement
approach.

The DBLP database includes the following
tables with their corresponding structure:
Publisher (Publisher_ID, Name)
Proceeding (Proceeding_ID, Title, Year,
Series_ID, Publisher_ID)
Series (Series_ID, Title)
InProceeding (InProceeding_ID, Title, Pages,
Proceeding_ID)
RelationPersonInProceeding (InProceeding_ID,
Person_ID)
Person (Person_ID, Name)

The experimental results were run on a PC
machine with 3000 MHZ, 512 KB RAM, and
using windows XP. We used Oracle 10g and
Developer suite two to implement the
enhancement approach.

To test the performance, we wrote twenty
different keywords that are listed in Table 5. For
each query we used a list of different keywords.

Table 5: Query used for the test

Query Number Keywords Query
Q1 Mobile Radio System.Markus Anja Klein
Q2 Dynamic Cell Planning for Data Transmission Gfeller Weiss
Q3 Cryptographic Primitives for Information Authentication
Q4 Real Time Protocols Lann
Q5 An Algebraic Specification of Process Algebra Sjouke Mauw

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

158

After that, we draw the database graph as can be
seen in Figure 4

Figure 4: Database graph for DBLP database

We used the database graph to define the
distance among tables, and to define the
maximum value of the threshold (T) when we
generate relevant answer sub-tables for all
queries. From Figure 4 the maximum value of
the threshold (T) is equal to four because the
maximum distance among the nodes is equal to
o four. We choose the three values of the
threshold (T) (0, 2, and 4) when we generated
relevant answer sub-tables for each query. The
main reason for using these three values was to
was to to show how the values of the threshold

(T) affect on the number of relevant answer sub-
tables, and relevant records.

We measured the execution time when
retrieving the relevant answer sub-tables for
each query. Execution time was calculated by
taking average time after executing each query
500 runs.

Figure 5 shows all queries, and the number of
relevant answer sub-tables for each value of the
threshold (T).

Figure 5: Relevant answer sub-tables for each

query on three values of threshold (T)

For Figure 5, let use pickup any query for
illustration. For example, Q13 shows the
number of relevant answer sub-tables on three
values of the threshold (T) as follows:
- Threshold zero: The total number of

relevant answer sub-tables that include
keywords is equal to four. In other words,

Q6 Broadband Communications Services Zhili Sun
Q7 Database Horlait principle
Q8 Nelson networks notes Pires Weber
Q9 Daniel Thalmann algorithm science
Q10 Laurent Dairaine Elsevier notes algorithm
Q11 Multimedia Traffic Control Cleevely North-Holland
Q12 query optimization Cornelius Frankenfeld Elsevier Lecture
Q13 Computer Science paul Yoon Springer
Q14 Multimedia Mail Service Prototype
Q15 Robust Reconstruction Daniel Thalmann Elsevier
Q16 Linear Algebraic Greene North science
Q17 Lecture Notes Anna Stefani Elsevier Traffic Control
Q18 Multimedia Document Architecture
Q19 introduction network Hewson Springer lecture
Q20 Nelson Multimedia Thalmann Services

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

159

all the keywords appear in four different
relevant answer sub-tables.

- Threshold two: The total number of
relevant answer sub-tables is equal to
seven. In other words, there are three
additional relevant related answer sub-
tables retrieved by using join constraints
when the distance of threshold equals to
two.

- Threshold four: The total number of
relevant answer sub-tables is equal to nine
In other words, there are two additional
relevant related answer sub-tables retrieved
when the distance of threshold equals to
four.

From Figure 5 we note the following
observations: The relevant answer sub-tables in
some queries (Q6, Q7, Q14, and Q18) are not
changed over the three values of the threshold
(T). For example, in query Q6, the number of
relevant answer sub-tables is equal to two over
the three different values of threshold (T). The
relevant answer sub-tables in the remaining
queries (Q1, Q2, Q3, Q4, Q5, Q8, Q9, Q10, Q11,
Q12, Q13, Q15, Q16, Q17, Q19, and Q20) are
increased over the three values of threshold (T).
For example, in query Q8 the number of
relevant answer sub-tables equal to three for
threshold zero, four for threshold two, and five
for threshold four. In other words, the number
of relevant answer sub-tables increased over the
three values of threshold (T). Of course, there
are many relevant answer sub-tables that could
be retrieved when the value of threshold (T) is
changed.

Table 6 shows execution time for each query on
different values of the threshold and the average
time for the corresponding queries for the three
values of the threshold.

Table 6: Execution time for each query on three

values of threshold (T)

From table 6 we note the following
observations: Queries Q14, Q2, Q18, and Q3 take
less average execution time, For the following
reasons: (A) Q14, Q2, and Q18 the number of
relevant answer sub-tables over the three values
of the threshold are not changed. (B) Q3 the
number of relevant answer sub-tables is equal
two on threshold zero, three on threshold two
and four. Query Q19 takes greater average
execution time than all queries because the
keywords appeared in many tables during
search and retrieve relevant answer sub-tables.
Average execution time increased when there
were many relevant answer sub-tables that were
being retrieved, and when the values of
threshold (T) were being changed.

Table 7 shows the total number of relevant
records for each query on different values of the
threshold (T), and average number of relevant
records for the corresponding queries over the
three values of the threshold (T). The number of
relevant records for each query is defined from
the relevant answer sub-tables that are found in
the previous table (Table 5).

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

160

Table 7: Total number of relevant records for
each query on three values of threshold (T)

From Table 7 we note the following
observations:

1) Queries (Q5 Q8, Q9, Q11, Q13, Q16, and Q17)
the number of relevant records is increased
when the value of the threshold is changed. In

other words, there are many relevant records
retrieved when the value of threshold (T) was
changed.

2) Queries (Q6, Q7, Q14, and Q18) the number of
relevant records is not changed over the three
values the threshold. In other words, there are
no more relevant records retrieved when the
value of the threshold is changed.

3) Queries (Q1, Q2, Q3, Q4, Q10, Q12, Q15, Q19,
and Q20) the number of relevant records is not
changed when the values of the threshold equal
two and four

Table 8 shows the appearance of each keyword
inside the query (Q19) when the value of
threshold equal to zero.

Table 8: Keywords occurrences for the query

Q19 on threshold zero
Keywords Query Frequency

Introduction 24
Network 45
Hewson 1
Springer 1
Lecture 2

Figure 6 shows the number of relevant records
for each query on the three values of the
threshold.

Figure 6: Relevant records for each query

on three values of threshold (T)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

161

Figure 7 shows average relevant records for each query over the three values of the threshold (T).

Figure 7: Average relevant records for each query

6. CONCLUSION

We introduced a framework for processing
keyword-based queries in relational databases
that takes into account two aspects: efficiency
and effectiveness. Efficiency is improved
through two steps. First step is by using inverted
index file. The second step is through relevant
answer generation. Relevant answer process is
used to relate separate records to each other to
expand results for a given query.
We used a schema graph to build relevant
answer sub-tables, and to relate separated
relevant records to each other. Constructions of
relevant records are obtained from the schema
graph. A threshold (T) is used to define the
maximum distance among tables, and to define

the termination process of relevant answer
generation. We choose the three different values
of the threshold (T) to show how these values
affect on the number of relevant records.

Effectiveness is improved through the
construction of weight_tables, and ranks the
relevant records. Construction of weight_tables
is used to assign weight values for both
keywords-based query, and the relevant records
that include keywords. The results of
weight_tables give an indication of the
correlation between keywords-based query, and
the relevant records. Ranking of relevant
records is used to order the relevant records in a
descending order. When ranking the relevant

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

162

records, the size of relevant records and the
record weights should be taken into account.
The relevant records that include many
keywords take higher rank than other relevant
records that include a single keywords. There
are two case scenarios when we generate
relevant records. Best case scenario occurs
when the number of relevant records is changed
over the three values of threshold (T). Worst
case scenario occurs when the number of
relevant records is not changed over the three
values of threshold (T). The value of
keyword_weight in the best case scenario is
changed because the keyword_weight depends
on the occurrences of keywords inside relevant
records.

REFERENCES :

[1] Alistair Moffat, and Justin Zobel, “Self-

Indexing Inverted Files for Fast Text
Retrieval,” Journal of Association for
Computing Machinery (ACM)
Transactions on Information Systems,
Vol. 14, No. 4, pp. 349-379, 1996.

[2] Bhavana Dalvi, "Keyword Search on

Relational and Semi-structured Databases,"
MTech Seminar Report.

[3] Fang Liu, Clement Yu, Weiyi Meng, Abdur

Chowdhury "Effective Keyword Search in
Relational Databases," In Proceedings of
Association for Computing Machinery
(ACM), and Special Interest Group on
Management Of Data (SIGMOD)
International Conference on Management
of Data, pp. 563-574, 2006.

[4] Gaurav Bhalotia, Charuta Nakhe, Arvind

Hulgeri, Soumen Chakrabarti, and
Shashank Sudarshan, "Keyword Searching
and Browsing in Databases Using
BANKS," In Proceedings of International
Conference on Data Engineering (ICDE),
pp. 431–440, 2002.

[5] Http://www4.wiwiss.fu-
berlin.de/bizer/D2RQ/benchmarks/index0
1.html.

[6] Lu Qin, Jeffrey Xu Yu, Lijun Chang, and

Yufei Tao, "Querying Communities in
Relational Databases," In Proceedings of
International Conference on Data
Engineering (ICDE), pp. 724-735, 2009.

[7] Margaret Dunham, “Data Mining

Introductory and Advanced Topics,”
Prentice Hall, 2003.

[8] Nandlal Sarda, and Ankur Jain,

“Mragyati: A System for Keyword-based
Searching in Databases,” Journal of
Computing Research Repository (CoRR),
Vol. cs.DB/0110052, 2001.

[9] Ophir Frieder, David Grossman, Abdur

Chowdhury and Gideon Frieder,
“Efficiency Considerations for Scalable
Information Retrieval Servers,” Journal
of Digital Information (JDI), Vol. 1, No.
5, 2000.

[10] Oracle database website,

Http://www.oracle.com.

[11] Relational Database website,

www.c2.com/cgi/wiki?RelationalDatabase.

[12] Ricardo Baeza-Yates, and Berthier

Riberio-Neto, “Modern Information
Retrieval,” Addison Wesley, 1999.

[13] Sanjay Agrawal, Surajit Chaudhuri, and

Gautam Das, "DBXplorer: A system for
Keyword-Based Search Over Relational
Databases," In Proceedings of
International Conference on Data
Engineering (ICDE), pp. 5–16, 2002.

[14] Sanjay Agrawal, Surajit Chaudhuri,

Gautam Das, and Aristides Gionis,
“Automated Ranking of Database Query
Results,” In Proceedings of Conference

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

163

on Innovative Data Systems Research
(CIDR), 2003.

[15] Surajit Chaudhuri, Gautam Das, Vagelis

Hristidis, and Gerhard Weikum,
“Probabilistic Ranking of Database Query
Results,” In Proceedings of Very Large
Data Bases (VLDB), pp. 888-899, 2004.

[16] Text database website,

www.psychcrawler.com.

[17] Vagelis Hristidis, and Yannis

Papakonstantinou, "DISCOVER: Keyword
Search in Relational Databases," In
Proceedings of Very Large Data Bases
(VLDB), pp. 670-681, 2002.

[18] Vagelis Hristidis, Luis Gravano, and

Yannis Papakonstantinou, "Efficient IR-
Style Keyword Search Over Relational
Databases," In Proceedings of Very Large
Data Bases (VLDB), pp. 850-861, 2003.

