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ABSTRACT 

 

H∞ loop shaping design is one of the robust control methods used for designing the controllers for dynamical systems in 
electrical engineering.  In this paper, we present the design & simulation of a H∞ control based power system stabilizer 
for a single machine infinite bus system when a certain fault take place in a power system. The conventional power 
system stabilizer (CPSS) is bound to a particular operating state and its performance degrades when any deviation 
occurs from the quiescent operating state. Various models of power system exist.  In this paper, power system model 
1.1 is considered herewith & for this model, a robust controller is designed & simulated in Matlab-Simulink.  The 
robust power system stabilizer (RPSS) is designed using the concept of Glover-McFarlane’s H∞ loop shaping design   
procedure for a single machine infinite bus system. Guidance for loop shaping and synthesis of the robust controller are 
also presented along with the selection of the weighting functions. The resulting RPSS ensures the stability for a set of 
perturbed operating points with respect to the nominal system and has good oscillation damping ability. Comparisons 
are also made between the CPSS & RPSS for the model 1.1. Various parameters such as the terminal voltage, torque, 
omega, rotor angle are plotted. The simulation results shown depict the effectiveness of the method proposed for an 
SMIB based power system using the concept of robustness & H∞ control.  
 
Key Words : Robust controller, Loop Shaping, H∞ Synthesis, Glover-McFarlane Loop Shaping, Power System 

Modeling, SMIB, Power system stabilizer. 

1. INTRODUCTION 

Power system stabilizers (PSS) have been used for 
many years to add damping to electromechanical 
oscillations. The use of fast acting high gain 
AVR’s and the evolution of large interconnected 
power systems with transfer of bulk power across 
weak transmission links have further aggravated 
the problem of low frequency oscillations [17]. 
The continuous change in the operating condition 
and network parameters result in corresponding 
changes in the system dynamics [10]. This 
constantly changing nature of power systems 
makes the design of damping controllers a very 
difficult task. Power system stabilizers (PSS) were 
developed to extend stability limits by modulating 
the generator excitation to provide additional 
damping to the oscillations of synchronous 
machine rotors [8]. Recent developments in the 
field of robust control provide methods for 
designing fixed parameter controllers for systems 
subject to model uncertainties.  
 
The robust PSS has the ability to maintain stability 
and achieve desired performance while being 

insensitive to the perturbations. Among the 
various robustness techniques, H∞ optimal control  
 
[2] – [6] and the structured singular value (SSV or 
µ) technique have received considerable attention. 
But, the application of µ technique for controller 
design is complicated due to the computational 
requirements of µ design. Besides the high order 
of the resulting controller, also introduces 
difficulties with regard to implementation [11]. 
The H∞ optimal controller design is relatively 
simpler than the µ synthesis in terms of the 
computational burden. This paper uses the Glover-
McFarlane H∞ loop shaping design procedure [1] 
to design the PSS. It combines the H∞ robust 
stabilization with the classical loop shaping 
technique. The loop shaping is done without 
explicit regard to the nominal plant phase 
information.   
 
A well-known method for the design of robust 
multiple input multiple-output (MIMO) feedback 
controllers is the so-called “H∞ loop-shaping 
design procedure” proposed by McFarlane and 
Glover in [1]. This method has been successfully 
used in a variety of applications by various 
researchers in [15] & [16]. A full tutorial on how 
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to design robust controllers using the H∞ loop-
shaping design procedure can be found in 
McFarlane and Glover [14] and Papageorgiou and 
Glover [13]. Even though designers usually obtain 
good loop-shaping weights (W) and controllers 
using their engineering insight and intuition, it is 
well recognized in the practicing community that 
the design of loop-shaping weights W1 and W2 to 
achieve a desired loop-shape is not always 
straightforward, especially for plants with strong 
cross-coupling [15] between them. This is 
because, it is not always clear how each element in 
the weights affects the singular values of the 
scaled nominal plant P and the complexity of this 
relationship considerably increases when non-
diagonal weights need to be used. Also, the adhoc 
techniques (or trial and error methods) typically 
employed can be fairly time-consuming and can 
never be guaranteed to yield the best possible 
results. In the research work presented in this 
paper, we introduce this design procedure to PSS 
design for a single machine system and provide 
some basic guidelines for loop shaping weighting 
selection and controller design paradigm 
formulation.   
 
The paper is organized in the following sequence 
as follows.  A brief introduction about the 
background literature related to the H∞ robust 
stabilization, Power systems stabilizers, etc. was 
presented in the previous paragraphs in the 
introductory section.  The section 2 gives a brief 
overview of the H∞ loop shaping technique 
employed along with the robust stabilization & the 
feedback controllers.  Modeling of the power 
system is dealt with in section 3.  The design of 
the robust controller is presented in section 4.  In 
section 5, the development of the simulink model 
is presented, which is followed by the eigen value 
analysis in section 6.  The simulation results are 
dealt with in section 7.   Conclusions are presented 
in the section 8, followed by the references & the 
author biographies.    

2.  H∞ LOOP SHAPING DESIGN 

The Glover-McFarlane H∞ loop shaping design 
procedure [1], [16] consists of three steps, viz.,  
 

• Loop shaping,  
• Robust stabilization &  
• Design of the final feedback controller.   

 
All the 3 steps are briefly discussed as follows.  

2.1  Loop Shaping  

In loop shaping design, the closed-loop 
performance is specified in terms of requirements 
on the open-loop singular values. The open loop 
singular values are then shaped to give desired 
high or low gain at frequencies of interest. This 
step takes advantage of the conventional loop 
shaping technique, but no phase requirements need 
to be considered. That is, the closed-loop stability 
requirements are disregarded since the H∞ 
synthesis step taken thereafter will robustly 
stabilize the shaped plant. Using a pre-
compensator W1 and or a post-compensator W2, 
the singular values of the nominal plant are shaped 
to give a desired open-loop shape. W1 is selected 
to keep the sensitivity  
 S = (I + GK)−1  (1) 
low at low frequencies such that 
 11

1 ≤
∞

− SW , (2) 

while W2 is selected to keep the complementary 
sensitivity  
 T = GK (I + GK)−1  (3) 
low at high frequencies such that  
 11

2 ≤
∞

− TW . (4) 

This ensures acceptable level of performance as 
well as stability in the face of perturbations. The 
nominal plant G and shaping functions W1, W2 are 
combined to form shaped plant,  
 Gs = W2GW1.  (5) 

2.2  Robust stabilization 

It has been shown that the largest achievable 
stability margin εmax can be obtained by a non-
iterative method [4], [1]. Here, εmax, is the stability 
margin for the normalized co-prime factor robust 
stability problem [1]. It provides a robust stability 
guarantee for the closed loop system. Suppose 

ss NM , , are normalized left co-prime factors of 

sG  such that  

 sss NMG 1−= , (6) 
then,  

 
2/12

max ].[1 ⎟
⎠
⎞

⎜
⎝
⎛ −=

Ηss NMe ,   (7) 

where, 
Η

.  denotes the Hankel norm.  
 
The controller is now defined by selecting ε < = 
εmax and then synthesizing a stabilizing controller 
K∞, which satisfies  
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⎡
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Ι

εsGs        (8) 

as shown in the Fig. 1.   

W1 G W2

K∞

Gs

 
Fig. 1 : Block diagram of the synthesis of a 

stabilizing controller 
 

The 
∞

. denotes the H∞ norm which is the 
supremum of the largest singular value over all 
frequencies.  If εmax << 1, then return to the section 
2.1 and adjust W1 and W2.  

2.3  The Final Feedback Controller  

The final feedback controller K is then constructed 
by combining the H∞ controller K∞ with the 
shaping functions W1 and W2 such that K = W1 
K∞W2 as shown in Fig. 2.  
 

W1

G

W2K∞
K

( )i ( )ii

 
Fig. 2 : Block diagram of the final feedback 

controller K 
 

3.  MODELLING OF POWER SYSTEMS    
          WITHPSS 
 
The power system stabilizer design for any power 
system to start with requires a mathematical 
model.  To study the control of power system 
oscillations, single-machine system connected to 
infinite bus through a transmission line, taken 
from [9] is used. Model 1.1 of the synchronous 
machine is considered to test the performance of 
the designed RPSS. Modeling, synthesizing 
controller and simulation are performed for the 
considered model 1.1 & finally the simulation 
results of the model 1.1 are compared with the 
CPSS & RPSS.  The eigen value analysis is also 
presented. The single line diagram (SLD) shown 
in the Fig. 3 represents the SMIB based power 
system, wherein the generator is represented by 
the Model 1.1 [9].  In this model 1.1, one field 

winding on d-axis and one equivalent damper on 
q-axis are considered. The relevant equations of 
model 1.1 is given in the following equations 
Eqns. 9 to 32 respectively [9]. The data for this 
power system model 1.1 is given as Data I below. 

Vt θ

P t

1

jX th

E θ

Generator
Bus

Q t

2

Fig. 3 : SMIB power system using the model 1.1.  

DATA I : The system data corresponding to the 
Model 1.1 (Fig. 3) on a 1000 MVA base (in p.u.) 
is given as  
 
Generator :  
Ra = 0.00327, xd = 1.7572, xq = 1.5845,  x′d = 
0.424,  x′q = 1.04, T′d0 = 6.660, T′q0 = 0.44, H = 
3.542, fB = 50 Hz.    
 
Transformer :  
Rt = 0.0, xt = 0.1364.        
 
Transmission Line (per circuit) :   
Rl = 0.08593,   XL = 0.8125, Bc = 0.1184. 
 
Excitation system :  
Ka = 400, Ta = 0.025, Ef dmax= 6.0, Efdmin = − 6.0. 
 
Operating Data :  
Eb = 1.0,  Pt = 0.6, Qt = 0.02224, Vt = 1.05 V, θ = 
21.65, Xth = 0.13636. 
 
The mathematical model of the power system is 
required to design any type of controller.  This 
mathematical model may be in the form of a 
differential equation or in transfer function form or 
in state space form.  The system equations of the 
SMIB based power system corresponding to 
Model 1.1 are as shown below [9]. 

 ( )moSmS
dt
d

B −′= ω
δ ,  (9) 

 ( )[ ]eTmTmoSmSDHdt
mdS

−+−−= 2
1 ,  (10) 

 ( )[ ]fdEdidxdxqE

dTdt
qEd

+′−+′−
′

=
′

0

1 ,  (11) 

 ( )[ ]qiqxqxdE

qTdt
dEd

′−−′−
′

=
′

0

1 ,   (12) 
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 ( )[ ] fdE
ATtVrefVAK

ATdt
fddE 11

−−= .  (13) 

The first two equations are obtained from the 
second order swing equation as 

 em TT
dt
dD

dt
dM −=′+

δδ
2

2
,  (14) 

 
B

HM
ω
2

= .  (15) 

 
The stator equations in dq & DQ reference frames 
are given as  

qqaddq viRixE =−′+′    (16) 
and 

ddaqqd viRixE =−′−′ .   (17) 
If 

xxx qd ′=′=′ ,   (18) 
then 
( ) ( )( ) ( )dqdqadq jvvjiixjREjE +=+′+−′+′   (19) 
or 
( ) ( )( ) ( )DQDQaDQ jvvjiixjREjE +=+′+−′+′   (20) 

 
The system equations such as the torque, state 
variable equations are also presented here in this 
context.  The electrical torque, Te is expressed in 
terms of state variables E′d & E′q and the non-state 
variables id & iq and is expressed as 

( ) qdqdqqdde iixxiEiET ′−′+′+′= .  (21) 
 
The direct axis & quadrature axis currents in the 
synchronous machine, id & iq can be obtained from 
the following linear equations as 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′−−

′−+
=

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+′−+−
+−+′

dbb

qbb

q

d

IqRa

RaId

EEhEh
EEhEh

i
i

zxzR
zRzx

δδ
δδ

sincos
sincos

)()(
)()(

12

21

.(22) 

 
Here, in the above equation, (zR + j zI) is the input 
impedance of the external network viewed from 
the generator terminals with infinite bus shorted.  
(h1 + jh2) is the voltage gain at the terminals with 
armature open circuited [9].  The initial conditions 
for the system equations for Pto, Qto, Vto and θ0 are 
obtained from the power flow analysis in steady 
state as 

 
otoV

tojQP
oaoI θφ −∠

−
=∠ , (23) 

 oaoqaotooqo IjxRVE φθδ ∠++∠=∠ )( , (24) 

 )sin( ooaodo Ii φδ −−= ,  (25) 
 )cos( ooaoqo Ii φδ −= ,  (26) 
 )sin( ootodo Vv θδ −−= ,  (27) 
 )cos( ootoqo Vv θδ −= ,  (28) 
 doqdqofdo ixxEE )( −−= ,  (29) 

 doddfdoqo ixxEE )( ′−+=′ ,   (30) 

 qoqqdo ixxE )( ′−−=′ ,  (31) 

   moqodoqddodqoqoeo TiixxiEiET =′−′+′+′= )( .   (32) 
 
The model is simulated & the linearized model is 
finally obtained, which is further used for the 
controller design.  

4. CONTROLLER  DESIGN 

To start with, the design of the conventional power 
system stabilizer is presented. The schematic 
representation of Conventional Power System 
Stabilizer (CPSS) is as shown in the Fig. 4.  
 

∆ω

sT w
sT w + 1

T s( )
vs

Wash out Dynamic
compensator

Limiter

 
 

Fig. 4 : Conventional Power system Stabilizer 
 

In the block diagram of the CPSS shown, the 
transfer function T(s) is finally obtained as  

 
)1)(1(
)1)(1()(

42

31
sTsT

sTsTKssT
++
++

= . (33) 

The designed parameters of CPSS for the above 
system [9] are taken as 

,10,3.0,75.0,15 21 ==== ws TsTsTK  
limits on Vs as .05.0&05.0 −+  
 
Now, we proceed forward to the design of the 
robust controller for the model 1.1.  The H∞ loop 
shaping design procedure is applied as shown in 
Figs. 1 & 2. The shaping objective is to make the 
output y = ∆ω (the generator frequency variation) 
as small as possible with disturbance signal d = 
∆Vref. Since the frequency of the intra-plant mode 
is around 3 rad / s, the performance objective has 
been translated to increase the open-loop gain 
around that frequency. After that, an H∞ controller 
; K∞, was synthesized to ensure the robust stability 
of the closed-loop system. Finally, K∞ was 
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cascaded with the shaping functions to form the 
final controller K = w1 K∞ W2.  
 
The selection of the weight W1 for the H∞ control 
purposes is done as follows. We add pole and zero 
pairs to achieve increase in gain in the desired 
frequency range, while keeping the gain change as 
small as possible around other frequencies [16]. 
The system has poor damping at frequencies 

1603.0
1 and at 

035.0
1 . Hence, gain has to be 

improved at these frequencies. A washout filter 
block in W1 with time constant 10 s is used to 
ensure the controller only works in the transient 
state [10]. The resulting transfer function for the 
weighting W1 is obtained as  
 

)035.01)(1603.01)(101(
)33.01(*10*17682

+++
+
ss

ss .  (34) 

 
The selection of the weight W2 for the H∞ control 
purposes is done as follows.  To increase the gain 
of the system at low frequency, 3 repeated zeros 
are added at 30. To make W2 proper and to achieve 
proper slope of Gs at cross over frequency 3 poles 
are added at insignificant frequency of 10000. The 
reduced DC gain of W2 is compensated by using a 
constant 104. The resulting transfer function for 
the weighting W2 is obtained as  

 
3

34

)10000(
)30(*10

+
+

s
s . (35) 

 
The resulting singular value plot of nominal 
system G, W1, W2 and resulting shaped plant Gs 
due to the reference voltage variation to the 
generator frequency variation are as shown in Fig. 
5.   
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Fig. 5: Singular value plot of nominal system G, 
W1, W2 & Gs 

 
In this context, we present the H∞ synthesis.  We 
synthesize a K∞ controller to achieve robust 

stability for the nominal plant. The maximum 
stability margin is �max = 0.6316. This margin 
evaluates the feasibility of our loop shaping 
design.  The objective function for the H∞ robust 
stabilization is   

 111 6316.0)( −

∞

−−
∞

∞
≤ΜΚ−Ι⎥

⎦

⎤
⎢
⎣

⎡
Κ
Ι

sGs .   (36) 

According to McFarlane and Glover [1], given the 
normalized left co-prime factorization of the 
nominal plant as  

 sss NMG 1
0

−= ,  (37) 

the controller K∞ can stabilize all  

 ( ) ( )ΝΜs ΝΜG ∆++=
−1∆    (38) 

satisfying  
 6316.0, <∆∆

∞ΝΜ .  (39) 
 
Thus, in terms of the gap metric, all Gs with  
 ( ) 6316.0,

0
<ssg GGδ   (40) 

can be stabilized by this controller [1]. 
  
The final controller K is designed as follows.  The 
resulting controller has a high order of 14. The 
controller is reduced to a 7th order controller using 
the Hankel Norm reduction [11] method. The 
transfer function of the reduced order controller is 
given as  
 ( ) ( )

( )sD
sNsGk = ,   (41) 

with  

 

( )

2223

222321

419517

61379

10231.110951.1

10397.310666.1

1089.310199.3

10261.710317.4

×+×+

×+×

+×+×

+×+×=

s

ss

ss

sssN

  (42) 

 

( )

22

21219

316412

58647

10235.1

10924.3108094.8

10336.410773.8

10048.910737.4

×

+×+×

+×+×

+×+×+=

ss

ss

ssssD

 

 (43) 
The bode plots of the full-order controller and the 
reduced-order controller is shown in Fig. 6. 
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Fig. 6 : Bode plot of the full-order controller and 
the reduced-order controller for model 1.1. 

5.   DEVELOPMENT OF THE SIMULINK 
MODEL FOR THE POWER SYSTEM 
MODEL 1.1 IN MATLAB 

In this section, we present the development of the 
simulink model for the PSS.  The model of the 
power system was developed using the power 
system, power electronics, control system, signal 
processing toolboxes & from the basic functions 
available in the Simulink library in Matlab / 
Simulink. The initial conditions are calculated and 
model is created using simulink in Matlab. In this 
paper, plots of terminal voltages, rotor angle, 
electric torque, omega, etc are plotted as functions 
of time with RPSS & CPSS and the waveforms are 
observed on the scopes.  The entire system 
modeled in Simulink is a closed loop feedback 
control system consisting of the plants, controllers, 
comparators, feedback systems, the mux, de-mux,  
summers, adders, gain blocks, integrators, state-
space models, sub-systems, the output sinks 
(scopes) & the input sources.  The developed 
simulink model with CPSS & RPSS for the power 
system model 1.1 is shown in the Figs. 7 & 8 
respectively.
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Fig. 7 : The developed simulink model with CPSS 
& control for the power system model 1.1. 

  

1
Delta

sl ip

omega

delta

Terminal
Voltage

Vq
v dVt1

3phase error

Eb

VrefTm

num(s)

den(s)
R P S S

Ed1

id

iq

Eq1

Vq

Vd

Network

Tm

Te

Delta

Sm 

W

Mechanical system

Mech Torque

Vtpass

delta

Ef d

Eb

id

iq

Ed1

Eq1

Te

Generator

Field Voltage

Vref

Vt

Vs

Ef d

Excitation Subsystem

Eq'
Ele Torque

Ed'

0

1
Vref

 
 

Fig. 8 : The developed simulink model with RPSS 
& control for the power system model 1.1. 

6.  EIGEN VALUE ANALYSIS OF MODEL 
1.1 

In this section, the eigen value analysis for the PSS 
model 1.1 is presented.  The eigen value analysis 
is also performed for the model 1.1 without the 
PSS & the values are obtained as −73.9756, 
−8.2488 ± i 27.3754, −0.0618 ± i 6.2356, −2.7038 
& the corresponding response is as shown in the 
Fig. 9. 
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Fig. 9 :  Response off rotor angle without PSS 
 

The eigen value analysis is also performed for the 
model 1.1 with the CPSS & the values are 
obtained as −103.04, −71.53, −7.2103 ± i 29.484, 
−0.81365 ± i 5.8377, −0.10042, −2.6841 & the 
corresponding response is as shown in the Fig. 10. 
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Fig. 10 : Response of rotor angle with CPSS 
 

The eigen value analysis is also performed for the 
model 1.1 with the RPSS & the values are 
obtained as −21088, −4759.6 ± i 9756.1, −8348.7 
± i 1537.5, −71.505, −46.404, −16.651 ± i 27.436, 
−0.35172, −2.4375 ± i 3.0283, −2.4315 & the 
corresponding response is as shown in the Fig.11. 
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Fig. 11 : Response off Rotor angle with RPSS 

7.  SIMULATION RESULTS & 
DISCUSSIONS 

Simulations are performed using the developed 
simulink model shown in the Figs. 7 & 8 for a 
period of 10 secs with the designed CPSS & RPSS 
and the results are observed, which are presented 
in Figs. 12 - 15 respectively.  The non-linear 
simulations are performed, for extreme fault 
conditions, using simulink to test the efficiency of 
the designed controller.   4 different types of faults 
were considered as case A, B, C & D respectively. 
 
Case A : 

0.1), 0.1for (2.2,02224.0,6.0 ==== mreftt TsVQP
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Fig. 12 : Plot of variation of rotor angle vs. time  
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Fig. 13 : Plot of omega vs. time 
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Fig. 14 : Plot of electrical torque vs. time  
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Fig. 15 : Plot of terminal voltage vs. time 

From the Figs. 12 to 15, it can be clearly seen that 
system with RPSS, the settling time and deviation 
in magnitudes during transients are insignificant & 
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consistent when compared to the CPSS.  The 
quantitative results of the comparison of the 
settling times of the various parameters with CPSS 
& RPSS is shown in the table 1.  
 

Parameter 
Settling time 

(secs) 
CPSS RPSS 

Rotor 
angle 10 3 

Omega 10 3 
Torque 10 3 
Voltage 10 3 

 
Table 1 : Quantitative results of the settling times 

of different parameters with CPSS & RPSS for the 
model 1.1. 

 
In addition to the above fault as mentioned in case 
A, three more cases are simulated, namely  
Case B : 

) 0.1for (5.2,0.1,02224.0,6.0 sTVQP mreftt ====
 
Case C :  

0.1,0.1,202224.0,26.0 ==×=×= mreftt TVQP  
Case D : Three phase fault for 0.08 sec.  
 
The simulation results of all these cases are similar 
to the results shown for case A.  
 
For justification of robustness, the following four 
cases with step changes in the reference voltages 
are considered, namely, 
Case 1: 0.1×refV   

Case 2: 0.2×refV   

Case 3: 3.2×refV   

Case 4: 0.3×refV   
The simulation results corresponding to the above 
4 cases are shown in the Figs. 16 to 23 
respectively.  The results shown in Figs. 16, 18, 20 
& 22 correspond to the system with RPSS while 
the results shown in Figs.17, 19, 21 & 23 
respectively correspond to the system with CPSS. 
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Fig. 16 : Plot of rotor angle vs. time for the 4 cases 
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Fig. 17 : plot of rotor angle vs. time for the 1st 3 

cases 
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Fig. 18 : Plot of omega vs. time for the 4 cases 
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Fig. 19 : Plot of omega vs. time 1st 3 cases 
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Fig. 20 : Plot of electrical torque vs. time for the 4 

cases 
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Fig. 21 : Plot of electrical torque vs. time for the 3 

cases 
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Fig. 22 : Plot of terminal voltage vs. time for the 4 

cases 
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Fig. 23 : Plot of terminal voltage vs. time for the 

1st 3 cases 
 

From the above simulation results shown in the 
Figs. 16 - 23, it can be very clearly seen that the 
system with RPSS provides robustness, i.e., the 
variations in magnitudes and the settling times are 
almost independent of the type and magnitude of 
faults, while the system with CPSS fails to provide 
robustness as the settling time depends upon the 
type of faults, also the response characteristics for 
various parameters settle at a faster rate compared 
to the CPSS case, thus provide excellent damping. 
Also, in case of CPSS, the results are shown only 
for first three cases since the system with CPSS 
becomes unstable for the case 4. 

8.  CONCLUSIONS 

A systematic approach to design the power system 
stabilizers using Glover-McFarlane’s loop shaping 
procedure (H∞ robust control) was presented in 
this research paper. Power systems model 1.1 was 
considered and this model was used to develop the 
controller for stabilization purposes. The guidance 
to select the weighting functions for the H∞ robust 
control was also presented. Two cases was 
considered, control with CPSS & control with 
RPSS.  Similulink model was developed & the 
simulations were performed for a period of 10 
secs. Response curves of torque, omega, terminal 
voltage & delta were observed.  Simulation results 
demonstrate the good damping performance of the 
designed RPSS. Comparisons of the robust 
controller with the CPSS show that H∞ controller 
can achieve excellent robustness, while the design 
procedure used is much simpler. Collectively, 
these results show that the loop shaping controller 
provides faster settling times, less ringing 
oscillations (overshoots & undershoots) & good 
stabilization. The eigen value analysis for the 
model 1.1 with CPSS & RPSS was also carried 
out.  It was observed that the eigen values shows 
better stabilization with RPSS compared to CPSS.  
The settling time and deviation in magnitudes 
during transients are comparatively insignificant 
with the introduction of the RPSS in loop with the 
plant. By the method presented in this paper, the 
efficiency, performance and reliability of the 
power system increases as the robustness factor 
comes into picture using the H∞ control.  The 
above procedure can be applied to multi-machine 
power system to design the robust controller to 
take care of the intra-area oscillations under 
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perturbed conditions. Also, the method adopted in 
this paper can be used for power system 
stabilization & implementation in real time using 
dSpace interfacing cards. 
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