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ABSTRACT 

 
We present a technique for steganalysis of images that have been subjected to Least Significant Bit (LSB) 
type steganographic algorithms.  The seventh and eight bit planes in an image are used for the computation 
of several binary similarity measures and we analyze the security of Least Significant Bit (LSB) 
embedding for hiding messages in high-color-depth digital images.  The basic idea is that, the correlation 
between the bit planes as well the binary texture characteristics within the bit planes will differ between a 
stego-image and a cover-image. These telltale marks can be used to construct a steganalyzer, that is, a 
multivariate regression scheme to detect the presence of a steganographic message in an image. 
 
KEYWORDS: Steganography, Steganalysis, Binary Simulation, Least Significant Bit Operations. 
 
 
1. INTRODUCTION 

 
STEGANOGRAPHY refers to the science of 

“invisible” communication. Unlike cryptography, 
where the goal is to secure communications from 
an eavesdropper, steganographic techniques strive 
to hide the very presence of the message itself from 
an observer [1].Given the proliferation of digital 
images, and given the high degree of redundancy 
present in a digital representation of an image 
(despite compression), there has been an increased 
interest in using digital images for the purpose of 
steganography. The simplest image steganography 
techniques essentially embed the message in a 
subset of the LSB (least significant bit) plane of the 
image, possibly after encryption [2]. Popular 
steganographic tools based on LSB-embedding 
vary in their approach for hiding information.  
Methods like Steganos and Stools use LSB 
embedding in the spatial domain, while others like 
Jsteg embed in the frequency domain.  Non-LSB 
steganography techniques include the use of 
quantization and dithering [2]. 
     Since the main goal of steganography is to 
communicate securely in a completely undetectable 
manner, an adversary should not be able to 
distinguish in any sense between cover-objects 
(objects not containing any secret message) and 

stego-objects (objects containing a secret message).  
In this context, steganalysis refers to the body of 
techniques that are conceived to distinguish 
between cover-objects and stego-objects.  
     Recent years have seen many different 
steganalysis techniques proposed in the literature. 
Some of the earliest work in this regard was 
reported by Johnson and Jajodia [3],[4]. They 
mainly look at palette tables in GIF images and 
anomalies caused therein by common stego-tools.  
A more principled approach to LSB steganalysis 
was presented in [5] by Westfeld and Pfitzmann. 
They identify Pairs of Values (PoV’s), which 
consist of pixel values that get mapped to one 
another on LSB flipping. Fridrich, Du and Long [6] 
define pixels that are close in color intensity to be a 
difference of not more than one count in any of the 
three color planes. They then show that the ratio of 
close colors to the total number of unique colors 
increases significantly when a new message of a 
selected length is embedded in a cover image as 
opposed to when the same message is embedded in 
a stego-image. A more sophisticated technique that 
provides remarkable detection accuracy for LSB 
embedding, even for short messages, was presented 
by Fridrich et al. in [7].  Avcibas, Memon and 
Sankur [8] present a general- technique for 
steganalysis of images that is applicable to a wide 
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variety of embedding techniques including but not 
limited to LSB embedding. They demonstrate that 
steganographic schemes leave statistical evidence 
that can be exploited for detection with the aid of 
image quality features and multivariate regression 
analysis. Chandramouli and Memon [9] do a 
theoretical analysis of LSB steganography and 
derive a closed form expression of the probability 
of false detection in terms of the number of bits that 
are hidden. This leads to the notion of 
steganographic capacity, that is, the number of bits 
one can hide in an image using LSB techniques 
without causing statistically significant 
modifications.   
     In this paper, we present a new steganalysis 
technique for detecting stego-images. The 
technique uses binary similarity measures between 
successive bit planes of an image to determine the 
presence of a hidden message.  In comparison to 
previous work, the technique we present differs as 
follows: 
• [3] and [4] present visual techniques and work 

for palette images. Our technique is based on 
statistical analysis and works with any image 
format. 

• [5], [6] and [7] work only with LSB encoding. 
Our technique aims to detect messages 
embedded in other bit planes as well.  

• [5], [6] and [7] detect messages embedded in 
the spatial domain. The proposed technique 
works with both spatial and transform-domain 
embedding.  

• Our technique is more sensitive than [5], [6] 
and [8]. However, in its current form it is not 
as accurate as [7] and cannot estimate the 
length of the embedded message like [7]. 

Notice that our scheme, like [5,6,7] does not need a 
reference image for steganalysis. The rest of this 
paper is organized as follows: In Section 2 we 
review binary similarity measures. In Section 3 we 
describe our steganalysis technique. In Section 4, 
we present a new steganalytic technique based on 
analyzing the structure of the set of unique colors in 
the RGB color cube. In Section 5, we optimize the 
steganalytic technique by adjusting its parameters 
to minimize the probability of making an erroneous 
decision  
 
2.  BINARY SIMILARITY MEASURES 
 

There are various ways to determine 
similarity between two binary images. Classical 
measures are based on the bit-by-bit matching 
between the corresponding pixels of the two 

images. Typically, such measures are obtained from 
the scores based on a contingency table (or matrix 
of agreement) summed over all the pixels in an 
image. In this study, where we examine lower order 
bit-planes of images, for the presence of hidden 
messages, we have found that it is more relevant to 
make a comparison based on binary texture 
statistics. Let { }Kkx kii ,,1  , K== −x  and 

{ }Kky kii ,,1  , K== −y  be the sequences of bits 
representing the 4-neighborhood pixels, where the 
index i runs over all the image pixels.  Let  
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The accumulated agreements can be defined as: 
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These four variables {a,b,c,d} can be interpreted as 
the one-step co-occurrence values of the binary 
images.  Normalizing the histograms of the 
agreement scores for the 7th bit-plane can be 
defined as follows: 

7 / .j j j
i i

i i j

p α α=∑ ∑∑                     (4) 

Similarly, one can define jp8 for the 8th bit plane. In 
addition to these we calculate the Ojala texture 
measure as follows. For each binary image we 
obtain a 16-bin histogram based on the weighted 
neighborhood as shown in Fig. 1, where the score 

is given by: ∑
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Fig. 1 The weighting of the neighbors in the 
computation of Ojala score. S= 4+8=12 given W, S 
bits 1 and E, N bits 0. 
 
The resulting Ojala measure is the mutual entropy 
between the two distributions, that is 

∑
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where N is the total number of bins in the 
histogram, 7

nS  is the count of the n’th histogram 
bin in the 7th bit plane and 8

nS  is the corresponding 
one in the 8th plane. 
 

Table 1: Binary Similarity Measures 
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     Using the above definitions various binary 
image similarity measures are defined as shown in 
Table 1. The measures m1 to m5 are obtained for 
seventh and eighth bits separately by adapting the 
parameters {a,b,c,d} (3) to the classical binary 
string similarity measures, such as Sokal & Sneath. 
Then their differences th

i
th

ii mmdm 87 −=  5,,1K=i  
are used as the final measures. The measure dm6 is 
defined as the co-occurrence entropies using the 4-

bin histograms of the 7th and 8th bit planes. Finally 
the measure dm7 is somewhat different in that we 
use the neighborhood-weighting mask proposed by 
Ojala [16]. Thus we obtain a 16-bin histogram for 
each of the planes and then calculate their mutual 
entropy. 
 
3. STEGANALYSIS BASED ON BINARY 
MEASURES 
 
  Our approach is based on the fact that 
embedding a message in an image has a telltale 
effect on the nature of correlation between 
contiguous bit-planes. Hence we hypothesize that 
binary similarity measures between bit planes will 
cluster differently for clean and stego-images. This 
is the basis of our steganalyzer that aims to classify 
images as marked and unmarked.  
     We conjecture that hiding information in any bit 
plane decreases the correlation between that plane 
and its contiguous neighbors. For example, for LSB 
steganography, one expects a decreased similarity 
between the seventh and the eighth bit planes of the 
image as compared to its unmarked version. Hence, 
similarity measures between these two LSB’s 
should yield higher scores in a clean image as 
compared to a stego-image, as the embedding 
process destroys the preponderance of bit pair 
matches.   
     Since the complex bit pair similarity between bit 
planes cannot be represented by one measure only, 
we decided to use several similarity measures to 
capture different aspects of bit plane correlation.  
The steganalyzer is based on the regression of the 
seven similarity measures listed in Table 1:  

qqmmmy βββ +++= ...2211    (6) 
where { }qmmm ,..., 21  are the q similarity scores and 
{ }qβββ ,..., 21  are their regression coefficients. In 
other words we try to predict the state y, whether 
the image contains a stego-message (y = 1) or not 
(y = -1), based on the bit plane similarity measures. 
Since we have n observations, we have the set of 
equations  

111221111 ... εβββ ++++= qqmmmy  

nnqqnnn mmmy εβββ ++++= ...2211             (7)     
where krm  is the r’th similarity measure observed 
in the k’th test image.  The corresponding optimal 
MMSE linear predictor β  can be obtained by using 
the matrix M of similarity measures: 

( ) ( )yβ TT MMM 1ˆ −= .                   (8) 
Once prediction coefficients are obtained in the 
training phase, these coefficients can then be used 
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in the testing phase.  Given an image in the test 
phase, binary measures are computed and using the 
prediction coefficients, these scores are regressed to 
the output value.  If the output exceeds the 
threshold 0 then the decision is that the image is 
embedded, otherwise the decision is that the image 
is not embedded. That is, using the prediction 
 

qqmmmy βββ ˆ...ˆˆˆ 2211 +++=                 (9) 
the condition 0ˆ ≥y implies that the image 
contains a stego-message, and the condition 

0ˆ <y signifies that it does not.  
     The above shows how one can design a 
steganalyzer for the specific case of LSB 
embedding. The same procedure generalizes quite 
easily to detect messages in any other bit plane. 
Furthermore, our initial results indicate that we can 
even build steganalyzer for non-LSB embedding 
techniques like the recently designed algorithm F5 
[11]. This is because a technique like F5 (and many 
other robust watermarking techniques which can be 
used for steganography in an active warden 
framework [8]) results in the modification of the 
correlation between bit planes. We note that LSB 
techniques randomize the last bit plane.  On the 
other hand  Jsteg or F5 introduce more correlation 
between 7th and 8th bit planes, due to compression 
that filters out the natural noise in a clean image. In 
other words whereas spatial domain techniques 
decrease correlation, frequency domain techniques 
increase it.  

4.  STEGANALYSIS OF LSB ENCODING  

Johnson and Jajodia [21,22] present a 
careful analysis of fingerprints introduced by 
current steganographic software packages. They 
point out that most techniques for palette images 
with a small number of colors can be easily broken 
by analyzing the palette for close pairs of colors. 
Pfitzman and Westfeld [23] introduce a powerful 
Chi-square steganalytic technique that can reliably 
detect images with secret messages that are 
embedded in consecutive pixels (such as in 
Steganos, J-Steg, S-tools, or EZ Stego). However, 
their technique will not be effective for raw high-
color images and for messages that are randomly 
scattered in the image (unless the capacity of the 
stego-technique is close to 1 bit per pixel). In this 
section, we present a new steganalytic technique 
that can be successfully used for raw high-color-
depth images with randomly scattered secret 
messages. 
 

A large number of methods for hiding messages in 
raw losslessly compressed images (BMP, RAS, 
PGM, and many other formats) are based on 
replacing the least significant bit (LSB) of every 
gray-scale or color channel with message bits. 
Thus, on average only one half of the LSBs are 
changed. The logic behind this scheme is that the 
LSBs in typical scanned images or images taken 
with a digital camera are essentially random, and 
replacing them with an encrypted (i.e., randomized) 
message will not introduce any detectable artifacts. 
This would be essentially true, if the number of 
unique colors in the cover image was comparable 
to the number of pixels in the image. However, we 
have observed that the number of unique colors for 
true-color images is typically significantly smaller 
than the number of pixels in the image. The ratio of 
the number of unique colors to the number of pixels 
ranges from roughly 1:2 for high quality scans in 
BMP format to 1:6 or even lower for JPEG images 
or for typical video grabs. The number of unique 
colors tends to be smaller for JPEG images due to 
the low-pass character of the JPEG compression. 
This observation is very important because it means 
that many true-color images have a relatively small 
"palette". After LSB embedding, the new color 
palette will have a very disctinct feature − many 
pairs of very close colors. The presence of too 
many pairs of close colors is an indication of using 
the LSB encoding for steganography. While this 
type of artifact was recognized by researchers 
before [18,19], it was commonly thought that this 
was applicable only to images that use small 
palettes (GIF, PNG formats with at most 256 colors 
in their palettes). In this paper, we show that a large 
number of true-color images can also be attacked 
using a similar idea. We derived a statistical 
quantity and an algorithm that can be used for 
reliable filtering of messages with and without 
secret messages. 
 
We propose to test the presence of messages in 
true-color images using the following idea. Let us 
denote the number of unique colors in an image as 
U. Looking at unique colors only, let P be the 
number of close color pairs in the image palette. 
We say that two colors (R1, G1, B1) and (R2, G2, B2) 
are close if |R1−R2 | ≤ 1, |G1−G2 | ≤ 1, and |B1−B2 | ≤ 
1. This is equivalent to saying that 
(R1−R2)2+(G1−G2)2+(B1−B2)2 ≤ 3. The number of 
all color pairs is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
U

≥ P. 
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The ratio R between the number of closest pairs of 
colors and all pairs of colors, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2
U
PR , 

gives us an idea about the relative number of close 
colors in the image. After the embedding, the 
number of unique colors will be increased to U ' 
and we can evaluate the number of close pairs P ' 
and the number of all pairs of colors. Now, the idea 
is that for an image that does not have a message, 
the number of close pairs of colors relative to the 
number of all possible pairs of colors will be 
smaller than for an image that has a message 
already embedded in it. However, it appears that it 
is almost impossible to find a threshold for this 
ratio R for all images due to a large variation of the 
number of unique colors U. Fortunately, we have 
made an important observation that enables us to 
reliably distinguish between images with and 
without messages. In particular, we have noticed 
that if an image already contains a large message, 
embedding another message in it does not modify 
the ratio R in any significant manner. On the other 
hand, if the image does not contain a secret 
message, the ratio R increases significantly. Thus, 
we propose this relative comparison of the ratio R 
as the decision criterion. It makes much more sense 
to use this relative criterion because this way, we 
compare relative increase in close color pairs rather 
the volatile absolute increase. 
 
Detection algorithm: 
 
1. To find out whether or not an image has a 

secret message in it, calculate the ratio R 
between the number of all pairs of close colors 
P and the number of all color pairs (recall that 
U is the number of unique colors in the image): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2
U
PR . 

2. Using LSB embedding in randomly selected 
pixels (and channels for color M×N images), 
embed a test message of the size α3MN bits. 
Smaller values of  α will lead to faster 
techniques. Below, we discuss the selection of 
an optimal value for α to minimize the 
probability of making an erroneous decision. 

 
3. Denote the corresponding quantities for the 

new image after embedding the test message as 

U ' and P ', and calculate the ratio R ' for the 
new image with the test message 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2
'
''

U
PR . 

Now, if the image has already had a large message 
hidden inside, the two ratios will be almost the 
same, R ≅ R '. However, if the image did not have a 
message in it, we expect R ' > R. Thus, as a 
separating statistics, we can take the ratio R '/R.  
Obviously, if the secret message size is too small, 
the two ratios will be very close to each other and 
as a result we will not be able to distinguish images 
with and without messages. On the other hand, if a 
large secret message (i.e., message with length 
comparable to the number of pixels in the image) is 
embedded in the image, we expect the two ratios to 
be sufficiently different. The threshold set for 
separation of the two image sets will have to be 
chosen to minimize the number of false accusations 
while keeping the ratio of missed detections 
reasonable. We performed numerical experiments 
with an image database of 300 color images, 
350×250 pixels, stored as JPEGs. If every LSB of 
every pixel and color channel is modified, we have 
a steganographic capacity equal to 350×250×3/8 
bytes = 32.8kB. A message of length 20kB 
(roughly 2/3 of the maximal capacity when each 
pixel carries 3 bits) was embedded in each image to 
form a new database of images with messages. 
Then, we ran the detection algorithm for both 
databases and tested the message presence by 
embedding a test message of size 1kB (α ≅ 1/30). 
As a result, we obtained the values of R/R ' for both 
databases. The results are shown in Figure 1. The 
dashed curve corresponds to the database of images 
with messages and the solid curve corresponds to 
the original database without messages, both after 
embedding the 1kB test message. To separate the 
two curves, we choose the threshold Th as 1.1 (see  
Figure 1).  
 
Below, we discuss the selection of the threshold 
based on probabilities of making erroneous 
decisions, and the optimal size of the test message.  
5.  PARAMETER OPTIMIZATION 

We have performed the same experiment 
as in the previous paragraph for different size of the 
secret message ranging from 1% of the total 
number of color channels (3MN) to 50% (half of 
the color channels contain a message bit) and 
different sizes of the test message (α = 0.01−0.5). 
The solid Gaussian peak N(µ,σ) with probability 
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density fµ,σ (Figure 1) does not change with the 
message size − it corresponds to the probability 
density function of the ratio R/R ' for images 
without messages. The dashed Gaussian 
distribution N(µ(s),σ(s)) with probability density 
fµ(s),σ(s) corresponds to images with messages and it 
changes with the secret message size s: 

.
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Figure 1 The ratio R'/R for 300 images. The thin 
dashed curve corresponds to images with an 
embedded message of length equal to 2/3 of the 
total available number of LSBs (3MN). The bold 
solid curve corresponds to images without any 
embedded messages.  
 
We have µ  >µ (s) for al s. The distribution 
N(µ(s),σ(s)) becomes flatter and the peak moves to 
the right with the decreasing size of the secret 
message, and it is narrower and shifted towards 
zero with increasing the secret message size (it is 
easier to separate the two peaks for larger secret 
message  sizes). As the secret message size 
decreases, the solid and dashed Gaussian peaks 
start to overlap and we obtain a non-zero 
probability of making both types of errors. We 
denote the error of denoting an image as containing 
a secret message when it, in fact, does not contain 
any messages, as type I, and the other error or 
missing a secret message as type II 
 
Type I error:  Detecting a false message, 
Type II error: Missing a secret message. 

Threshold selection 

One way of assigning the threshold would be to 
require the two probabilities of making error I and 
II to be equal P(I) = P(II) 
 

∫∫
∞

−
−

∞−

−
−

===
Th

s
sx

Th
x

Pdx
s

edxeP )II(
)(22

)I(
2

)(2
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2

2
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2

2

2

2

πσπσ

σ
µ

σ
µ

. 

 
After substituting w = (x −µ )/σ in the left hand side 
integral and w' = (x − µ(s))/σ(s) in the right hand 
side, and comparing the integral limits, we obtain 
the following linear equation for the threshold Th: 
(Th − µ(s))/σ(s) = (µ − Th)/σ, 
 
which gives us a simple expression for Th 
 
Th = (µσ(s) + µ(s)σ)/(σ + σ(s)). 
 
In each particular application, the user should have 
the freedom to change the threshold Th to adjust for 
the importance of not missing an image with a 
secret message at the expense of making more 
errors of the type I.  
 
It seems that it makes more sense to minimize the 
overall probability of making both errors rather 
than making the errors of type I and II equal. It can 
be shown that the requirement of minimizing the 
overall error probability leads to the same threshold 
selection. The proof of this statement is omitted due 
to space limitations of this paper.  
Tables 1 − 4 illustrate the threshold and error 
probability for several different test message sizes 
and different secret message sizes.  
 
 
Embedded 
message 

Th T 

1% 1.0407 40.52
% 

5% 1.0214 16.23
% 

10% 1.0114 8.41% 
20% 1.0047 5.06% 
50% 1.0016 3.94% 
100% 1.0011 3.63% 
Table 1 Results for test message size 1% 
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Embedded 
message 

Th T 

1% 1.1606 39.64
% 

5% 1.0935 10.65
% 

10% 1.0506 4.67% 
20% 1.0206 1.95% 
50% 1.0059 1.21% 
100% 1.0028 1.10% 

Table 2 Results for test message size 5% 

Embedded 
message 

Th T 

1% 1.380
0 

40.33
% 

5% 1.267
5 

15.03
% 

10% 1.173
7 

4.50% 

20% 1.073
6 

0.82% 

50% 1.018
4 

0.26% 

100% 1.006
8 

0.21% 

Table 3 Results for test message size 20% 
Embedded 
message 

Th T 

1% 1.536
8 

41.48
% 

5% 1.413
9 

19.08
% 

10% 1.313
9 

7.86% 

20% 1.196
8 

2.05% 

50% 1.045
6 

0.21% 

100% 1.008
8 

0.02% 

Table 4 Results for test message size 50% 
 
There is another parameter in our detection scheme 
that needs to be carefully adjusted − the size of the 
test message. Based on our experiments, it turns out 
that for larger secret message size, larger test 
messages should be used. However, since we do 
not have any information about the secret message 
size, we need to settle on a compromise. In our 
simulations, we use the first method for threshold 
selection as introduced in the previous paragraph. 
We experimented with a color image with 250×350 

pixels. The size of the test message will be related 
to the maximal capacity of the LSB embedding 
method − one bit per color channel (3 bits per 
pixel). To find the optimal test message size, we 
calculate the test message size that gives us the 
smallest probability of error. For the secret message 
size equal to 10kB (30% of the maximal capacity), 
the optimal test message size was 8kB (α=25%). 
For a smaller secret message size (1kB), the 
optimal test message size was determined as 1.5kB 
(α=5%). Looking at Tables 5 and 6, we observe 
that the minimum for the larger secret message size 
is rather flat. It is also easier to detect a large 
message than a small message. Therefore, we make 
a compromise and set the optimal test message size 
to α=5% of the maximal image capacity 3MN. 

Test message size 1k 2k 3k 4k 5k 
Error probability 
(%) 

2.2
5 

1.6
8 

1.0
6 

0.8
0 

0.6
6 

Test message size 6k 7k 8k 9k 10k 
Error probability 
(%) 

0.5
9 

0.5
7 

0.5
5 

0.5
6 

0.5
9 

Table 5 Results of using different test message size 
with 10k bytes secret message 

Test message 
size 

0.8k 0.9k 1k 1.5k 1.6k  

Error probab. 
(%) 

21.3
8 

21.0
4 

20.4
6 

20.2
9 

20.3
3 

Test message 
size 

1.7k 2k 3k 4k 5k 

Error prob. (%) 20.2
5 

20.3
3 

20.7
0 

21.3
4 

21.7
7 

Table 6 Result of using different test message size 
with 1k bytes secret message 
 
From the test results, we can draw the following 
conclusions: 
 
1. The probability of error prediction is mainly 

determined by the size of the secret message. 
The influence of the test message size is much 
smaller. 

2. The optimal test message size is different for 
different secret message size. In our 
experiment, it is about 5% of the maximal 
image capacity when the size of the secret 
message is 1k bytes, and it is about 25% of the 
maximal image capacity when the size of the 
secret message is 10k bytes. 

The experimental results suggest that it is possible 
to reliably detect the presence of secret message 
embedded in digital images using the LSB 
technique. The reliability of the detection method 
increases with decreasing number of unique colors 
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in the original image. Some high-quality scans 
stored losslessly may have a very high number of 
unique colors (more than 1/2 of the number of 
pixels) and the results of the detection technique 
may become unreliable. 
 
6.  CONCLUSIONS 
 

In this paper, we have addressed the problem of 
steganalysis of marked images. We have developed 
a technique for discriminating between cover-
images and stego-images that have been subjected 
to the LSB type steganographic marking.  Our 
approach is based on the hypothesis that 
steganographic schemes leave telltale evidence 
between 7th and 8th bit planes that can be exploited 
for detection.  The steganalyzer has been 
instrumented with binary image similarity measures 
and multivariate regression.  Simulation results 
with commercially available steganographic 
techniques indicate that the new steganalyzer is 
effective in classifying marked and non-marked 
images.  

As described above, the proposed technique is 
not suitable for active warden steganography 
(unlike [8]) where a message is hidden in higher bit 
depths. But initial results have shown that it can 
easily generalize  for the active warden case by 
taking deeper bit plane correlations into account.  
For example, we are able to detect  Digimarc  when 
the measures are computed for 3rd and 4th bit 
planes. 
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